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Optimization

Consider the general optimization problem

min f(x)

s.t. g(x) ≤ 0,

where x ∈ Rn, and f : Rn 7→ R and g : Rn 7→ Rm

are convex, twice differentiable.

Basic Assumptions:

f and g are convex
⇒ If there exists a local minimum then it is a global one.

f and g are twice differentiable
⇒ We can use the second order Taylor approximations of them.
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Glossary

LP: Linear Programming
both f and g are linear.

QP: Quadratic Programming
f is quadratic and g is linear.

NLP: Nonlinear Programming
f or g is nonlinear.

SOCP: Second-Order Cone Programming
f, g are conic (quadratic) functions.

SDP: Semidefinite Programming
f, g are functions of positive definite matrices.

IPMs: Interior Point Methods.
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Convexity
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Convexity is a key property in optimization.

Def. A set C ⊂ Rn is convex if λx + (1− λ)y ∈ C, ∀x, y ∈ C, ∀λ ∈ [0, 1].

y
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x
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z

Convex set Nonconvex set

Def. Let C be a convex subset of Rn. A function f : C 7→ R is convex if
f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y), ∀x, y ∈ C, ∀λ ∈ [0, 1].

x z y zx y

Convex function Nonconvex function

Paris, January 2018 6



J. Gondzio L1&2: Duality

Convexity (cont’d)

Def. Let C be a convex subset of Rn.
A function f : C 7→ R is concave if
f(λx + (1− λ)y) ≥ λf(x) + (1− λ)f(y), ∀x, y ∈ C, ∀λ ∈ [0, 1].

Remark. A function f : C 7→ R is concave if and only if function −f is convex.

Def. Let C be a convex subset of Rn.
A function f : C 7→ R is strictly convex if
f(λx + (1− λ)y) < λf(x) + (1− λ)f(y), ∀x, y ∈ C, ∀λ ∈ (0, 1).

Def. Let C be a convex subset of Rn.
A function f : C 7→ R is strictly concave if
f(λx + (1− λ)y) > λf(x) + (1− λ)f(y), ∀x, y ∈ C, ∀λ ∈ (0, 1).
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Convexity and Optimization

Consider a problem

minimize f(x)

subject to x ∈ X,

where X is a set of feasible solutions
and f : X → R is an objective function.

Def. A vector x̂ is a local minimum of f if

∃ǫ > 0 such that f(x̂) ≤ f(x), ∀x | ‖x− x̂‖ < ǫ.

Def. A vector x̂ is a global minimum of f if

f(x̂) ≤ f(x), ∀x ∈ X.
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Lemma. If X is a convex set and f : X 7→ R is a convex function, then a local
minimum is a global minimum.

Proof.
Suppose that x is a local minimum, but not a global one. Then ∃y 6=x such that
f(y)<f(x).
From convexity of f , for all λ∈ [0, 1], we have

f((1−λ)x+λy) ≤ (1−λ)f(x)+λf(y)

< (1−λ)f(x)+λf(x) = f(x).

In particular, for a sufficiently small λ, the point z = (1−λ)x+λy lies in the
ǫ-neighbourhood of x and f(z) < f(x). This contradicts the assumption that x
is a local minimum.
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Useful properties

1. For any collection {Ci | i ∈ I} of convex sets, the intersection
⋂

i∈I Ci is
convex.

2. The vector sum {x1 + x2 | x1 ∈ C1, x2 ∈ C2} of two convex sets C1 and C2 is
convex.

3. The image of a convex set under a linear transformation is convex.

4. If C is a convex set and f : C 7→ R is a convex function, the level sets
{x ∈ C | f(x) ≤ α} and {x ∈ C | f(x) < α} are convex for all scalars α.

5. For any collection {fi : C 7→R | i ∈ I} of convex functions, the weighted sum,
with weights wi > 0, i ∈ I , i.e. the function f =

∑

i∈I wifi : C 7→ R, is convex.

