Prophet Inequalities

Jose Correa Universidad de Chile

Motivation

Online platforms, e-commerce, etc

Flexible Model:

Multiple Goals

Incentives

Limited data

Sequential decisions

Course Overview

1. Classic single-choice problems:

The classic prophet inequality, secretary problem, prophet secretary problem, etc

2. Data driven prophet inequalities:

How can limited amount of data be nearly as useful as full distributional knowledge

3. Combinatorial Prophet Inequalities

Many ideas for single choice problems, extend to combinatorial contexts such as kchoice, Matching, hyper graph matching, and beyond

4. Online Combinatorial Auctions

General Model that ecompasses many online selection/allocation problems

3. Combinatorial Prophet Inequalities

k identical tickets

Sequence of n agents with independent valuations (for one copy) $v_1 \sim F_1, v_2 \sim F_2, \dots, v_n \sim F_n$

We sell to at most k agents, we compare against the expectation of the sum of the largest k valuations

Static price policy

For k > 1, denote as N(T) the number of items sold, i.e., $N(T) = |\{i: v_i \ge T\}|$. Revenue = $T \cdot \mathbb{E}(N(T))$ Utility = $\sum_{i=1}^{n} \mathbb{E}((v_i - T)_+) \cdot P(\text{item available for } i)$ $\ge \mathbb{P}(N(T) < k) \cdot \sum_{i=1}^{n} \mathbb{E}((v_i - T)_+)$

$$\mathbb{E}(OPT) = \mathbb{E}\left(\sum_{i \in OPT} v_i\right) = k \cdot T + \mathbb{E}\left(\sum_{i \in OPT} (v_i - T)\right) \le k \cdot T + \mathbb{E}\left(\sum_{i=1}^n (v_i - T)_+\right)$$

Then,

$$\frac{\mathbb{E}(ALG)}{\mathbb{E}(OPT)} \ge \frac{\mathbb{E}(N(T)) \cdot T + \mathbb{P}(N(T) < k) \cdot \mathbb{E}(\sum_{i=1}^{n} (v_i - T)_+)}{k \cdot T + \mathbb{E}(\sum_{i=1}^{n} (v_i - T)_+)}$$

$$\geq \min\left\{\frac{\mathbb{E}(N(T))}{k}, \mathbb{P}(N(T) < k)\right\}$$

If we set *T* such that $\mathbb{E}(N(T)) = k - \sqrt{2k \log k}$ Then, a Chernoff bound implies that

$$\mathbb{P}(N(T) \ge k) \le O\left(\frac{1}{k}\right)$$

Therefore,

$$\min\left\{\frac{\mathbb{E}(N(T))}{k}, \mathbb{P}(N(T) < k)\right\} \ge \min\left\{\frac{k - \sqrt{2k\log k}}{k}, 1 - O\left(\frac{1}{k}\right)\right\} \ge 1 - O\left(\sqrt{\frac{\log k}{k}}\right)$$

The best possible guarantee with single price when $\frac{\mathbb{E}(N(T))}{k} = \mathbb{P}(N(T) < k)$ (asymptotically it's the same bound) [Chawla, Devanur, Lykouris WINE'21] [Jiang, Ma, Zhang, 23+]

With multiple prices we can get $1 - O\left(\frac{1}{\sqrt{k}}\right)$. [Alaei FOCS'11] [Jiang, Ma, Zhang SODA'22]

Matching Prophet Inequality

Natural to think of price-based algorithms

Matching Prophet Inequality

Independent edge weights come **one by one** in an arbitrary fixed order

Select matching on the fly

Maximize expectation

Algorithm:

e = (u, w) arrives: e buys u and w as long as they are not sold yet and $v_e \ge p_u + p_w$

ALG(*p*) resulting matching*OPT* optimal matching

Theorem. [Gravin and Wang, EC'19][Correa, Cristi, Fielbaum, Pollner, Weinberg, IPCO'22] There is a vector of prices $p \in \mathbb{R}^V_+$ s.t. for any arrival order,

$$\mathbb{E}(ALG(p)) \geq \frac{1}{3} \cdot \mathbb{E}(OPT)$$

 $\mathbb{E}(ALG(p)) = revenue + utility$

$$= \mathbb{E}\left(\sum_{u \in V(ALG(p))} p_u\right) + \mathbb{E}\left(\sum_{e \in ALG(p)} (v_e - p_u - p_w)\right)$$

