Improved and Generalized Upper Bounds on the Complexity of Policy Iteration

Bruno Scherrer

INRIA Lorraine, LORIA, MAIA Team

PGMO-COPI'14
Markov Decision Process

(Puterman, 1994; Bertsekas & Tsitsiklis, 1996)

Markov Decision Process (MDP):

- $\mathcal{X} = \{1, 2, \ldots, n\}$ is the finite state space,
- $\mathcal{A} = \{1, 2, \ldots, m\}$ is the finite action space,
- $r : \mathcal{X} \times \mathcal{A} \to \mathbb{R}$ is the reward function,
 \hspace{1cm} (r_t = r(x_t, a_t))
- $p : \mathcal{X} \times \mathcal{A} \to \Delta\mathcal{X}$ is the transition function.
 \hspace{1cm} (x_{t+1} \sim p(\cdot | x_t, a_t))$

Goal: Find a stationary policy $\pi : \mathcal{X} \to \mathcal{A}$ that maximizes the value $v_\pi(x)$ for all x:

$$v_\pi(x) = \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r_t \mid x_0 = x, \forall t, a_t = \pi(x_t) \right]. \quad (\gamma \in (0, 1))$$
Markov Decision Process (MDP):

- \(\mathcal{X} = \{1, 2, \ldots, n\} \) is the finite state space,
- \(\mathcal{A} = \{1, 2, \ldots, m\} \) is the finite action space,
- \(r : \mathcal{X} \times \mathcal{A} \rightarrow \mathbb{R} \) is the reward function,
- \(p : \mathcal{X} \times \mathcal{A} \rightarrow \Delta \mathcal{X} \) is the transition function.

\(r_t = r(x_t, a_t) \)
\(x_{t+1} \sim p(\cdot | x_t, a_t) \)

Goal: Find a stationary policy \(\pi : \mathcal{X} \rightarrow \mathcal{A} \) that maximizes the value \(v_\pi(x) \) for all \(x \):

\[
v_\pi(x) = \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r_t \middle| x_0 = x, \ \forall t, \ a_t = \pi(x_t) \right]. \quad (\gamma \in (0, 1))
\]
Bellman Equations and Operators

- For any policy π, the value v_π satisfies:

$$\forall x, \ v_\pi(x) = r(x, \pi(x)) + \gamma \sum_{y \in X} p(y|x, \pi(x)) v_\pi(y) \iff v_\pi = T_\pi v_\pi.$$

- The optimal value v_* satisfies:

$$\forall x, \ v_*(x) = \max_{a \in A} \left(r(x, a) + \gamma \sum_{y \in X} p(y|x, a) v_*(y) \right) \iff v_* = T v_*.$$

- $T_\pi : \mathbb{R}^X \to \mathbb{R}^X$ and $T : \mathbb{R}^X \to \mathbb{R}^X$ are γ-contraction mappings w.r.t. the max norm $\|v\|_\infty = \max_s |v(s)|$.

- π is a greedy policy w.r.t. v, written $\pi = \mathcal{G} v$, iff

$$\forall x, \ \pi(x) \in \arg \max_{a \in A} \left(r(x, a) + \gamma \sum_{y \in X} p(y|x, a) v(y) \right) \iff T_\pi v = T v.$$
Policy Iteration Scheme

Policy Iteration

\[\pi_{k+1} \leftarrow \text{switch}(\pi_k, Y_k) \] for some set \(Y_k \) such that \(\emptyset \subsetneq Y_k \subseteq S_{\pi_k} \).

\[
\begin{align*}
 a_\pi &= T v_\pi - v_\pi \geq 0 & \text{advantage} \\
 S_\pi &= \{ i, \ a_\pi(i) > 0 \} & \text{switchable states} \\
 \forall i, \ \text{switch}(\pi, Y)(i) &= \begin{cases}
 G(v_\pi)(i) & \text{if } i \in Y \\
 \pi(i) & \text{if } i \notin Y.
 \end{cases} & \text{improved policy}
\end{align*}
\]

Lemma (Policy Improvement (Puterman, 1994))

Let \(\pi \) be some non-optimal policy. If \(\pi' = \text{switch}(\pi, Y) \) for some non-empty subset \(Y \) of \(S_\pi \), then \(v_{\pi'} \geq v_\pi \) and there exists at least one state \(i \) such that \(v_{\pi'}(i) > v_\pi(i) \).

Howard’s PI: \(Y_k = S_{\pi_k} \), Simplex-PI: \(Y_k = s_k \) s.t. \(a_{\pi_k}(s_k) = \|a_{\pi_k}\|_\infty \).
Policy Iteration Scheme

Policy Iteration

$$\pi_{k+1} \leftarrow \text{switch}(\pi_k, Y_k) \text{ for some set } Y_k \text{ such that } \emptyset \subsetneq Y_k \subseteq S_{\pi_k}.$$

\[
a_\pi = T v_\pi - v_\pi \geq 0 \quad \text{advantage}
\]

\[
S_\pi = \{i, a_\pi(i) > 0\} \quad \text{switchable states}
\]

$$\forall i, \text{ switch}(\pi, Y)(i) = \begin{cases} G(v_\pi)(i) & \text{if } i \in Y \\ \pi(i) & \text{if } i \notin Y. \end{cases} \quad \text{improved policy}$$

Lemma (Policy Improvement (Puterman, 1994))

Let $$\pi$$ be some non-optimal policy. If $$\pi' = \text{switch}(\pi, Y)$$ for some non-empty subset $$Y$$ of $$S_\pi$$, then $$v_{\pi'} \geq v_\pi$$ and there exists at least one state $$i$$ such that $$v_{\pi'}(i) > v_\pi(i)$$.