6. If I is an index set, C ∈ Rn is a convex set, and fi : C 7→ R is convex ∀i ∈ I ,
then the function h : C 7→ R defined by

h(x) = sup
i∈I

fi(x)

is also convex.
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7. Let C ∈ Rn be a convex set and f : C 7→ R be differentiable over C.
(a) The function f is convex if and only if

f(y) ≥ f(x) +∇Tf(x)(y − x), ∀x, y ∈ C.

(b) If the inequality is strict for x 6= y, then f is strictly convex.

8. Let C ∈ Rn be a convex set and f : C 7→ R be twice continuously differen-
tiable over C.
(a) If ∇2f(x) is positive semidefinite for all x ∈ C, then f is convex.
(b) If ∇2f(x) is positive definite for all x ∈ C, then f is strictly convex.
(c) If f is convex, then ∇2f(x) is positive semidefinite for all x ∈ C.

9. Let C ∈ Rn be a convex set and Q a square matrix. Let f(x) = xTQx be a
quadratic function f : C 7→ R.
(a) f is convex iff Q is positive semidefinite.
(b) f is strictly convex iff Q is positive definite.
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Duality
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Consider a general optimization problem

min f(x)

s.t. g(x) ≤ 0, (1)

x ∈ X ⊆ Rn,

where f : Rn 7→ R and g : Rn 7→ Rm.
The set X is arbitrary; it may include, for example, an integrality constraint.

Let x̂ be an optimal solution of (1) and define

f̂ = f(x̂).

Introduce Lagrange multiplier yi ≥ 0 for every inequality constraint gi(x) ≤ 0.
Define y = (y1, . . . , ym)

T and the Lagrangian

L(x, y) = f(x) + yTg(x),

y are also called dual variables.
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Consider the problem

LD(y) = min
x

L(x, y) s.t. x ∈ X ⊆ Rn.

Its optimal solution x depends on y and so does the optimal objective LD(y).

Lemma. For any y ≥ 0, LD(y) is a lower bound on f̂ (the optimal solution of
(1)), i.e.,

f̂ ≥ LD(y) ∀y ≥ 0.

Proof.

f̂ = min {f(x) | g(x) ≤ 0, x ∈ X}

≥ min
{

f(x) + yTg(x) | g(x) ≤ 0, y ≥ 0, x ∈ X
}

≥ min
{

f(x) + yTg(x) | y ≥ 0, x ∈ X
}

= LD(y).

Corollary.
f̂ ≥ max

y≥0
LD(y), i.e., f̂ ≥ max

y≥0
min
x∈X

L(x, y).
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Lagrangian Duality
If ∃i gi(x) > 0, then

max
y≥0

L(x, y) = +∞

(we let the corresponding yi grow to +∞).
If ∀i gi(x) ≤ 0, then

max
y≥0

L(x, y) = f(x),

because ∀i yigi(x) ≤ 0 and the maximum is attained when

yigi(x) = 0, ∀i = 1, 2, ...,m.

Hence the problem (1) is equivalent to the following MinMax problem

min
x∈X

max
y≥0

L(x, y),

which could also be written as follows:

f̂ = min
x∈X

max
y≥0

L(x, y).
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Consider the following problem

min {f(x) | g(x) ≤ 0, x ∈ X} ,

where f , g and X are arbitrary.
With this problem we associate the Lagrangian

L(x, y) = f(x) + yTg(x),

y are dual variables (Lagrange multipliers).
The weak duality always holds:

min
x∈X

max
y≥0

L(x, y) ≥ max
y≥0

min
x∈X

L(x, y).

We have not made any assumption about functions f and g and set X .

If f and g are convex, X is convex and certain regularity conditions are satisfied,
then

min
x∈X

max
y≥0

L(x, y) = max
y≥0

min
x∈X

L(x, y).

This is called the strong duality.
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Notation: Consider again the problem

min f(x)

s.t. g(x) ≤ 0,

x ∈ X ⊆ Rn,

where f : Rn 7→R and g : Rn 7→Rm.
Take x ∈ X ⊆ Rn and y ∈ Y = {y ∈ Rm, y ≥ 0} and write the Lagrangian

L(x, y) = f(x) + yTg(x).

