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Graph Partitioning under Capacity Constraints (GPCC)

Given a graph G = (V ,E ) of n nodes
and m edges. The edges are weighted
by a vector t ∈ RE

+.

The Graph Partitioning Problem to
find a partition P = {V1,V2, . . . ,Vp}
of V minimizing the total weight of
the edges in the interconnection.
Classical versions impose some
constraints on the cardinality of the
cluster.

Capacity constraints. The capacity of
a cluster Vi in the partition is the sum
of its internal edges and external
edges. The capacity constraints bound
the capacity of every cluster to a
constant B.
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Capacity of a cluster Vi ≤ B
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A partition P = {V1, V2, V3}.
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Application of GPCC : SONET/SDH network design

Datas

A set of nodes V = {1, . . . , n} (n ≈ 50),

The volume of traffic tuv and distance
duv between every pair u, v of nodes

Solutions

Partition V into rings (local rings) connected
by a secondary federal ring.

Constraints

The capacity of local ring are bounded.

Objective

A cost luv aggregated from tuv and duv is
given for each pair u, v of nodes. We aim to
minimize the cost of the interconnection.
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GPCC as a subproblem

The problem could be decomposed (in a Benders fashion) into
two stages :

1 Partition nodes into clusters satisfying the capacity constraints.
2 Find the “cheapest“ TSP tour (ring) over each cluster.

In SONET/SDH norm, the number of nodes in the clusters is
around 10. Thus the second stage can be solved easily by
current TSP solvers.

The first stage (master problem) is the most difficult part and
it is the GPCC.

Goldschmidt et al. (2003) have shown that GPCC is NP-hard
even when G is a 3-regular graph.

We show that even when the number of rings is fixed
(k-GPCC), there is no constant approximation algorithm.
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Proof of no constant approximability

The idea of the proof is borrowed from [Andrev and Racke 2006]
for the balanced graph partitioning problem.

The 3-Partition Problem

a positive constant M

3k positive integers a1, . . . , a3k
where M

4 < ai <
M
2

∀i = 1, . . . 3k∑3k
i=1 ai = kM.

Instance of b n
3p
c-GPCC

Each integer ai corresponds to
a clique of p vertices.

Each edge in the cliques is of
capacity 2ai

p(p−1) so that the

total capacity of the clique is
ai .

An approximation algorithm with finite approximation factor
should output a solution of zero objective for k-GPCC and hence
solve the 3-Partition problem when the latter is feasible.
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Node-Cluster model [Goldschmidt et al. 2003]

The variables

For every node u and n possible clusters
i = 1, . . . , n,

xui =

{
1, if the node u is assigned to cluster i

0, otherwise

Objective

Maximizing the internal traffics in clusters,

max
n∑

i=1

n−1∑
u=1

n∑
v=u+1

tuvxuixvi

Note that the objective is quadratic
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Node-Cluster model : The constraints

The capacity constraints

For all clusters i = 1, . . . , n,

n∑
u=1

xuiWu −
n−1∑
u=1

n∑
v=u+1

xuixvi tuv ≤ B

Wu is the total traffic
incident to the node u.

The assignment constraints

For every node u,
n∑

i=1

xui = 1

Drawback

High degree of symmetry : the same
solution for GPCC may correspond to
several distinct solutions for the model.

ring jempty ring i
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Node-Cluster model : Breaking the symmetry

We propose two constraints which oblige that a solution for GPCC
correspond to an unique solution for the model.

The order constraints

For every indices u, i = 1 . . . , n,

xui ≤ xii u = i + 1, . . . , n

xui = 0 u = 1, . . . , i − 1
Summary

The Node-Cluster model has n2 variables, n quadratic constraints, O(n2)

linear constraints and the objective is quadratic.
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Node-Node model

This formulation for GPCC is quite similar to the model of
Grötschel et Wakabayashi (89) for the clique partitioning problem.

The variables

For every pairs of nodes u and v ,

xuv =

{
0, if u, v are assigned to the same cluster

1, otherwise

Objective

Minimizing the traffics in the
interconnection,

min
∑
e∈P

texe

Note that the objective is linear
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Node-Node model : Constraints

The transitivity (or triangle) constraints

For all triplets of nodes u, v and w ,
x(u,v) + x(u,w) ≥ x(v ,w)

The capacity constraints

For each node u, the capacity of the cluster containing u is bounded by
B, ∑

(v ,w)

tvw −
∑
(v ,w)

tvwxuvxuw ≤ B

Summary

The Node-Node model has n2 variables, n quadratic constraints, O(n3)

linear constraints and the objective is linear.
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Summary on the models

Improved Node-Cluster model

max
n∑

i=1

n−1∑
u=1

n∑
v=u+1

tuvxuixvi

n∑
i=1

xui = 1 ∀ nodes u, clusters i

xui ≤ xii u = i + 1, . . . , n

xui = 0 u = 1, . . . , i − 1

n∑
u=1

xuiWu −
n−1∑
u=1

n∑
v=u+1

xuixvi tuv ≤ B

n2 variables, n quadratic constraints,
O(n2) linear constraints and
quadratically objective.