Howard’s PI: $$Y_k = S_{\pi_k}$$, Simplex-PI: $$Y_k = s_k \text{ s.t. } a_{\pi_k}(s_k) = \|a_{\pi_k}\|_\infty.$$
Policy Iteration Scheme

Policy Iteration

\[\pi_{k+1} \leftarrow \text{switch}(\pi_k, Y_k) \text{ for some set } Y_k \text{ such that } \emptyset \subsetneq Y_k \subseteq S_{\pi_k}. \]

- \[a_\pi = TV_\pi - v_\pi \geq 0 \] advantage
- \[S_\pi = \{i, \; a_\pi(i) > 0\} \] switchable states

\[\forall i, \; \text{switch}(\pi, Y)(i) = \begin{cases} G(v_\pi)(i) & \text{if } i \in Y \\ \pi(i) & \text{if } i \not\in Y. \end{cases} \] improved policy

Lemma (Policy Improvement (Putereman, 1994))

Let \(\pi \) be some non-optimal policy. If \(\pi' = \text{switch}(\pi, Y) \) for some non-empty subset \(Y \) of \(S_\pi \), then \(v_{\pi'} \geq v_\pi \) and there exists at least one state \(i \) such that \(v_{\pi'}(i) > v_\pi(i) \).

Howard’s PI: \(Y_k = S_{\pi_k}, \) **Simplex-PI:** \(Y_k = s_k \) s.t. \[a_{\pi_k}(s_k) = \|a_{\pi_k}\|_\infty. \]
Complexity of Policy Iteration

How many iterations to converge to an \((\epsilon-)\)optimal policy?

- \(m^n\)
- \(\left\lceil \log \frac{V_{\text{max}}}{\epsilon} \right\rceil \) for Howard’s PI, \(\left\lceil n \log \frac{n V_{\text{max}}}{\epsilon} \right\rceil \) for Simplex-PI
- \(O\left(\frac{2^n}{n}\right)\) for Howard’s PI \((m = 2)\) (Mansour & Singh, 1999)
- \(O\left(\frac{n^2 m}{1-\gamma} \log \left(\frac{n}{1-\gamma}\right)\right)\) for Howard’s PI and Simplex-PI (Ye, 2011)
- \(O\left(\frac{nm}{1-\gamma} \log \left(\frac{n}{1-\gamma}\right)\right)\) for Howard’s PI (Hansen et al., 2013)
- \(O\left(n^5 m^2 \log^2 n\right)\) for Simplex-PI on deterministic MDPs (Post & Ye, 2012)

\(n = \)number of states, \(m = \)number of actions, \(V_{\text{max}} = \max_{x,a} |r(x,a)| \)

\(\epsilon\)-optimality: \(\|v_* - v_{\pi_k}\|_\infty \leq \epsilon\)
Complexity of Policy Iteration

How many iterations to converge to an (\(\epsilon\)-)optimal policy?

- \(m^n\)
- \(\left\lceil \log \frac{V_{\text{max}}}{\epsilon} \frac{1}{1-\gamma} \right\rceil\) for Howard’s PI,
- \(\left\lceil n \log \frac{nV_{\text{max}}}{\epsilon} \frac{1}{1-\gamma} \right\rceil\) for Simplex-PI
- \(O\left(\frac{2^n}{n}\right)\) for Howard’s PI (\(m = 2\)) (Mansour & Singh, 1999)
- \(O\left(\frac{n^2 m}{1-\gamma} \log \left(\frac{n}{1-\gamma}\right)\right)\) for Howard’s PI and Simplex-PI (Ye, 2011)
- \(O\left(\frac{nm}{1-\gamma} \log \left(\frac{n}{1-\gamma}\right)\right)\) for Howard’s PI (Hansen et al., 2013)
- \(O\left(n^5 m^2 \log^2 n\right)\) for Simplex-PI on deterministic MDPs (Post & Ye, 2012)

\(n\) = number of states, \(m\) = number of actions, \(V_{\text{max}} = \frac{\max_{x,a} |r(x,a)|}{1-\gamma}\)

\(\epsilon\)-optimality: \(\|v_* - v_{\pi_k}\|_{\infty} \leq \epsilon\)
Complexity of Policy Iteration

How many iterations to converge to an \((\epsilon\text{-})\)optimal policy?

- \(m^n\)
- \(\left\lceil \log \frac{V_{\max}}{\epsilon} \frac{1}{1-\gamma} \right\rceil\) for Howard’s PI,
- \(\left\lceil \frac{n \log n V_{\max}}{\epsilon} \frac{1}{1-\gamma} \right\rceil\) for Simplex-PI
- \(O\left(\frac{2^n}{n}\right)\) for Howard’s PI \((m = 2)\) (Mansour & Singh, 1999)
- \(O\left(\frac{n^2 m}{1-\gamma} \log \left(\frac{n}{1-\gamma}\right)\right)\) for Howard’s PI and Simplex-PI (Ye, 2011)
- \(O\left(\frac{nm}{1-\gamma} \log \left(\frac{n}{1-\gamma}\right)\right)\) for Howard’s PI (Hansen et al., 2013)
- \(O\left(n^5 m^2 \log^2 n\right)\) for Simplex-PI on deterministic MDPs (Post & Ye, 2012)

\(n = \text{number of states}, \ m = \text{number of actions}, \ V_{\max} = \max_{x,a} |r(x,a)| \frac{1}{1-\gamma}\)

\(\epsilon\text{-}\text{optimality}: \|\nu_* - \nu_{\pi_k}\|_{\infty} \leq \epsilon\)
Complexity of Policy Iteration

How many iterations to converge to an \((\epsilon\text{-})\)optimal policy?

- \(m^n\)
- \(\left\lceil \log \frac{V_{\text{max}}}{\epsilon} \right\rceil \) for Howard’s PI, \(\left\lceil n \log \frac{nV_{\text{max}}}{\epsilon} \right\rceil \) for Simplex-PI

- \(O\left(\frac{2^n}{n}\right)\) for Howard’s PI \((m = 2)\) (Mansour & Singh, 1999)
- \(O\left(\frac{n^2 m \log \left(\frac{n}{1-\gamma}\right)}{1-\gamma}\right)\) for Howard’s PI and Simplex-PI (Ye, 2011)
- \(O\left(\frac{nm \log \left(\frac{n}{1-\gamma}\right)}{1-\gamma}\right)\) for Howard’s PI (Hansen et al., 2013)
- \(O\left(n^5 m^2 \log^2 n\right)\) for Simplex-PI on deterministic MDPs (Post & Ye, 2012)

\(n\) = number of states, \(m\) = number of actions, \(V_{\text{max}} = \max_{x,a} |r(x,a)|\)
\(\epsilon\text{-}\)optimality: \(\|v_\pi - v_\star\|_\infty \leq \epsilon\)
Complexity of Policy Iteration

How many iterations to converge to an \((\epsilon-)\)optimal policy?