We want balanced prices: "high enough" so we get good revenue, yet "low enough" so buyers buy (and get good utility) To lower bound $\mathbb{E}(ALG(p))$, utility is the tricky part:

$$\mathbb{E}\left(\sum_{e \in ALG(p)} (v_e - p_u - p_w)\right) = \sum_{e \in E} \mathbb{E}\left(I_{\{e \in ALG(p)\}} \cdot (v_e - p_u - p_w)\right)$$

Recall that ALG(p) takes e = (u, w) iff

• the two nodes are free, and

•
$$v_e \ge p_u + p_w$$

 R_e = set of remaining vertices when e arrives

 R_e is independent of v_e

Utility =
$$\sum_{e=(u,w)\in E} \mathbb{E}\left(I_{\{u,w\in R_e\}} \cdot [v_e - p_u - p_w]_+\right)$$

$$= \sum_{e=(u,w)\in E} \mathbb{P}(u,w\in R_e) \cdot \mathbb{E}([v_e - p_u - p_w]_+)$$

$$\geq \sum_{e=(u,v)\in E} \mathbb{P}\left(u, w \notin V(ALG(p))\right) \cdot \mathbf{z}_{e}(p)$$

$$= \mathbb{E}\left(\sum_{u,w\notin V(ALG(p))} \mathbf{z}_e(p)\right)$$

 $\mathbb{E}(ALG(p)) = revenue + utility$

$$= \mathbb{E}\left(\sum_{u \in V(ALG(p))} p_u\right) + \mathbb{E}\left(\sum_{e \in ALG(p)} (v_e - p_u - p_w)\right)$$
$$\geq \mathbb{E}\left(\sum_{u \in V(ALG(p))} p_u\right) + \mathbb{E}\left(\sum_{e = (u,w): u, w \notin V(ALG(p))} \mathbf{z}_e(p)\right)$$
$$\geq \min_{X \subseteq V}\left\{\sum_{u \notin X} p_u + \sum_{e \in E(X)} \mathbf{z}_e(p)\right\}$$

To bound **OPT**, imagine that edges in **OPT** had to pay the prices

$$\mathbb{E}(OPT) = \mathbb{E}\left(\sum_{u \in V(OPT)} p_u + \sum_{e \in OPT} (v_e - p_u - p_w)\right)$$

$$\leq \sum_{u \in V} p_u + \sum_{e \in E} \mathbb{E}([v_e - p_u - p_w]_+)$$

$$:= \sum_{u \in V} p_u + \sum_{e \in E} \mathbf{z}_e(\mathbf{p})$$

$$\mathbb{E}(OPT) \leq \sum_{u \in V} p_u + \sum_{e \in E} \mathbf{z}_e(\mathbf{p})$$

VS.

X

 $\mathbb{E}(ALG(p)) \geq \min_{X \subseteq V} \left\{ \sum_{u \notin X} p_u + \sum_{e \in E(X)} \mathbf{z}_e(p) \right\}$

We want prices

$$p_u = \sum_{e \in \delta(u)} \mathbf{z}_e(\mathbf{p})$$

Define the operator: $\psi_u(\mathbf{p}) = \sum_{e \in \delta(u)} \mathbf{z}_e(\mathbf{p})$

Brouwer's fixed-point theorem: if ψ is a continuous mapping from a compact and convex set into itself, then it has a fixed point.

Recall that
$$\mathbf{z}_e(\mathbf{p}) = \mathbb{E}([v_e - p_u - p_w]_+) \in [0, \mathbb{E}(v_e)]$$

 \Rightarrow there are prices $p = \psi(p)$

Can we compute *p*? Brouwer's only guarantees existence.

