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Incentives Limited data Sequential
decisions

Online platforms, e-commerce, etc

Flexible Model:

Motivation

Multiple Goals



Course Overview

1. Classic single-choice problems:
The classic prophet inequality, secretary problem, prophet secretary problem, etc

2. Data driven prophet inequalities:
How can limited amount of data be nearly as useful as full distributional knowledge

3. Combinatorial Prophet Inequalities
Many ideas for single choice problems, extend to combinatorial contexts such as k-

choice, Matching, hyper graph matching, and beyond

4. Online Combinatorial Auctions
General Model that ecompasses many online selection/allocation problems



3. Combinatorial Prophet 
Inequalities



𝑘 identical tickets

Sequence of 𝑛 agents with 
independent valuations (for one copy)

𝑣! ∼ 𝐹!, 𝑣" ∼ 𝐹", … , 𝑣# ∼ 𝐹#

We sell to at most 𝑘 agents, we compare against the expectation of 
the sum of the largest 𝑘 valuations



Static price policy
Set a price 𝑇 > 0
Recall the proof for 𝑘 = 1:

𝔼 𝐴𝐿𝐺 ≥ 𝑇 ⋅ ℙ max 𝑣$ ≥ 𝑇 + ℙ max 𝑣$ < 𝑇 ⋅:
$%!

#

𝔼 𝑣$ − 𝑇 &

Revenue Utility

Exp. no. of sold items Prob. item is available

For 𝑘 > 1, denote as 𝑁(𝑇) the number of items sold, i.e., 𝑁 𝑇 = 𝑖: 𝑣$ ≥ 𝑇 . 

Revenue = 𝑇 ⋅ 𝔼 𝑁 𝑇

Utility = ∑$%!
# 𝔼 𝑣$ − 𝑇 & ⋅ 𝑃 item available for 𝑖

≥ ℙ 𝑁 𝑇 < 𝑘 ⋅:
$%!

#

𝔼 𝑣$ − 𝑇 &



𝔼 𝑂𝑃𝑇 = 𝔼 &
!∈#$%

𝑣! = 𝑘 ⋅ 𝑇 + 𝔼 &
!∈#$%

(𝑣!−𝑇) ≤ 𝑘 ⋅ 𝑇 + 𝔼 &
!&'

(

𝑣! − 𝑇 )

Then,
𝔼 𝐴𝐿𝐺
𝔼 𝑂𝑃𝑇

≥
𝔼 𝑁 𝑇 ⋅ 𝑇 + ℙ 𝑁 𝑇 < 𝑘 ⋅ 𝔼 ∑!"#$ 𝑣! − 𝑇 %

𝑘 ⋅ 𝑇 + 𝔼 ∑!"#$ 𝑣! − 𝑇 %

≥ min
𝔼 𝑁 𝑇

𝑘
, ℙ 𝑁 𝑇 < 𝑘



If we set 𝑇 such that 𝔼 𝑁 𝑇 = 𝑘 − 2𝑘 log 𝑘
Then, a Chernoff bound implies that

ℙ 𝑁 𝑇 ≥ 𝑘 ≤ 𝑂
1
𝑘

Therefore,

min
𝔼 𝑁 𝑇

𝑘
, ℙ 𝑁 𝑇 < 𝑘 ≥ min

𝑘 − 2𝑘 log 𝑘
𝑘

, 1 − 𝑂
1
𝑘

≥ 1 − 𝑂
log 𝑘
𝑘

The best possible guarantee with single price when 𝔼 " #
$ = ℙ 𝑁 𝑇 < 𝑘 (asymptotically it’s the 

same bound) [Chawla, Devanur, Lykouris WINE’21] [Jiang, Ma, Zhang, 23+]

With multiple prices we can get  1 − 𝑂 %
$

. [Alaei  FOCS’11] [Jiang, Ma, Zhang SODA’22]



Matching Prophet Inequality

Natural to think of price-based 
algorithms



Matching Prophet Inequality

𝑣' ∼ 𝐹'

𝑣( ∼ 𝐹(

𝑣) ∼ 𝐹)
Independent edge weights come one 
by one in an arbitrary fixed order

Select matching on the fly

Maximize expectation



𝑶𝑷𝑻 optimal matching

Algorithm:
𝑒 = (𝑢,𝑤) arrives:

𝑒 buys 𝑢 and 𝑤 as long as
they are not sold yet and
𝑣! ≥ 𝒑𝒖 + 𝒑𝒘

𝒑𝟏

𝒑𝟐 𝒑𝟑

𝒑𝟒

𝒑𝟓

𝒑𝟔

𝒑𝟕

𝑨𝑳𝑮(𝒑) resulting matching



𝟏/𝟒

𝟏/𝟒𝟏/𝟐

𝟏/𝟐𝑈[0,1]

