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Global warming is linked to methane
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Figure 1. Evolution of methane concentration according to different scenarios of global
warming. (sourcel)

!Saunois et al. “The global methane budget 2000-2017". In: Earth system science data (2020). 2/35



Methane budget
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Figure 2: The global methane budget for 2017. (source?).

2 Jackson et al. “Increasing anthropogenic methane emissions arise equally from agricultural and

fossil fuel sources”. In: Environmental Research Letters (2020). 3/35



Who's interested by emissions monitoring?

Oil and gas operators

» Monitoring assets.
Institutions
» Verify that legislations are properly followed (e.g. Permian basin, US).

» Can be used to propose new legislations (e.g. “is natural gas a green energy?").

Scientists

» Inversion models require precise priors.
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How to monitor emissions? (on-site or airborne campaigns)
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How to monitor emissions? (TROPOMI)

» Launched in 2017
Air quality and climate monitoring

v

» Dedicated methane product

» Data only available where the
atmospheric inversion was successful

(Source: ESA)
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Satellites for methane emission monitoring
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Figure 3: (Some) satellite used for methane observation from space. (Source?)

3Jacob et al. “Quantifying methane emissions from the global scale down to point sources using

satellite observations of atmospheric methane”. In: Atmospheric Chemistry and Physics (2022).
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How do satellites see methane?
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Figure 4: Observation model for a satellite with a passive sensor.
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Absorption model

Beer-Lamber law for a wavelength A:

IO\ = lp(\)e™ Zi-o AL, W

Notations:
» ( gases;

» Each gas can be caracterized by its absorption coefficient A and its quantity L;
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A zoom on two categories: hyperspectral and multispectral
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Outline

1 - Hyperspectral monitoring
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Matched filter: an anomaly detection framework

» Let x € RY be an observed pixel with d spectral samples.

» In absence of anomaly, we assume that the image follows a multivariate normal
distribution A (u, ).

» We denote by Kcus the absorption spectrum of methane.

» Linear approximation of Beer-Lambert law for weak plumes x = z — aKcnsz.

» To have a constant anomaly direction it is a widely common practice* replace z
by u (i.e. x =z — aKcnap).

» The best linear detector is the matched filter®

tTE 1 (x —p)
tTr 1t
*Thompson et al. “Real-time remote detection and measurement for airborne imaging spectroscopy:

a case study with methane”. In: Atmospheric Measurement Techniques (2015).

5Theiler and Wohlberg. “Detection of unknown gas-phase chemical plumes in hyperspectral
imagery”. In: Alg. and Tech. for Multispectral, Hyperspectral, and Ultraspectral Imagery. 2013.

DMF(X) = with t = —aKchapt. 2)
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Matched filter

In the whitened space
>y =T 2(x—p),

o 271/21:
> U=y
Match filter

Dwmr(y) =y u.

: Geometric interpretation (in dimension 2)

S Diie(y) - u

0

Figure 5: Geometric visualization of the matched filter.
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Matched filter: removing non-methane anomalies

Adjusted filter®
Damr(x) = D (x)

 /Drx(x)

Reed-Xiaoli detector’
Drx(x) = (x — )T (x — p)

Whitened space

In the whitened space we can write Drx(x) as Dwrx(y) =y "y.

6Matteoli, Marco Diani, and Giovanni Corsini. “A tutorial overview of anomaly detection in
hyperspectral images”. In: |[EEE Aerospace and Electronic Systems Magazine (2010).

"Irving S Reed and Xiaoli Yu. “Adaptive multiple-band CFAR detection of an optical pattern with
unknown spectral distribution”. In: |EEE transactions on acoustics, speech, and signal processing
(1990).
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Matched filter techniques: geometric interpretation

Dwar(y) - u

0

Figure 6: Geometric visualization of the matched filter.
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Model Adjusted Matched Filter (MAMF)?

Model adjustment coefficient
(whitened space)

Dwmaly) == |ly — DWMF(Y)”H%

Model adjustment coefficient
(original space)
DMA(X) = DRx(X — DMF(X)t).

Model Adjusted Matched
Filter (MAMF) 0

Due(x Figure 7: Geometric visualization of the matched filter.
Dypamr(x) = DA’;’:((X)L- &

8Querghi et al. “Model Adjusted Generalized Tests for methane plume detection on hyperspectral

images”. In: WHISPERS. |EEE. 2023.
17/35



Model adjustment: MAMEF results

New Mexico Algeria Turkmenistan

Figure 8: Visual comparison between the MF and the MAMF.

Matched Filter

MAMF

18/35



Model

adjustment: a better separation of the distributions

Matched Filter value Dur(x)

- plume pixels
+ non plume pixels

—— hypothetical 10 detection threshold

Matched Filter value Dur(x)

+ plume pixels
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—— hypothetical 20 detection threshold

+ plume pixels
", + nonplume pixels
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GLRT value Duarx)

Model adjustment coefficient Dux(x)

Figure 9: Pixel distribution
with the MF.