Theorem. For $\varepsilon > 0$, we can compute p in polynomial time s.t.

$$(3 + \varepsilon) \cdot \mathbb{E}(ALG(p)) \ge \mathbb{E}(OPT)$$

For $\varepsilon > 0$, m edges, n nodes and a bound $B \ge \frac{\nu_{\max}}{\mathbb{E}(OPT)}$, we can compute p in time $poly\left(m, n, \frac{1}{\varepsilon}, B\right)$, using $poly\left(m, n, \frac{1}{\varepsilon}, B\right)$ samples.

We want

$$p_{u} = \frac{1}{S} \sum_{s=1}^{S} \sum_{e \in \delta(u)} \left[v_{e}^{(s)} - p_{u} - p_{w} \right]_{+}, \quad \text{for all } u \in V$$

convex QP

$$\min \sum_{e,s} \mathbf{y}_{e,s} \cdot \left(\mathbf{y}_{e,s} - \left(v_e^{(s)} - \frac{1}{S} \sum_{s'} \sum_{e' \in \delta(u) \cup \delta(w)} \mathbf{y}_{e',s'} \right) \right)$$

s.t.
$$\mathbf{y}_{e,s} \ge 0$$

$$\mathbf{y}_{e,s} \ge \left(v_e^{(s)} - \frac{1}{S} \sum_{s'} \sum_{e' \in \delta(u) \cup \delta(w)} \mathbf{y}_{e',s'} \right)$$

" 🔳 "

Hypergraph matching

A hypergraph is a pair (V, E), where $E \subseteq 2^V$ The previous analysis can be extended to hypergraphs

Theorem. [Correa, Cristi, Fielbaum, Pollner, Weinberg, IPCO'22] If $|e| \leq d$ for all $e \in E$, there is a vector of prices $p \in \mathbb{R}^V_+$ s.t. for any arrival order,

$$\mathbb{E}(ALG(p)) \geq \frac{1}{d+1} \cdot \mathbb{E}(OPT)$$

Taking $\mathbf{z}_e(\mathbf{p}) = \mathbb{E}((v_e - \sum_{u \in e} p_u)_+)$

$$\mathbb{E}(OPT) = \mathbb{E}\left(\sum_{u \in V(OPT)} p_u + \sum_{e \in OPT} \left(v_e - \sum_{u \in e} p_u\right)\right)$$
$$\leq \sum_{u \in V} p_u + \sum_{e \in E} \mathbf{z}_e(\mathbf{p})$$

$$\mathbb{E}(ALG(p)) \geq \min_{X \subseteq V} \left\{ \sum_{u \in X} p_u + \sum_{e:e \cap X = \emptyset} \mathbf{z}_e(p) \right\}$$

If
$$p_u = \sum_{e:u \in e} \mathbf{z}_e(\mathbf{p})$$

 $\mathbb{E}(\mathbf{OPT}) \le (d+1) \cdot \sum_{e \in E} \mathbf{z}_e(\mathbf{p}) \le (d+1) \cdot \mathbb{E}(\mathbf{ALG}(\mathbf{p}))$

set of items *M*

independent valuations $v_i \sim F_i$ $v_i: 2^M \rightarrow \mathbb{R}_+$

parameter *d* $v_i(B)$ $v_i(A)$ $\max_{\{B\subseteq A, |B| \le d\}}$

Theorem. There is a vector of prices $p \in \mathbb{R}^M_+$ s.t. for any arrival order,

 $(d+1) \cdot \mathbb{E}(ALG(p)) \geq \mathbb{E}(OPT).$

The bound (d + 1) is best possible.

Theorem. These prices can be computed in polynomial time (even for non-constant d).

Tight instance

Matching with vertex arrival

 $⁽v_{uw})_{w \prec u} \sim F_u$

Step: new vertex arrives, together with adjacent edges connected to previous vertices

Weights are independent across steps (but might be correlated within a step)

Select matching on the fly

Maximize expectation

[Ezra, Feldman, Gravin, Tang, EC 2020]

In each step: should we match u now? to which vertex? We don't know if there will be better edges later.

Idea: "sample" OPT

Sample fresh weights for all other edges $(v_e^u)_{e\neq(w\prec u)}$

Let

$$OPT^{u} = OPT\left((v_{uw})_{w \prec u}, (v_{e}^{u})_{e \neq (w \prec u)}\right)$$

be the optimal solution with these

weights.