𝑈[0,1]

𝑈[0,1]𝑈[0,1] 𝑈[0,2]

𝟎. 𝟓

𝟎. 𝟖𝟏

𝟎. 𝟐 𝟎. 𝟗𝟑𝟏. 𝟒



Theorem. [Gravin and Wang, EC’19][Correa, Cristi, Fielbaum, Pollner, Weinberg, IPCO’22] 

There is a vector of prices 𝒑 ∈ ℝ+, s.t. for any arrival order,

𝔼 𝑨𝑳𝑮 𝒑 ≥
1
3 ⋅ 𝔼 𝑶𝑷𝑻



We want balanced prices:
“high enough” so we get good revenue, yet “low enough” so 

buyers buy (and get good utility)

𝔼 𝑨𝑳𝑮 𝒑 = revenue + utility

𝔼 𝑨𝑳𝑮 𝒑 = 𝔼 E
-∈, /01 2

𝑝- +𝔼 E
!∈/01 2

𝑣! − 𝑝- − 𝑝3



To lower bound 𝔼(𝐴𝐿𝐺 𝑝 ), utility is the tricky part:

𝔼 E
!∈/01 2

𝑣! − 𝑝- − 𝑝3 =E
!∈4

𝔼 𝐼 !∈/01 2 ⋅ 𝑣! − 𝑝- − 𝑝3

𝑅' = set of remaining vertices when 𝑒 arrives

𝑹𝒆 is independent of 𝒗𝒆
𝑅!

Recall that 𝑨𝑳𝑮 𝒑 takes 𝑒 = (𝑢, 𝑤) iff
• the two nodes are free, and
• 𝑣' ≥ 𝑝+ + 𝑝,



Utility = :
'%(+,,)∈1

𝔼 𝐼 +,,∈2! ⋅ 𝑣' − 𝑝+ − 𝑝, &

= :
'%(+,,)∈3

ℙ 𝑢,𝑤 ∈ 𝑅' ⋅ 𝔼 𝑣' − 𝑝+ − 𝑝, &

≥ :
'%(+,4)∈3

ℙ 𝑢,𝑤 ∉ 𝑉 𝐴𝐿𝐺 𝑝 ⋅ 𝒛'(𝒑)

= 𝔼 :
+,,∉6 789 :

𝒛' 𝒑



𝔼 𝑨𝑳𝑮 𝒑 = revenue + utility

𝔼 𝑨𝑳𝑮 𝒑 = 𝔼 :
+∈6 789 :

𝑝+ + 𝔼 :
'∈789 :

𝑣' − 𝑝+ − 𝑝,

𝔼 𝑨𝑳𝑮 𝒑 ≥ 𝔼 :
+∈6 789 :

𝑝+ + 𝔼 :
'% +,, :+,,∉6 789 :

𝒛'(𝑝)

𝔼 𝑨𝑳𝑮 𝒑 ≥ min
<⊆6

:
+∉<

𝑝+ + :
'∈3(<)

𝒛' 𝑝



𝔼 𝑶𝑷𝑻 = 𝔼 E
-∈,(678)

𝑝- + E
!∈678

𝑣! − 𝑝- − 𝑝3

𝔼 𝑶𝑷𝑻 ≤ E
-∈,

𝑝- +E
!∈:

𝔼 𝑣! − 𝑝- − 𝑝3 +

𝔼 𝑶𝑷𝑻 ∶= E
-∈,

𝑝- +E
!∈:

𝒛! 𝒑

To bound 𝑶𝑷𝑻, imagine that edges in 𝑶𝑷𝑻 had to pay the prices



𝔼 𝑶𝑷𝑻 ≤ E
-∈,

𝑝- +E
!∈:

𝒛! 𝒑

vs.

𝔼 𝑨𝑳𝑮 𝒑 ≥ min
;⊆,

E
-∉;

𝑝- + E
!∈: ;

𝒛! 𝒑

𝑋



𝑝- = E
!∈> -

𝒛! 𝒑What if we set prices =

𝑋



We want prices 

𝑝- = E
!∈> -

𝒛! 𝒑

Define  the operator:   𝜓- 𝒑 = ∑!∈> - 𝒛! 𝒑

Brouwer’s fixed-point theorem: if 𝜓 is a continuous mapping from 
a compact and convex set into itself, then it has a fixed point.

Recall that   𝒛! 𝒑 = 𝔼 𝑣! − 𝑝- − 𝑝3 + ∈ 0, 𝔼 𝑣!