- \(m^n\)
- \(\left\lceil \frac{\log \frac{V_{\text{max}}}{\epsilon}}{1-\gamma} \right\rceil\) for Howard’s PI, \(\left\lceil \frac{n \log \frac{nV_{\text{max}}}{\epsilon}}{1-\gamma} \right\rceil\) for Simplex-PI
- \(O\left(\frac{2^n}{n}\right)\) for Howard’s PI \((m = 2)\) (Mansour & Singh, 1999)
- \(O\left(\frac{n^2m}{1-\gamma} \log \left(\frac{n}{1-\gamma}\right)\right)\) for Howard’s PI and Simplex-PI (Ye, 2011)
- \(O\left(\frac{nm}{1-\gamma} \log \left(\frac{n}{1-\gamma}\right)\right)\) for Howard’s PI (Hansen et al., 2013)
- \(O\left(n^5m^2 \log^2 n\right)\) for Simplex-PI on deterministic MDPs (Post & Ye, 2012)

\(n = \) number of states, \(m = \) number of actions, \(V_{\text{max}} = \max_{x,a} |r(x,a)| \frac{1}{1-\gamma}\)
\(\epsilon\)-optimality: \(\|v_* - v_{\pi_k}\|_\infty \leq \epsilon\)
Complexity of Policy Iteration

How many iterations to converge to an (ϵ-)optimal policy?

- m^n
- $\left\lceil \log \frac{V_{\max}}{\epsilon} \right\rceil$ for Howard's PI, $\left\lceil n \log \frac{nV_{\max}}{\epsilon} \right\rceil$ for Simplex-PI
- $O\left(\frac{2^n}{n} \right)$ for Howard's PI ($m = 2$) (Mansour & Singh, 1999)
- $O\left(\frac{n^2m}{1-\gamma} \log \left(\frac{n}{1-\gamma} \right) \right)$ for Howard's PI and Simplex-PI (Ye, 2011)
- $O\left(\frac{nm}{1-\gamma} \log \left(\frac{n}{1-\gamma} \right) \right)$ for Howard's PI (Hansen et al., 2013)
- $O\left(n^5m^2 \log^2 n \right)$ for Simplex-PI on deterministic MDPs (Post & Ye, 2012)

$n =$ number of states, $m =$ number of actions, $V_{\max} = \frac{\max_{x,a} |r(x,a)|}{1-\gamma}$

ϵ-optimality: $\|v_* - v_{\pi_k}\|_\infty \leq \epsilon$
Complexity of Policy Iteration

How many iterations to converge to an \((\epsilon-)\)optimal policy?

- \(m^n\)
- \(\left\lceil \log \frac{V_{\text{max}}}{\epsilon} \frac{1}{1-\gamma} \right\rceil\) for Howard’s PI, \(\left\lceil n \log \frac{n V_{\text{max}}}{\epsilon} \frac{1}{1-\gamma} \right\rceil\) for Simplex-PI
- \(O\left(\frac{2^n}{n}\right)\) for Howard’s PI \((m = 2)\) (Mansour & Singh, 1999)
- \(O\left(\frac{n^2 m}{1-\gamma} \log \left(\frac{n}{1-\gamma}\right)\right)\) for Howard’s PI and Simplex-PI (Ye, 2011)
- \(O\left(\frac{n m}{1-\gamma} \log \left(\frac{n}{1-\gamma}\right)\right)\) for Howard’s PI (Hansen et al., 2013)
- \(O\left(n^5 m^2 \log^2 n\right)\) for Simplex-PI on deterministic MDPs (Post & Ye, 2012)

\(n\) = number of states, \(m\) = number of actions, \(V_{\text{max}} = \max_{x,a} |r(x,a)|\frac{1}{1-\gamma}\)

\(\epsilon\)-optimality: \(\|v_* - v_{\pi_k}\|_{\infty} \leq \epsilon\)
Complexity of Policy Iteration

How many iterations to converge to an (ϵ-)optimal policy?

- m^n
- $\left\lceil \log \frac{V_{\text{max}}}{\epsilon} \right\rceil$ for Howard’s PI, $\left\lceil n \log \frac{nV_{\text{max}}}{\epsilon} \right\rceil$ for Simplex-PI
- $O\left(\frac{2^n}{n}\right)$ for Howard’s PI ($m = 2$) (Mansour & Singh, 1999)
- $O\left(\frac{n^2m}{1-\gamma} \log \left(\frac{n}{1-\gamma}\right)\right)$ for Howard’s PI and Simplex-PI (Ye, 2011)
- $O\left(\frac{nm}{1-\gamma} \log \left(\frac{n}{1-\gamma}\right)\right)$ for Howard’s PI (Hansen et al., 2013)
- $O\left(n^5m^2 \log^2 n\right)$ for Simplex-PI on deterministic MDPs (Post & Ye, 2012)

$n =$number of states, $m =$number of actions, $V_{\text{max}} = \max_{x,a} |r(x,a)|$

ϵ-optimality: $\|v_* - v_{\pi_k}\|_{\infty} \leq \epsilon$
Proofs for ϵ-optimality Bounds

Based on contraction properties.

- **Howard’s PI**: $\|v_* - v_{\pi_{k+1}}\|_\infty \leq \gamma \|v_* - v_{\pi_k}\|_\infty$

 By induction: $\|v_* - v_{\pi_k}\|_\infty \leq \gamma^k \|v_* - v_{\pi_0}\|_\infty \leq \gamma^k V_{\text{max}}$.