Node-Node model

min
∑
e∈E

lexe

xuv + xuw ≥ xvw

(u, v ,w) ∈ T∑
(v ,w)

tvw −
∑
(v ,w)

tvwxuvxuw ≤ B

xe ∈ {0, 1} e ∈ E .

n2 variables, n quadratic
constraints, O(n3) linear
constraints and linear objective.
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General unified 0/1 quadratically constrained program

The Node-Cluster and Node-Node models can be cast into the
following standard form :

min cT x (linear objective)

Ax ≤ b, (linear constraints)
p∑

i=1

p∑
j=i+1

qkijxixj + dkT x ≤ qk , (quadratic constraints)

k = 1, . . . ,m,

x ∈ {0, 1}p

For the node-cluster formulations one needs to add an extra
variable to put the objective function in the constraints.
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Solution techniques for 0/1 quadratically constrained
programs (I)

The quadratic capacity constraints are not convex as the traffic
matrix is a priori not positive semidefinite. Several known
techniques could be used to convexify these constraints, e.g. :
Minimum eigenvalue technique :

By augmenting the diagonal of the matrix representing the quadratic
constraints so that

its smallest eigen values becomes 0,

and without changing the set of feasible 0/1 solutions.

Implemented in CPLEX, reveals not efficient for solving our models for
GPCC.
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Solution techniques for 0/1 quadratically constrained
programs (II)

Classical linearization (CL) :

Introducing variable yij to represent each product xixj :

min cT x

Ax ≤ b,
p∑

i=1

p∑
j=i+1

qkijyij + dkT x ≤ qk , k = 1, . . . ,m,

max{0, xi + xj − 1} ≤ yij ≤ min{xi , xj}, 1 ≤ i < j ≤ n,

(x , y) ∈ {0, 1}p × R
p(p−1)

2 ,
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Projection Technique : An alternative to Classical
Linearization

A drawback of classical linearization is the number of the
added variables y ’s may be at worst the square of the number
of the original variables x ’s . In our case, it raises this number
from n2 to n3. For n ≈ 50, the number of variables grows
from 2500 to 125000.

Saxena et al. (2011) propose a technique which (in a
simplified way)

dertermine if for a point x∗, there exists a y∗ for that (x∗, y∗)
feasible for the linear relaxation of the classical linearization.
if such y∗ does not exist, it generates valid inequalities violated
by x∗.

For that, it consists in solving a linear program.
We will see that this technique adapted to presented models
will be particularly simple, i.e. not have to solve linear
program, cuts generation can be done combinatorially in linear
time.
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Solution techniques for 0/1 quadratically constrained
programs (III)

Projection technique :

It is based on the fact that if xi , xj ∈ {0, 1},
yij = xixj = min{xi , xj} = max{xi + xj − 1, 0}. Hence the previous
classical linearized program can be rewritten as :

min cT x

Ax ≤ b,

φk(x) ≤ qk ,k = 1, . . . ,m,

x ∈ {0, 1}p.

where φk(x) :=
∑

i=1,...,p
j=i,...,p

qk
ij<0

qkij min{xi , xj}+
∑

i=1,...,p
j=i,...,p

qk
ij>0

qkij max{xi+xj−1, 0}+dkT x .

φk(x) is a convex piecewise linear function with at most 2
p(p−1)

2 pieces.
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Classical Linearization (CL)

min cT x

Ax ≤ b,
p∑

i=1

p∑
j=i+1

qkijyij + dkT x ≤ qk

k = 1, . . . ,m,

max{0, xi + xj − 1} ≤ yij ≤ min{xi , xj},
1 ≤ i < j ≤ n,

(x , y) ∈ {0, 1}p × R
p(p−1)

2 ,

⇔

⇔

Projection Technique (PT) :

min cT x

Ax ≤ b,

φk(x) ≤ qk ,k = 1, . . . ,m,

x ∈ {0, 1}p.
m

min cT x

Ax ≤ b,

Bk(x) ≤ qk1,k = 1, . . . ,m

x ∈ {0, 1}p.

where Bk is the matrix of
the 2

p(p−1)
2 linear constraints

defining φk(x).
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Linear Relaxation of CL (RCL)

min cT x

Ax ≤ b,
p∑

i=1

p∑
j=i+1

qkijyij + dkT x ≤ qk

k = 1, . . . ,m,

max{0, xi + xj − 1} ≤ yij ≤ min{xi , xj},
1 ≤ i < j ≤ n,

(x , y) ∈ [0, 1]p × R
p(p−1)

2 ,

?