⇒ there are prices 𝒑 = 𝜓(𝒑)



Can we compute 𝒑? Brouwer’s only guarantees existence. 

Theorem. For 𝜀 > 0, we can compute 𝒑 in polynomial time s.t.

3 + 𝜀 ⋅ 𝔼 𝑨𝑳𝑮 𝒑 ≥ 𝔼 𝑶𝑷𝑻

For 𝜀 > 0, 𝑚 edges, 𝑛 nodes and a bound 𝐵 ≥ "!"#
𝔼 $%&

, we can compute 𝒑 in time 𝑝𝑜𝑙𝑦 𝑚, 𝑛, '
(
, 𝐵 , using

𝑝𝑜𝑙𝑦 𝑚, 𝑛, '( , 𝐵 samples.



Sample: 

𝑣'
>

'∈3

For large 𝑆, g𝜓 is good approx 
(concentration bound)

convex QP

Calculate “empirical” 𝜓:  

g𝜓+
> 𝒑 = :

'∈? +

𝑣'
> − 𝑝+ − 𝑝,

&

Average
g𝜓 = !

@
∑>%!@ g𝜓 >

Find
𝒑 = g𝜓(𝒑)

Repeat for 𝑠 = 1, … , 𝑆



We want

𝑝+ =
1
𝑆
:
>%!

@

:
'∈? +

𝑣'
> − 𝑝+ − 𝑝,

&
, for all 𝑢 ∈ 𝑉

𝑦!,@

min:
',>

𝑦',> ⋅ 𝑦',> − 𝑣'
> −

1
𝑆
:
>)

:
')∈? + ⨃? ,

𝑦'),>)

𝑠. 𝑡.
𝑦',> ≥ 0

𝑦',> ≥ 𝑣'
> −

1
𝑆
:
>)

:
')∈? + ⨃? ,

𝑦'),>)

convex QP

“ a   ”



Hypergraph matching

A hypergraph is a pair (𝑉, 𝐸), where 𝐸 ⊆ 2,

The previous analysis can be extended to hypergraphs

Theorem. [Correa, Cristi, Fielbaum, Pollner, Weinberg, IPCO’22] 

If 𝑒 ≤ 𝒅 for all 𝑒 ∈ 𝐸, there is a vector of prices 𝒑 ∈ ℝ+, s.t. for any 
arrival order,

𝔼 𝑨𝑳𝑮 𝒑 ≥
1

𝒅 + 1 ⋅ 𝔼 𝑶𝑷𝑻



Taking 𝒛' 𝒑 = 𝔼 𝑣' − ∑+∈' 𝑝+ &

𝔼 𝑶𝑷𝑻 = 𝔼 :
+∈6(BCD)

𝑝+ + :
'∈BCD

𝑣' −:
+∈'

𝑝+

≤ :
+∈6

𝑝+ +:
'∈3

𝒛' 𝒑

𝔼 𝑨𝑳𝑮 𝒑 ≥ min
<⊆6

:
+∈<

𝑝+ + :
':'∩<%∅

𝒛' 𝒑

If    𝑝+ = ∑':+∈' 𝒛' 𝒑

𝔼 𝑶𝑷𝑻 ≤ 𝑑 + 1 ⋅:
'∈3

𝒛' 𝒑 ≤ 𝑑 + 1 ⋅ 𝔼 𝑨𝑳𝑮 𝒑



All = $6
Other = $0

nonempty= $1

More generally: Combinatorial auction

𝑣A: 2B → ℝ+



set of 
items𝑀

buyers come in 
adversarial order

independent 
valuations 
𝑣A ∼ 𝐹A

𝑣A: 2B → ℝ+

𝑣q parameter 𝒅

𝑣A 𝐴 = max
C⊆/, C DE

𝑣A(𝐵)



𝑶𝑷𝑻 =

𝑝F
𝑝G

𝑝H
max
/⊆IG

𝑣A 𝐴 −E
J∈/

𝑝J𝑨𝑳𝑮(𝒑) =

welfare of 
optimal 

allocation

buyers maximize utility
welfare of 
resulting 
allocation



Theorem. There is a vector of prices 𝒑 ∈ ℝ+B s.t. for any arrival order,

𝑑 + 1 ⋅ 𝔼 𝑨𝑳𝑮 𝒑 ≥ 𝔼 𝑶𝑷𝑻 .

The bound 𝑑 + 1 is best possible.

Theorem. These prices can be computed in polynomial time (even for non-
constant 𝑑).