 $\|v_* - v_{\pi_k}\|_\infty < \epsilon \iff \gamma^k V_{\text{max}} < \epsilon \iff k \geq \frac{\log V_{\text{max}}}{1-\gamma} > \frac{\log V_{\text{max}}}{1-\gamma}$.

- **Simplex-PI**: $1^T(v_* - v_{\pi_{k+1}}) \leq (1 - \frac{1-\gamma}{n}) 1^T(v_* - v_{\pi_{k+1}})$

 $\|v_* - v_{\pi_k}\|_\infty \leq 1^T(v_* - v_{\pi_k}) \leq \left(1 - \frac{1-\gamma}{n}\right)^k 1^T(v_* - v_{\pi_0}) \leq \left(1 - \frac{1-\gamma}{n}\right)^k n V_{\text{max}}$.

 $\|v_* - v_{\pi_k}\|_\infty < \epsilon \iff \left(1 - \frac{1-\gamma}{n}\right)^k n V_{\text{max}} < \epsilon \iff k \geq \frac{n \log n V_{\text{max}}}{1-\gamma} > \frac{n \log n V_{\text{max}}}{1-\gamma}$.
Proofs for ϵ-optimality Bounds

Based on contraction properties.

- **Howard’s PI:** $\|v^* - v_{\pi_{k+1}}\|_\infty \leq \gamma \|v^* - v_{\pi_k}\|_\infty$

 By induction: $\|v^* - v_{\pi_k}\|_\infty \leq \gamma^k \|v^* - v_{\pi_0}\|_\infty \leq \gamma^k V_{\text{max}}$

 $\|v^* - v_{\pi_k}\|_\infty < \epsilon \iff \gamma^k V_{\text{max}} < \epsilon \iff k \geq \frac{\log \frac{V_{\text{max}}}{\epsilon}}{1 - \gamma} > \frac{\log \frac{V_{\text{max}}}{\epsilon}}{\log \frac{1}{\gamma}}$

- **Simplex-PI:** $\mathbf{1}^T (v^* - v_{\pi_{k+1}}) \leq \left(1 - \frac{1-\gamma}{n}\right) \mathbf{1}^T (v^* - v_{\pi_{k+1}})$

 $\|v^* - v_{\pi_k}\|_\infty \leq \mathbf{1}^T (v^* - v_{\pi_k}) \leq \left(1 - \frac{1-\gamma}{n}\right)^k \mathbf{1}^T (v^* - v_{\pi_0}) \leq \left(1 - \frac{1-\gamma}{n}\right)^k n V_{\text{max}}$

 $\|v^* - v_{\pi_k}\|_\infty < \epsilon \iff \left(1 - \frac{1-\gamma}{n}\right)^k n V_{\text{max}} < \epsilon \iff k \geq \frac{n \log \frac{n V_{\text{max}}}{\epsilon}}{1 - \gamma} > \frac{n \log \frac{n V_{\text{max}}}{\epsilon}}{\log \frac{1}{1 - \frac{1-\gamma}{n}}}$
Proofs for ϵ-optimality Bounds

Based on contraction properties.

- **Howard's PI:** \[\| v_* - v_{\pi_{k+1}} \|_\infty \leq \gamma \| v_* - v_{\pi_k} \|_\infty \]

 By induction: \[\| v_* - v_{\pi_k} \|_\infty \leq \gamma^k \| v_* - v_{\pi_0} \|_\infty \leq \gamma^k V_{\text{max}}. \]

 \[\| v_* - v_{\pi_k} \|_\infty < \epsilon \iff \gamma^k V_{\text{max}} < \epsilon \iff k \geq \frac{\log \frac{V_{\text{max}}}{\epsilon}}{1-\gamma} > \frac{\log \frac{V_{\text{max}}}{\epsilon}}{\log \frac{1}{\gamma}}. \]

- **Simplex-PI:** \[1^T(v_* - v_{\pi_{k+1}}) \leq \left(1 - \frac{1-\gamma}{n} \right) 1^T(v_* - v_{\pi_{k+1}}) \]

 \[\| v_* - v_{\pi_k} \|_\infty \leq 1^T(v_* - v_{\pi_k}) \leq \left(1 - \frac{1-\gamma}{n} \right)^k 1^T(v_* - v_{\pi_0}) \leq \left(1 - \frac{1-\gamma}{n} \right)^k n V_{\text{max}}. \]

 \[\| v_* - v_{\pi_k} \|_\infty < \epsilon \iff \left(1 - \frac{1-\gamma}{n} \right)^k n V_{\text{max}} < \epsilon \iff k \geq \frac{n \log \frac{nV_{\text{max}}}{\epsilon}}{1-\gamma} > \frac{n \log \frac{nV_{\text{max}}}{\epsilon}}{\log \frac{1}{1-\gamma}}. \]
Improved Bounds

Theorem

Howard’s PI terminates after at most \(O\left(\frac{nm}{1-\gamma} \log \left(\frac{1}{1-\gamma}\right)\right) \) iterations.

Theorem

Simplex-PI terminates after at most \(O\left(\frac{n^2m}{1-\gamma} \log \left(\frac{1}{1-\gamma}\right)\right) \) iterations.

- Better by a factor \(O(\log n) \) than the previously known bounds for *Howard’s PI* (Hansen et al., 2013) and *Simplex-PI* (Ye, 2011).

- **Tightness:** \(n, m \approx \frac{1}{1-\gamma} \) (Fearnley, 2010; Hollanders et al., 2012; Melekokopoglou & Condon, 1994).

- Howard’s PI vs Simplex-PI: similar overall worst-case complexity
Improved Bounds

Theorem

Howard’s PI terminates after at most \(O \left(\frac{nm}{1-\gamma} \log \left(\frac{1}{1-\gamma} \right) \right) \) iterations.

Theorem

Simplex-PI terminates after at most \(O \left(\frac{n^2m}{1-\gamma} \log \left(\frac{1}{1-\gamma} \right) \right) \) iterations.