⇔

Linear Relaxation of PT
(RPT) :

min cT x

Ax ≤ b,

Bk(x) ≤ qk1,k = 1, . . . ,m

x ∈ [0, 1]p.

where Bk is the matrix of
the 2

p(p−1)
2 linear constraints

defining φk(x).

Theorem

Suppose that for k = 1, . . . ,m, qkij is either non-negative or
non-positive for all 1 ≤ i < j ≤ p, then RPT = projx(RCL).
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Summary on the models and their convex reformulations

Two models : Improved Node-Cluster, Node-Node.

Three methods of convexification/linearization : minimum
eigenvalue technique (default algorithm in CPLEX), CL and
PT.
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Comparing the strength of the continuous relaxations

In this first experiment, we only seek to compute the continuous
relaxations of the classical linearization of the two models. For
Node-Node model, we also implement the projection technique.

Improved N/C N/N proj. N/N

n CPU value CPU value CPU value

16 0.05 1.13E+5 1.24 2.26E+6 0.53 2.26E+6
17 0.05 1.93E+5 1.98 3.33E+6 0.53 3.33E+6
18 0.06 1.93E+5 2.72 1.14E+6 1.10 1.14E+6
19 0.06 2.07E+5 3.90 1.88E+6 1.58 1.88E+6
20 0.06 2.26E+5 5.40 3.90E+6 2.61 3.90E+6
21 0.07 3.24E+5 7.25 5.52E+6 3.01 5.52E+6
22 0.07 4.67E+5 9.11 7.02E+6 3.84 7.02E+6
25 0.07 3.87E+5 29.3 6.13E+6 8.37 6.13E+6

all 0.06 2.64E+5 7.62 3.90E+6 2.69 3.90E+6
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Three methods on Node-Node model

We compare the three methods of convexification/linearization for
Node-Node models included in a branch-and-bound/cut algorithm
for GPCC.

quad. N/N N/N proj. N/N

n #in#sol CPU Nodes #solCPU Nodes #sol CPU Nodes
16 6 2 7979 75233 6 243 3178 6 52 6060
17 6 1 9011 244233 6 412 5827 6 82 6137
18 6 1 8919 45945 6 594 2981 6 117 10993
19 6 2 7617 26129 6 4885 22044 6 900 66267
20 5 0 10800 29919 5 1142 2454 5 336 4542
21 4 0 10800 41544 3 5083 6176 4 1388 5047
22 2 0 10800 42341 1 8683 6584 2 6175 128823
25 2 0 10800 16921 1 9254 1342 2 2869 23982
all 37 6 9585 65283 34 3787 6323 37 1490 31481
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Exact Solutions : Improved Node-Cluster model vs
Node-Node model

Improved N/C proj. N/N

n #inst # sol CPU Nodes # sol CPU Nodes

16 6 6 25 6550 6 52 6060
17 6 6 88 21910 6 82 6137
18 6 6 46 6188 6 117 10993
19 6 6 147 20385 6 900 66267
20 5 5 459 44284 5 336 4542
21 4 4 434 29571 4 1388 5047
22 2 2 2467 161504 2 6175 128823
25 2 2 498 13071 2 2869 23982

all 37 37 520 37933 37 1490 31481

Table: Statistics on complete solution by branch-and-cut.
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Conclusions

We have studied several models and exact solutions for
GPCC.

An improvement for Node-Cluster model of Goldschmidt et al.
A new Node-Node model for GPCC which have the root in the
work of Grötschel and Wakabayashi for the clique partitioning
problem.
An adaptation particularly simple of the projection technique
from Saxena et al. for the presented models.

Numerical results show the advantage of the projection
technique over the minimum eigenvalue technique and
classical linearization on the Node-Node model. The latter
though stronger is less efficient than the Improved
Node-Cluster model in exact solutions by branch-and-cut.

Future works could be tuning the projection technique for
Improved Node-Cluster model and extending this technique to
a stronger relaxation than classical linearization.
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