Model adjustment coefficient Dux(x)

Figure 10: Pixel distribution
with the MF and MA axes.

Model adjustment coefficient Dygsz(x)

Figure 11: Pixel distribution
with the GLRT and MA2

axes.
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Model adjustment: numerical results

Detector Recall Precision F1

ACE?® 0.24 0.37 0.29
MF10 0.27 0.32 0.29
MAMF (ours) 0.39 0.56 0.46
GLRT 0.36 0.56 0.44

MAGLRT™ (ours) 0.41 0.73  0.53

9Theiler. “Absorptive weak plume detection on Gaussian and non-Gaussian background clutter” .
In: IEEE JSTAEORS (2021).

P Guanter et al. “Mapping methane point emissions with the PRISMA spaceborne imaging
spectrometer”. In: Remote Sensing of Environment (2021).

1Querghi et al. “Model Adjusted Generalized Tests for methane plume detection on hyperspectral

images”. In: WHISPERS. |EEE. 2023.
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Outline

2 - Multispectral monitoring
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What does the satellite see?

Derived from Beer-Lambert law

/:/ a()\)s()\)e—wazlAf(/\)Lfe—vAcm()\)Lemd)\
B12

Notations and assumptions
» Known spectral sensitivity s of the satellite;
: 1 1.
» Optical path v = 57— + 55—

» Angle of the satellite Os;
» Albedo a()\) of the scene constant for a given band.

3)
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Absorption spectrum
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Figure 12: Methane transmittance spectrum for 1cm of methane, in gray, and Sentinel-2A
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Quantification model

Quantification (simplified atmosphere model)

lem  [gyp S(N)e1AcHs M) (Lem tLatm) g\

T s Jarg s Acm(Eand) X
Background model'?
t—1 1 ?
Ibg = Z wil; st {w;} = ?m; Iy — Z wili|| )
i=0 " i=0

2Ehret et al. “Automatic Methane Plume Quantification Using Sentinel-2 Time Series”. In:
IGARSS 2022-2022 |IEEE International Geoscience and Remote Sensing Symposium. |EEE. 2022,
pp. 1955-1958.
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Importance of the temporal dimension

0 images 1 image 5 images 10 images 20 images
SNR 1.28 SNR 7.28 SNR 12.49 SNR 17.85 SNR 58.18
Tkm
4 % % . .

Figure 13: Impact of the number of images used during the background estimation.
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Global statistics’®
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Sentinel-5P (R=0.922)
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Figure 14: Power law plot of Sentinel-5P and Sentinel-2 events, together with airborne
campaigns over California'® and the Permian'4.

BDuren et al. “California’s methane super-emitters”. In: Nature (2019).

%Cusworth et al. “Intermittency of Large Methane Emitters in the Permian Basin”. In:
Environmental Science & Technology Letters (2021).

®Ehret et al. “Global tracking and quantification of oil and gas methane emissions from recurrent

sentinel-2 imagery”. In: ES&T (2022).
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Outline

3 - Validation
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Monitoring of the same location

with different devices
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Figure 15: Emission rates measured during an event in the Permian basin occurred during the
summer of 2020 (estimated latitude and longitude: 31.7335, -102.0421).



Blind studies (1)
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Figure 16: Detection performance by satellite and team. (source

16Sherwin et al. “Single-blind validation of space-based point-source detection and quantification of

onshore methane emissions” .

In: Scientific Reports (2023).

Outcome

Not tasked
I Filtered retrieval

False positive
I True negative
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16)
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Blind studies (2)
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Figure 17: Examples of detected plumes. (source!?)
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Outline

4 - Perspectives

31/35



Global monitoring: Kayrros methane watch
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New satellites: Geostationary meteorological satellites

v

Poor spatial resolution (~ 1km)

Poor spectral resolution (similar to
Sentinel-2)

Amazing temporal resolution

(1 image every 5min)

Complete Earth coverage (GOES-R,
MTG, Himawari)

v

v

v
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Automatic detections (1)

Deep learning?’

» U-net architecture
» Takes as input the MF, MA-GLRT or multispectral enhancement map

Challenges
» Difficulty of annotations
» Uncalibrated data
» Limited data

» Rare events

7 Groshenry et al. "Detecting Methane Plumes using PRISMA: Deep Learning Model and Data

Augmentation”. In: NeurlPS (Workshop). 2022.
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Automatic detections (2)

Recall Precision F1
MAGLRT18 0.41 0.73 0.53
DCNN? 0.47 0.24 0.32
MF+DCNN 0.48 0.55 0.51
MAMF+DCNN 0.47 0.66 0.55
GLRT+DCNN 0.66 0.55 0.60
MA-GLRT4+DCNN  0.56 0.89 0.69

BQuerghi et al. “Model Adjusted Generalized Tests for methane plume detection on hyperspectral

images”. In: WHISPERS. |IEEE. 2023.

YGroshenry et al. "Detecting Methane Plumes using PRISMA: Deep Learning Model and Data
Augmentation”.

In: NeurlPS (Workshop). 2022.
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