- Better by a factor \(O(\log n) \) than the previously known bounds for Howard’s PI (Hansen et al., 2013) and Simplex-PI (Ye, 2011).
- Tightness: \(n, m \, \frac{1}{1-\gamma} \) (Fearnley, 2010; Hollanders et al., 2012; Melekopoglou & Condon, 1994).
- Howard’s PI vs Simplex-PI: similar overall worst-case complexity.
Improved Bounds

Theorem

Howard’s PI terminates after at most \(O \left(\frac{nm}{1-\gamma} \log \left(\frac{1}{1-\gamma} \right) \right) \) iterations.

Theorem

Simplex-PI terminates after at most \(O \left(\frac{n^2 m}{1-\gamma} \log \left(\frac{1}{1-\gamma} \right) \right) \) iterations.

- Better by a factor \(O(\log n) \) than the previously known bounds for *Howard’s PI* (Hansen et al., 2013) and *Simplex-PI* (Ye, 2011).

- **Tightness:** \(n, m \approx \frac{1}{1-\gamma} \) (Fearnley, 2010; Hollanders et al., 2012; Melekopoglou & Condon, 1994).

- *Howard’s PI vs Simplex-PI:* similar overall worst-case complexity
Improved Bounds

Theorem

Howard’s PI terminates after at most \(O \left(\frac{nm}{1-\gamma} \log \left(\frac{1}{1-\gamma} \right) \right) \) iterations.

Theorem

Simplex-PI terminates after at most \(O \left(\frac{n^2m}{1-\gamma} \log \left(\frac{1}{1-\gamma} \right) \right) \) iterations.

- Better by a factor \(O(\log n) \) than the previously known bounds for Howard’s PI (Hansen *et al.*, 2013) and Simplex-PI (Ye, 2011).
- **Tightness**: \(n, m? \frac{1}{1-\gamma}? \) (Fearnley, 2010; Hollanders *et al.*, 2012; Melekopoglou & Condon, 1994).
- **Howard’s PI vs Simplex-PI**: similar overall worst-case complexity
Proof for Howard’s PI

Lemma

For all pairs of policies \(\pi \) and \(\pi' \),

\[
 v_{\pi'} - v_{\pi} = (I - \gamma P_{\pi'})^{-1}(T_{\pi'} v_{\pi} - v_{\pi}).
\]

For some state \(s_0 \), (the “worst” state of \(\pi_0 \))

\[
 v_*(s_0) - T_{\pi_k} v_*(s_0) \leq \|v_* - T_{\pi_k} v_*\|_\infty
 \leq \|v_* - v_{\pi_k}\|_\infty \quad \{\text{Lemma}\}
 \leq \gamma^k \|v_{\pi_*} - v_{\pi_0}\|_\infty \quad \{\gamma\text{-contraction}\}
 = \gamma^k \|(I - \gamma P_{\pi_0})^{-1}(v_* - T_{\pi_0} v_*)\|_\infty
 \leq \frac{\gamma^k}{1 - \gamma} \|v_* - T_{\pi_0} v_*\|_\infty \quad \{\text{Lemma}\}
 = \frac{\gamma^k}{1 - \gamma} (v_*(s_0) - T_{\pi_0} v_*(s_0)).
\]

Elimination of a non-optimal action:

For all “sufficiently big” \(k \), \(\pi_k(s_0) \) must differ from \(\pi_0(s_0) \).

“sufficiently big”: \(\frac{\gamma^k}{1 - \gamma} < 1 \iff k \geq \left\lceil \log \frac{1}{1 - \gamma} \right\rceil > \left[\log \frac{1}{1 - \gamma} \right] > \frac{1}{\log \frac{1}{\gamma}} \).

There are at most \(n(m - 1) \) non-optimal actions to eliminate.
Proof for Howard’s PI

Lemma

For all pairs of policies \(\pi \) and \(\pi' \),
\[
v_{\pi'} - v_\pi = (I - \gamma P_{\pi'})^{-1}(T_{\pi'} v_\pi - v_\pi).
\]

For some state \(s_0 \), (the “worst” state of \(\pi_0 \))
\[
v_*(s_0) - T_{\pi_k} v_*(s_0) \leq \|v_* - T_{\pi_k} v_*\|_\infty \\
\leq \|v_* - v_{\pi_k}\|_\infty \quad \{\text{Lemma}\}
\leq \gamma^k \|v_{\pi_*} - v_{\pi_0}\|_\infty \quad \{\gamma\text{-contraction}\}
= \gamma^k \|(I - \gamma P_{\pi_0})^{-1}(v_* - T_{\pi_0} v_*)\|_\infty \quad \{\text{Lemma}\}
\leq \frac{\gamma^k}{1 - \gamma} \|v_* - T_{\pi_0} v_*\|_\infty. \quad \{\|I - \gamma P_{\pi_0}\|_\infty = \frac{1}{1 - \gamma}\}
= \frac{\gamma^k}{1 - \gamma} (v_*(s_0) - T_{\pi_0} v_*(s_0)).
\]

Elimination of a non-optimal action:
For all “sufficiently big” \(k \), \(\pi_k(s_0) \) must differ from \(\pi_0(s_0) \).

“sufficiently big”:
\[
\frac{\gamma^k}{1 - \gamma} < 1 \iff k \geq \left\lceil \frac{\log \frac{1}{1 - \gamma}}{1 - \gamma} \right\rceil > \left\lceil \frac{\log \frac{1}{1 - \gamma}}{\log \frac{1}{\gamma}} \right\rceil.
\]

There are at most \(n(m - 1) \) non-optimal actions to eliminate.
Proof for Howard’s PI

Lemma

For all pairs of policies π and π', $v_{\pi'} - v_\pi = (I - \gamma P_{\pi'})^{-1} (T_{\pi'} v_\pi - v_\pi)$.

