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Global warming is linked to methane

Figure 1: Evolution of methane concentration according to different scenarios of global
warming. (source1)

1Saunois et al. “The global methane budget 2000–2017”. In: Earth system science data (2020). 2 / 35



Methane budget

Figure 2: The global methane budget for 2017. (source2).

2Jackson et al. “Increasing anthropogenic methane emissions arise equally from agricultural and
fossil fuel sources”. In: Environmental Research Letters (2020).

3 / 35



Who’s interested by emissions monitoring?

Oil and gas operators

▶ Monitoring assets.

Institutions

▶ Verify that legislations are properly followed (e.g. Permian basin, US).

▶ Can be used to propose new legislations (e.g. “is natural gas a green energy?”).

Scientists

▶ Inversion models require precise priors.
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How to monitor emissions? (on-site or airborne campaigns)

5 / 35



How to monitor emissions? (TROPOMI)

▶ Launched in 2017

▶ Air quality and climate monitoring

▶ Dedicated methane product

▶ Data only available where the
atmospheric inversion was successful

(Source: ESA)
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Satellites for methane emission monitoring

Figure 3: (Some) satellite used for methane observation from space. (Source3)

3Jacob et al. “Quantifying methane emissions from the global scale down to point sources using
satellite observations of atmospheric methane”. In: Atmospheric Chemistry and Physics (2022).
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How do satellites see methane?

CH4 plume

Atmospheric
layers 

Source

Figure 4: Observation model for a satellite with a passive sensor.
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Absorption model

Beer-Lamber law for a wavelength λ:

I (λ) = I0(λ)e
−

∑ℓ
i=0 Ai (λ)Li . (1)

Notations:

▶ ℓ gases;

▶ Each gas can be caracterized by its absorption coefficient A and its quantity L;
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A zoom on two categories: hyperspectral and multispectral

Mission Spatial resolution Spectral resolution Spatial coverage Temporal coverage Cost

Airborne campaign
(e.g. AVIRIS-NG)

High (0.3m to 4m) high (425 bands) Low (tasking) Low (tasking) High

Sentinel-5P Low (∼7km) High (2600 bands) High (global coverage) High (daily) Low

PRISMA High (30m) High (239 bands) Low (tasking) Low (tasking) Low

Sentinel-2 High (10m to 20m) Low (13 bands) High (global coverage) High (∼5 days) Low
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Outline

1 - Hyperspectral monitoring

2 - Multispectral monitoring

3 - Validation

4 - Perspectives
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Matched filter: an anomaly detection framework

▶ Let x ∈ Rd be an observed pixel with d spectral samples.

▶ In absence of anomaly, we assume that the image follows a multivariate normal
distribution N (µ,Σ).

▶ We denote by KCH4 the absorption spectrum of methane.

▶ Linear approximation of Beer-Lambert law for weak plumes x ≈ z − αKCH4z .

▶ To have a constant anomaly direction it is a widely common practice4 replace z
by µ (i.e. x ≈ z − αKCH4µ).

▶ The best linear detector is the matched filter5

DMF (x) =
tTΣ−1(x − µ)

tTΣ−1t
with t = −αKCH4µ. (2)

4Thompson et al. “Real-time remote detection and measurement for airborne imaging spectroscopy:
a case study with methane”. In: Atmospheric Measurement Techniques (2015).

5Theiler and Wohlberg. “Detection of unknown gas-phase chemical plumes in hyperspectral
imagery”. In: Alg. and Tech. for Multispectral, Hyperspectral, and Ultraspectral Imagery. 2013.
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Matched filter: Geometric interpretation (in dimension 2)

In the whitened space

▶ y = Σ−1/2(x − µ),

▶ u = Σ−1/2t
tTΣ−1t

.

Match filter
DWMF (y) = yTu.

Figure 5: Geometric visualization of the matched filter.
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Matched filter: removing non-methane anomalies

Adjusted filter6

DAMF (x) =
DMF (x)√
DRX (x)

Reed-Xiaoli detector7

DRX (x) = (x− µ)TΣ−1(x− µ)

Whitened space

In the whitened space we can write DRX (x) as DWRX (y) := yT y .

6Matteoli, Marco Diani, and Giovanni Corsini. “A tutorial overview of anomaly detection in
hyperspectral images”. In: IEEE Aerospace and Electronic Systems Magazine (2010).

7Irving S Reed and Xiaoli Yu. “Adaptive multiple-band CFAR detection of an optical pattern with
unknown spectral distribution”. In: IEEE transactions on acoustics, speech, and signal processing
(1990).
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Matched filter techniques: geometric interpretation

Figure 6: Geometric visualization of the matched filter.
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Model Adjusted Matched Filter (MAMF)8

Model adjustment coefficient
(whitened space)

DWMA(y) := ∥y −DWMF (y)u∥22

Model adjustment coefficient
(original space)

DMA(x) = DRX (x −DMF (x)t).

Model Adjusted Matched
Filter (MAMF)

DMAMF (x) =
DMF (x)
DMA(x)q

. Figure 7: Geometric visualization of the matched filter.