ALG: try to match u according to OPT^{u}

Imagine at every vertex u we succeeded with probability β , independently of $(v_{uw})_{w \prec u}$ and OPT^u . Then,

$$\mathbb{E}(ALG) = \sum_{u} \beta \cdot \mathbb{E}\left(\sum_{w < u} v_{uw} \cdot 1_{\{uw \in OPT^{u}\}}\right)$$
$$= \sum_{u} \beta \cdot \mathbb{E}\left(\sum_{w < u} v_{uw} \cdot 1_{\{uw \in OPT\}}\right)$$
$$= \beta \cdot \mathbb{E}\left(\sum_{uw \in OPT} v_{uw}\right)$$
$$= \beta \cdot \mathbb{E}(OPT)$$

Issue: some edges can be in *OPT* very often, but carry very little value

$$1 \qquad \qquad \left\{ \begin{array}{c} 100\\ \varepsilon \end{array}, \quad w.p. \quad \varepsilon\\ 0, \quad w.p.1 - \varepsilon \end{array} \right.$$

Solution: downplay the decision of OPT^u a bit. When u arrives and we want to match it to w, we toss an independent coin with bias $\alpha_w(u)$

Let
$$x_{uw} = \mathbb{P}(uw \in OPT)$$
. We take $\alpha_w(u) = \frac{1}{2 \cdot \left(1 - \frac{1}{2} \cdot \sum_{z < u} x_{wz}\right)}$ (this is in [0,1]... Why?)

This guarantees that we always succeed w.p. at least 1/2, so $\mathbb{E}(ALG) \geq \mathbb{E}(OPT)$

We take $\alpha_w(u) = \frac{1}{2 \cdot \left(1 - \frac{1}{2} \cdot \sum_{z < u} x_{wz}\right)}$ We prove inductively that $\mathbb{P}(uw \in ALG) = \frac{x_{uw}}{2}$ Assume it's true for all edges (wz), with w, z < u.

$$\mathbb{P}(uw \in ALG) = \mathbb{P}(w \text{ is free when } u \text{ arrives}) \cdot \mathbb{P}(uw \in OPT^{u}) \cdot \alpha_{w}(u) = \left(1 - \sum_{z < u} \frac{x_{wz}}{2}\right) \cdot x_{uw} \cdot \frac{1}{2 \cdot \left(1 - \frac{1}{2} \cdot \sum_{z < u} x_{wz}\right)} = \frac{x_{uw}}{2}$$

We repeat the argument to conclude:

Upon the arrival of u, imagine $(uw) \in OPT^u$. What is the probability we select it?

$$\mathbb{P}(w \text{ is free when } u \text{ arrives}) \cdot \alpha_w(u) \\= \left(1 - \sum_{z < u} \frac{x_{wz}}{2}\right) \cdot \frac{1}{2 \cdot \left(1 - \frac{1}{2} \cdot \sum_{z < u} x_{wz}\right)} \\= \frac{1}{2}$$

Summary

- Best possible PI for selecting k items gets $1 O\left(\frac{1}{\sqrt{k}}\right)$ [Alaei FOCS 2011] \rightarrow For fixed threshold is degrades to $1 - O\left(\sqrt{\frac{\log k}{k}}\right)$ [Chawla, Devanur, Lykouris WINE 2021] \rightarrow For prophet secretary best possible fixed threshold gives a $1 - O\left(\frac{1}{\sqrt{k}}\right)$ [Arnosti, Ma EC 2022]
- Best possible **prices** for online *d* -hypergraph matching (or combinatorial auctions with random valuation parametrized by *d*).
 - ightarrow 1/3 for bipartite matching
 - → Best possible factor is (1/(d + 1)]
 - → Improves upong (4d 2)
 - \rightarrow For matching (d = 2) a 2.96-approx. is possible using adaptive prices

[Gravin and Wang, EC'19] [C., Cristi, Fielbaum, Pollner, Weinberg, IPCO 2022] [Dütting, Feldman, Kesselheim, Lucier, FOCS'20] [Ezra, Feldman, Gravin, Tang, EC 2020]

• For matching with vertex arrivals ½ is best possible

[Ezra, Feldman, Gravin, Tang, EC 2020]