For some state s_0, (the “worst” state of π_0)

$$v_*(s_0) - T_{\pi_k} v_*(s_0) \leq \|v_* - T_{\pi_k} v_*\|_\infty \leq \|v_* - v_{\pi_k}\|_\infty \leq \gamma^k \|v_{\pi_*} - v_{\pi_0}\|_\infty$$

$$= \gamma^k \|(I - \gamma P_{\pi_0})^{-1}(v_* - T_{\pi_0} v_*)\|_\infty$$

$$\leq \frac{\gamma^k}{1 - \gamma} \|v_* - T_{\pi_0} v_*\|_\infty.$$

Elimination of a non-optimal action:

For all “sufficiently big” k, $\pi_k(s_0)$ must differ from $\pi_0(s_0)$.

“sufficiently big”: $\frac{\gamma^k}{1 - \gamma} < 1 \iff k \geq \left[\log \frac{1}{1 - \gamma} \right] > \left[\log \frac{\frac{1}{1 - \gamma}}{\log \frac{1}{\gamma}} \right]$.

There are at most $n(m - 1)$ non-optimal actions to eliminate.
Proof for Howard's PI

Lemma

For all pairs of policies π and π', $v_{\pi'} - v_\pi = (I - \gamma P_{\pi'})^{-1}(T_{\pi'} v_{\pi} - v_\pi)$.

For some state s_0, (the “worst” state of π_0)

$$v_*(s_0) - T_{\pi_k} v_*(s_0) \leq \|v_* - T_{\pi_k} v_*\|_\infty$$

$$\leq \|v_* - v_{\pi_k}\|_\infty$$

$$\leq \gamma^k \|v_{\pi_*} - v_{\pi_0}\|_\infty$$

$$= \gamma^k \|(I - \gamma P_{\pi_0})^{-1}(v_* - T_{\pi_0} v_*)\|_\infty$$

$$\leq \frac{\gamma^k}{1 - \gamma} \|v_* - T_{\pi_0} v_*\|_\infty.$$ \{Lemma\}

$$= \frac{\gamma^k}{1 - \gamma} (v_*(s_0) - T_{\pi_0} v_*(s_0)).$$

Elimination of a non-optimal action:

For all “sufficiently big” k, $\pi_k(s_0)$ must differ from $\pi_0(s_0)$.

“sufficiently big”:

$$\frac{\gamma^k}{1 - \gamma} < 1 \iff k \geq \left\lceil \log \frac{1}{1 - \gamma} \right\rceil > \left\lceil \log \frac{1}{1 - \gamma} \right\rceil.$$

There are at most $n(m - 1)$ non-optimal actions to eliminate.
Proof for Howard’s PI

Lemma

For all pairs of policies π and π', \(v_{\pi'} - v_\pi = (I - \gamma P_{\pi'})^{-1}(T_{\pi'} v_\pi - v_\pi) \).

For some state s_0, (the “worst” state of π_0)

\[
v_*(s_0) - T_{\pi_k} v_*(s_0) \leq \|v_* - T_{\pi_k} v_*\|_{\infty} \leq \|v_* - v_{\pi_k}\|_{\infty} \leq \gamma^k \|v_{\pi_*} - v_{\pi_0}\|_{\infty} = \gamma^k \|(I - \gamma P_{\pi_0})^{-1}(v_* - T_{\pi_0} v_*)\|_{\infty} \leq \frac{\gamma^k}{1 - \gamma} \|v_* - T_{\pi_0} v_*\|_{\infty}.
\]

\[
= \frac{\gamma^k}{1 - \gamma} (v_*(s_0) - T_{\pi_0} v_*(s_0)).
\]

Elimination of a non-optimal action:

For all “sufficiently big” k, $\pi_k(s_0)$ must differ from $\pi_0(s_0)$.

“sufficiently big”: \(\frac{\gamma^k}{1 - \gamma} < 1 \iff k \geq \left\lceil \frac{\log \frac{1}{1 - \gamma}}{\log \frac{1}{1 - \gamma}} \right\rceil > \left\lceil \frac{\log \frac{1}{1 - \gamma}}{\log \frac{1}{\gamma}} \right\rceil \).

There are at most $n(m - 1)$ non-optimal actions to eliminate.
Proof for Howard’s PI

Lemma

For all pairs of policies π and π', $v_{\pi'} - v_\pi = (I - \gamma P_{\pi'})^{-1}(T_{\pi'} v_\pi - v_\pi)$.

For some state s_0, (the “worst” state of π_0)

$v_*(s_0) - T_{\pi_k} v_*(s_0) \leq \|v_* - T_{\pi_k} v_*\|_\infty$

$\leq \|v_* - v_{\pi_k}\|_\infty \quad \{\text{Lemma}\}$

$\leq \gamma^k \|v_{\pi_*} - v_{\pi_0}\|_\infty \quad \{\gamma$-contraction\}$

$= \gamma^k \|(I - \gamma P_{\pi_0})^{-1}(v_* - T_{\pi_0} v_*)\|_\infty \quad \{\text{Lemma}\}$

$\leq \frac{\gamma^k}{1 - \gamma} \|v_* - T_{\pi_0} v_*\|_\infty. \quad \{\| (I - \gamma P_{\pi_0})^{-1}\|_\infty = \frac{1}{1 - \gamma}\}$

$= \frac{\gamma^k}{1 - \gamma} (v_*(s_0) - T_{\pi_0} v_*(s_0))$.

Elimination of a non-optimal action:

For all “sufficiently big” k, $\pi_k(s_0)$ must differ from $\pi_0(s_0)$.

“sufficiently big”: $\frac{\gamma^k}{1 - \gamma} < 1 \Leftrightarrow k \geq \left\lceil \log \frac{1}{1 - \gamma} \right\rceil > \left\lceil \log \frac{1}{\log \frac{1}{\gamma}} \right\rceil$.