8Ouerghi et al. “Model Adjusted Generalized Tests for methane plume detection on hyperspectral
images”. In: WHISPERS. IEEE. 2023.
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Model adjustment: MAMF results

Figure 8: Visual comparison between the MF and the MAMF.
18 / 35



Model adjustment: a better separation of the distributions
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Figure 9: Pixel distribution
with the MF.
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Figure 10: Pixel distribution
with the MF and MA axes.
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Figure 11: Pixel distribution
with the GLRT and MA2
axes.
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Model adjustment: numerical results

Detector Recall Precision F1

ACE9 0.24 0.37 0.29
MF10 0.27 0.32 0.29
MAMF (ours) 0.39 0.56 0.46
GLRT 0.36 0.56 0.44
MAGLRT11 (ours) 0.41 0.73 0.53

9Theiler. “Absorptive weak plume detection on Gaussian and non-Gaussian background clutter”.
In: IEEE JSTAEORS (2021).

10Guanter et al. “Mapping methane point emissions with the PRISMA spaceborne imaging
spectrometer”. In: Remote Sensing of Environment (2021).

11Ouerghi et al. “Model Adjusted Generalized Tests for methane plume detection on hyperspectral
images”. In: WHISPERS. IEEE. 2023.
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What does the satellite see?

Derived from Beer-Lambert law

I =

∫
B12

a(λ)s(λ)e−γ
∑ℓ

i=1 Ai (λ)Li e−γACH4(λ)Lemdλ (3)

Notations and assumptions

▶ Known spectral sensitivity s of the satellite;

▶ Optical path γ = 1
cos θsun

+ 1
cos θsat

;

▶ Angle of the satellite θsat ;

▶ Albedo a(λ) of the scene constant for a given band.
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Absorption spectrum
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Figure 12: Methane transmittance spectrum for 1cm of methane, in gray, and Sentinel-2A
spectral sensitivity for all its bands
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Quantification model

Quantification (simplified atmosphere model)

argmin
Lem

∥∥∥∥∥ IemIbg −
∫
B12 s(λ)e

−γACH4(λ)(Lem+Latm)dλ∫
B12 s(λ)e

−γACH4(λ)Latmdλ

∥∥∥∥∥
2

2

. (4)

Background model12

Ibg =
t−1∑
i=0

wi Ii s.t. {wi} = min
{wi}

∥∥∥∥∥It −
t−1∑
i=0

wi Ii

∥∥∥∥∥
2

. (5)

12Ehret et al. “Automatic Methane Plume Quantification Using Sentinel-2 Time Series”. In:
IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium. IEEE. 2022,
pp. 1955–1958.
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Importance of the temporal dimension

0 images
SNR 1.28

1 image
SNR 7.28
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SNR 12.49

10 images
SNR 17.85
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SNR 58.18

1km

Figure 13: Impact of the number of images used during the background estimation.
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Global statistics15
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Figure 14: Power law plot of Sentinel-5P and Sentinel-2 events, together with airborne
campaigns over California13 and the Permian14.

13Duren et al. “California’s methane super-emitters”. In: Nature (2019).
14Cusworth et al. “Intermittency of Large Methane Emitters in the Permian Basin”. In:

Environmental Science & Technology Letters (2021).
15Ehret et al. “Global tracking and quantification of oil and gas methane emissions from recurrent

sentinel-2 imagery”. In: ES&T (2022).
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Monitoring of the same location with different devices
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Figure 15: Emission rates measured during an event in the Permian basin occurred during the
summer of 2020 (estimated latitude and longitude: 31.7335, -102.0421).
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Blind studies (1)

Figure 16: Detection performance by satellite and team. (source16)

16Sherwin et al. “Single-blind validation of space-based point-source detection and quantification of
onshore methane emissions”. In: Scientific Reports (2023).
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Blind studies (2)

Figure 17: Examples of detected plumes. (source13)
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Global monitoring: Kayrros methane watch
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New satellites: Geostationary meteorological satellites

▶ Poor spatial resolution (∼ 1km)

▶ Poor spectral resolution (similar to
Sentinel-2)

▶ Amazing temporal resolution
(1 image every 5min)

▶ Complete Earth coverage (GOES-R,
MTG, Himawari)
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Automatic detections (1)

Deep learning17

▶ U-net architecture

▶ Takes as input the MF, MA-GLRT or multispectral enhancement map

Challenges

▶ Difficulty of annotations

▶ Uncalibrated data

▶ Limited data

▶ Rare events

17Groshenry et al. “Detecting Methane Plumes using PRISMA: Deep Learning Model and Data
Augmentation”. In: NeurIPS (Workshop). 2022.
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Automatic detections (2)

Recall Precision F1

MAGLRT18 0.41 0.73 0.53
DCNN19 0.47 0.24 0.32
MF+DCNN 0.48 0.55 0.51
MAMF+DCNN 0.47 0.66 0.55
GLRT+DCNN 0.66 0.55 0.60
MA-GLRT+DCNN 0.56 0.89 0.69

18Ouerghi et al. “Model Adjusted Generalized Tests for methane plume detection on hyperspectral
images”. In: WHISPERS. IEEE. 2023.

19Groshenry et al. “Detecting Methane Plumes using PRISMA: Deep Learning Model and Data
Augmentation”. In: NeurIPS (Workshop). 2022.
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