All = g
$ 𝑑 𝑤. 𝑝. 1 − 𝜀
$ FK 𝑤. 𝑝. 𝜀Any = $1

𝑀 = 𝑑

Tight instance



Matching with vertex arrival

𝑣+, ,≺+ ∼ 𝐹+

Step: new vertex arrives, together with 
adjacent edges connected to previous 
vertices

Weights are independent across steps 
(but might be correlated within a step)

Select matching on the fly

Maximize expectation

[Ezra, Feldman, Gravin, Tang, EC 2020]



In each step: should we match 𝑢 now? to which vertex? We don’t know 
if there will be better edges later.
Idea: “sample” OPT

𝑣+, ,≺+

Sample fresh weights for all other edges
𝑣'+ 'I ,≺+

Let
𝑂𝑃𝑇+ = 𝑂𝑃𝑇 𝑣+, ,≺+, 𝑣'+ 'I ,≺+

be the optimal solution with these 
weights.

ALG: try to match 𝑢 according to 𝑂𝑃𝑇+



Imagine at every vertex 𝑢 we succeeded with probability 𝛽, 
independently of 𝑣-3 3≺- and 𝑂𝑃𝑇-. Then,

𝔼 𝐴𝐿𝐺 =E
-

𝛽 ⋅ 𝔼 E
3≺-

𝑣-3 ⋅ 1 -3∈678J

=E
-

𝛽 ⋅ 𝔼 E
3≺-

𝑣-3 ⋅ 1 -3∈678

= 𝛽 ⋅ 𝔼 E
-3∈678

𝑣-3

= 𝛽 ⋅ 𝔼(𝑂𝑃𝑇)



Issue: some edges can be in 𝑂𝑃𝑇 very often, but carry very little value

1 r
100
𝜀
, 𝑤. 𝑝. 𝜀

0, 𝑤. 𝑝. 1 − 𝜀

Solution: downplay the decision of 𝑂𝑃𝑇+ a bit. When 𝑢 arrives and we want to match 
it to 𝑤, we toss an independent coin with bias 𝛼,(𝑢)

Let 𝑥+, = ℙ 𝑢𝑤 ∈ 𝑂𝑃𝑇 . We take 𝛼, 𝑢 = !

"⋅ !L*+⋅∑,≺. N/,
(this is in [0,1]... Why?)

This guarantees that we always succeed w.p. at least 1/2, so 𝔼 𝐴𝐿𝐺 ≥ 𝔼(𝑂𝑃𝑇)



We take 𝛼3 𝑢 = F
G⋅ FNOP⋅∑Q≺J PRQ

We prove inductively that ℙ 𝑢𝑤 ∈ 𝐴𝐿𝐺 = PJR
G

Assume it’s true for all edges 𝑤𝑧 , with 𝑤, 𝑧 ≺ 𝑢. 

ℙ 𝑢𝑤 ∈ 𝐴𝐿𝐺
= ℙ 𝑤 is free when 𝑢 arrives ⋅ ℙ 𝑢𝑤 ∈ 𝑂𝑃𝑇- ⋅ 𝛼3 𝑢

= 1 −E
Q≺-

𝑥3Q
2 ⋅ 𝑥-3 ⋅

1

2 ⋅ 1 − 12 ⋅ ∑Q≺- 𝑥3Q
=
𝑥-3
2



We repeat the argument to conclude:

Upon the arrival of 𝑢, imagine 𝑢𝑤 ∈ 𝑂𝑃𝑇-. What is the probability 
we select it?

ℙ 𝑤 is free when 𝑢 arrives ⋅ 𝛼3 𝑢

= 1 −E
Q≺-

𝑥3Q
2 ⋅

1

2 ⋅ 1 − 12 ⋅ ∑Q≺- 𝑥3Q
=
1
2



• Best possible PI for selecting k items gets  1 − 𝑂 %
$

[Alaei  FOCS 2011] 

à For fixed threshold is degrades to 1 − 𝑂 $%& '
'

[Chawla, Devanur, Lykouris WINE 2021]

à For prophet secretary best possible fixed threshold gives a 1 − 𝑂 (
'

[Arnosti, Ma EC 2022]

• Best possible prices for online 𝑑 -hypergraph matching (or combinatorial auctions with random valuation 
parametrized by 𝑑).

à 1/3 for bipartite matching [Gravin and Wang, EC’19]
àBest possible factor is 1/(𝑑 + 1 ] [C., Cristi, Fielbaum, Pollner, Weinberg, IPCO 2022] 
à Improves upong 4𝑑 − 2 [Dütting, Feldman, Kesselheim, Lucier, FOCS’20] 
à For matching (𝑑 = 2) a 2.96-approx. is possible using adaptive prices [Ezra, Feldman, Gravin, Tang, EC 2020]

• For matching with vertex arrivals ½ is best possible [Ezra, Feldman, Gravin, Tang, EC 2020]

Summary