There are at most $n(m - 1)$ non-optimal actions to eliminate.
Proof for Howard’s PI

Lemma

For all pairs of policies \(\pi \) and \(\pi' \),
\[
v_{\pi'} - v_\pi = (I - \gamma P_{\pi'})^{-1}(T_{\pi'} v_{\pi} - v_\pi).
\]

For some state \(s_0 \), (the “worst” state of \(\pi_0 \))
\[
v_*(s_0) - T_{\pi_k} v_*(s_0) \leq \|v_* - T_{\pi_k} v_*\|_\infty
\]
\[
\leq \|v_* - v_{\pi_k}\|_\infty \quad \{\text{Lemma}\}
\]
\[
\leq \gamma^k \|v_{\pi_k} - v_{\pi_0}\|_\infty \quad \{\gamma\text{-contraction}\}
\]
\[
= \gamma^k \|(I - \gamma P_{\pi_0})^{-1}(v_\pi - T_{\pi_0} v_\pi)\|_\infty \quad \{\text{Lemma}\}
\]
\[
\leq \frac{\gamma^k}{1 - \gamma} \|v_* - T_{\pi_0} v_*\|_\infty. \quad \{\|(I - \gamma P_{\pi_0})^{-1}\|_\infty = \frac{1}{1 - \gamma}\}
\]
\[
= \frac{\gamma^k}{1 - \gamma} (v_*(s_0) - T_{\pi_0} v_*(s_0)).
\]

Elimination of a non-optimal action:
For all “sufficiently big” \(k \), \(\pi_k(s_0) \) must differ from \(\pi_0(s_0) \).

“sufficiently big”: \(\frac{\gamma^k}{1 - \gamma} < 1 \Leftrightarrow k \geq \left\lceil \frac{\log \frac{1}{1 - \gamma}}{\log \frac{1}{\gamma}} \right\rceil > \left\lceil \frac{\log \frac{1}{1 - \gamma}}{\log \frac{1}{\gamma}} \right\rceil \).

There are at most \(n(m - 1) \) non-optimal actions to eliminate.
Structural assumption

\[x_\pi = 1^T (I - \gamma P_\pi)^{-1} = 1^T \sum_{t=0}^{\infty} (\gamma P_\pi)^t \]

Assumption

Let \(\tau_t \geq 1 \) and \(\tau_r \geq 1 \) be the smallest constants such that for all policies \(\pi \) and all states \(i \),

\[
(1 \leq) x_\pi(i) \leq \tau_t \quad \text{if } i \text{ is transient for } \pi, \text{ and} \quad (1)
\]

\[
\frac{n}{(1 - \gamma)\tau_r} \leq x_\pi(i) \left(\leq \frac{n}{1 - \gamma} \right) \quad \text{if } i \text{ is recurrent for } \pi. \quad (2)
\]

When \(\gamma \) tends to 1:

- \(\tau_t \geq \) expected time to leave the transient states
- \(\frac{1}{\tau_r} \leq \) asymptotic frequency in a recurrent states

Example: in a deterministic MDP, we have \(\tau_t \leq n \) and \(\tau_r \leq n \).
Structural assumption

\[x_\pi = 1^T (I - \gamma P_\pi)^{-1} = 1^T \sum_{t=0}^{\infty} (\gamma P_\pi)^i \]

Assumption

Let \(\tau_t \geq 1 \) and \(\tau_r \geq 1 \) be the smallest constants such that for all policies \(\pi \) and all states \(i \),

\[
(1 \leq) x_\pi (i) \leq \tau_t \quad \text{if } i \text{ is transient for } \pi, \text{ and} \quad (1)
\]

\[
\frac{n}{(1 - \gamma)\tau_r} \leq x_\pi (i) \left(\leq \frac{n}{1 - \gamma} \right) \quad \text{if } i \text{ is recurrent for } \pi. \quad (2)
\]

When \(\gamma \) tends to 1:

- \(\tau_t \geq \) expected time to leave the transient states
- \(\frac{1}{\tau_r} \leq \) asymptotic frequency in a recurrent states

Example: in a deterministic MDP, we have \(\tau_t \leq n \) and \(\tau_r \leq n \).
Structural assumption

\[x_\pi = 1^T (I - \gamma P_\pi)^{-1} = 1^T \sum_{t=0}^{\infty} (\gamma P_\pi)^i \]

Assumption

Let \(\tau_t \geq 1 \) and \(\tau_r \geq 1 \) be the smallest constants such that for all policies \(\pi \) and all states \(i \),

\[
(1 \leq) x_\pi (i) \leq \tau_t \quad \text{if } i \text{ is transient for } \pi, \text{ and} \tag{1}
\]

\[
\frac{n}{(1 - \gamma)\tau_r} \leq x_\pi (i) \left(\leq \frac{n}{1 - \gamma} \right) \quad \text{if } i \text{ is recurrent for } \pi. \tag{2}
\]

When \(\gamma \) tends to 1:

- \(\tau_t \geq \) expected time to leave the transient states
- \(\frac{1}{\tau_r} \leq \) asymptotic frequency in a recurrent states

Example: in a deterministic MDP, we have \(\tau_t \leq n \) and \(\tau_r \leq n \).
Generalized Bound for Simplex-PI

Theorem

Simplex-PI terminates after at most $O\left(n^3 m^2 t r \log^2(n t r)\right)$ iterations.

- Generalizes the result of (Post & Ye, 2012) on deterministic MDPs

Lemma (Recurrent classes are created often)

After at most $O\left(n^2 m t \log(n t)\right)$ iterations either *Simplex-PI* finishes or a new recurrent class appears.

Lemma (New recurrent class \Rightarrow significant improvement)

When *Simplex-PI* moves from π to π' where π' involves a new recurrent class, we have

$$\mathbb{1}^T (v_{\pi_*} - v_{\pi'}) \leq \left(1 - \frac{1}{\tau r}\right) \mathbb{1}^T (v_{\pi_*} - v_{\pi}).$$

- Second Lemma problematic for an adaptation to Howard’s PI.
Generalized Bound for Simplex-PI

Theorem

Simplex-PI terminates after at most \(O \left(n^3 m^2 \tau_t \tau_r \log^2 (n \tau_t \tau_r) \right) \) iterations.

- Generalizes the result of (Post & Ye, 2012) on deterministic MDPs

Lemma (Recurrent classes are created often)

After at most \(O \left(n^2 m \tau_t \log(n \tau_t) \right) \) iterations either Simplex-PI finishes or a new recurrent class appears.

Lemma (New recurrent class \(\Rightarrow \) significant improvement)

When Simplex-PI moves from \(\pi \) to \(\pi' \) where \(\pi' \) involves a new recurrent class, we have

\[
1^T (v_{\pi_*} - v_{\pi'}) \leq \left(1 - \frac{1}{\tau_r} \right) 1^T (v_{\pi_*} - v_{\pi}).
\]

- Second Lemma problematic for an adaptation to Howard’s PI.
Generalized Bound for Simplex-PI

Theorem

Simplex-PI terminates after at most $O\left(n^3 m^2 T_t^2 T_r \log^2(n T_t T_r)\right)$ iterations.

- Generalizes the result of (Post & Ye, 2012) on deterministic MDPs

Lemma (Recurrent classes are created often)

After at most $O\left(n^2 m T_t \log(n T_t)\right)$ iterations either *Simplex-PI* finishes or a new recurrent class appears.

Lemma (New recurrent class ⇒ significant improvement)

When *Simplex-PI* moves from π to π' where π' involves a new recurrent class, we have

$$1^T (v_{\pi^*} - v_{\pi'}) \leq \left(1 - \frac{1}{T_r}\right) 1^T (v_{\pi^*} - v_{\pi}).$$

- Second Lemma problematic for an adaptation to Howard’s PI.
Generalized Bound for Simplex-PI

Theorem

Simplex-PI terminates after at most $O \left(n^3 m^2 \tau_t \tau_r \log^2(n \tau_t \tau_r)\right)$ iterations.

- Generalizes the result of (Post & Ye, 2012) on deterministic MDPs

Lemma (Recurrent classes are created often)

After at most $O \left(n^2 m \tau_t \log(n \tau_t)\right)$ iterations either *Simplex-PI* finishes or a new recurrent class appears.

Lemma (New recurrent class ⇒ significant improvement)

When *Simplex-PI* moves from π to π' where π' involves a new recurrent class, we have

$$1^T(v_{\pi_*} - v_{\pi'}) \leq \left(1 - \frac{1}{\tau_r}\right) 1^T(v_{\pi_*} - v_{\pi}).$$

- Second Lemma problematic for an adaptation to Howard’s PI.
A New Bound

Assumption

The state space X can be partitioned in two sets \mathcal{T} and \mathcal{R} such that for all policies π, the states of \mathcal{T} are transient and those of \mathcal{R} are recurrent.

Theorem

Under the above assumption, Howard’s PI terminates after at most $O(n m (\tau_t \log(n \tau_t) + \tau_r \log(n \tau_r)))$ iterations and Simplex-PI terminates after at most $O(n^2 m (\tau_t \log(n \tau_t) + \tau_r \log(n \tau_r)))$ iterations.

- Restrictive assumption
- Proof: 1) convergence on \mathcal{R}, 2) convergence on \mathcal{T}.
Assumption

The state space X can be partitioned in two sets \mathcal{T} and \mathcal{R} such that for all policies π, the states of \mathcal{T} are transient and those of \mathcal{R} are recurrent.

Theorem

Under the above assumption, Howard’s PI terminates after at most $O(nm(\tau_t \log(n\tau_t) + \tau_r \log(n\tau_r)))$ iterations and Simplex-PI terminates after at most $O(n^2 m(\tau_t \log(n\tau_t) + \tau_r \log(n\tau_r)))$ iterations.

- **Restrictive** assumption
- Proof: 1) convergence on \mathcal{R}, 2) convergence on \mathcal{T}.
Conclusion

Contributions:

• \(O(\log n)\) improvement for Howard’s PI and Simplex-PI
• Generalization of the result of (Post & Ye, 2012) for Simplex-PI to stochastic MDPs
• (A new bound for Howard’s PI and Simplex-PI)

Future Work:

• Tightness of the bounds
• What is the complexity of Howard’s PI? (Schmitz, 1985)
 Open problem, even in the deterministic case!
 Best known lower bound: \(O\left(n^2\right)\) (Hansen & Zwick, 2010)
 Best known upper bound: \(O\left(\frac{2^n}{n}\right)\) (m=2) (Mansour & Singh, 1999)
Conclusion

Contributions:

• $O(\log n)$ improvement for Howard’s PI and Simplex-PI
• Generalization of the result of (Post & Ye, 2012) for Simplex-PI to stochastic MDPs
• (A new bound for Howard’s PI and Simplex-PI)

Future Work:

• Tightness of the bounds
• What is the complexity of Howard’s PI? (Schmitz, 1985)
 Open problem, even in the deterministic case!
 Best known lower bound: $O(n^2)$ (Hansen & Zwick, 2010)
 Best known upper bound: $O\left(\frac{2^n}{n}\right)$ (m=2) (Mansour & Singh, 1999)
References I

Neurodynamic Programming.
Athena Scientific.

Fearnley, J. 2010.
Exponential lower bounds for policy iteration.
ICALP’10.
Berlin, Heidelberg: Springer-Verlag.

Lower bounds for howard’s algorithm for finding minimum mean-cost cycles.
Pages 415–426 of: Isaac (1).

Strategy iteration is strongly polynomial for 2-player turn-based stochastic games with a constant discount factor.
J. acm, 60(1), 1:1–1:16.

The complexity of policy iteration is exponential for discounted markov decision processes.
In: 51st ieee conference on decision and control (cdc’12).

On the complexity of policy iteration.
Pages 401–408 of: Uai.
References II

On the complexity of the policy improvement algorithm for markov decision processes.
Informs journal on computing, 6(2), 188–192.

Post, I., & Ye, Y. 2012.
The simplex method is strongly polynomial for deterministic markov decision processes.

Markov Decision Processes.
Wiley, New York.

How good is howard’s policy improvement algorithm?
Zeitschrift für operations research, 29(7), 315–316.

Ye, Y. 2011.
The simplex and policy-iteration methods are strongly polynomial for the markov decision problem with a fixed discount rate.