Define the primal function

LP (x) =

{

f(x) if ∀i gi(x) ≤ 0
+∞ if ∃i gi(x) > 0.

Observe that
LP (x) = max

y≥0
L(x, y). (2)

Define the dual function
LD(y) = min

x∈X
L(x, y). (3)
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Primal & Dual Problems

The problem (1) can be formulated as looking for x̂ ∈ X ⊆ Rn such that

LP (x̂) = min
x∈X

LP (x).

It is called the primal problem.

The problem
LD(ŷ) = max

y≥0
LD(y).

is called the dual problem.

The weak duality can be rewritten as:

LP (x̂) ≥ LD(ŷ).
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Primal & Dual Feasibility Sets

Def. Primal feasible set.

XP = {x : x ∈ X, gi(x) ≤ 0, i = 1, 2, . . . ,m}.

Def. Dual feasible set.
A tuple (x, y) ∈ Rn+m is feasible for the dual problem if

(x,y)∈YD = {(x,y) : x∈X, y∈Y, LD(y)=L(x,y)}.

Def. Dual optimal solution.
A tuple (x̂, ŷ) ∈ Rn+m is called dual optimal if (x̂, ŷ) ∈ YD and ŷ maximizes
LD(y).
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Primal & Dual Bounds

Lemma. If x1 ∈ XP and (x2, y2) ∈ YD (i.e., x1 is primal feasible and (x2, y2) is
dual feasible), then

LP (x
1) ≥ LD(y

2).

Proof. Since x1 ∈ XP we get LP (x
1) = f(x1). For any y ∈ Y , from definition

(2) we have LP (x
1) ≥ L(x1, y). In particular, for y = y2:

LP (x
1) ≥ L(x1, y2). (4)

On the other hand, (x2, y2) ∈ YD hence for any x ∈ X from (3) we have
L(x, y2) ≥ LD(y

2) and, in particular, for x = x1:

L(x1, y2) ≥ LD(y
2). (5)

From (4) and (5) we get

f(x1) = LP (x
1) ≥ L(x1, y2) ≥ LD(y

2),

which completes the proof.
Any primal feasible solution provides an upper bound for the dual problem, and
any dual feasible solution provides a lower bound for the primal problem.
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Duality and Convexity
The weak duality holds regardless of the form of functions f , g and set X :

min
x∈X

max
y≥0

L(x, y) ≥ max
y≥0

min
x∈X

L(x, y).

What do we need for the inequality in the weak duality to become an equation?
If

• X ⊆ Rn is open and convex;
• f and g are convex;
• optimal solution is finite;
• some mysterious regularity conditions hold,

then strong duality holds. That is

min
x∈X

max
y≥0

L(x, y) = max
y≥0

min
x∈X

L(x, y).

An example of regularity conditions:
∃x ∈ int(X) such that g(x) < 0.
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Lagrange duality does not need differentiability.
Suppose f and g are convex and differentiable. Suppose X is convex.
The dual function

LD(y) = min
x∈X

L(x, y).

requires minimization with respect to x.
Instead of minimization with respect to x,
we ask for a stationarity with respect to x:

∇xL(x, y) = 0.

Lagrange dual problem:

max
y≥0

LD(y)

(

i.e., max
y≥0

min
x∈X

L(x, y)

)

.

Wolfe dual problem:

max L(x, y)

s.t. ∇xL(x, y) = 0

y ≥ 0.
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Duality: Example
Consider the nonlinear program:

min
x1,x2

f(x) = x21 + x22

s.t. x1 + x2 ≥ 1.

f(x) = x21 + x22 and g(x) = 1− x1 − x2 are convex.
Observe that x̂ = (0, 0) is the only stationary point of f and since f is convex
it is the unique unconstrained minimizer of f . However this point is infeasible
and since there are no other possible unconstrained local optima, the constrained
optimum must lie on the boundary of the feasible region, and so satisfies x1+x2 =
1.
Using this to eliminate x2 gives f(x1, 1−x1) = x21+(1−x1)

2, which has a minimum

at x1 =
1

2
. Hence constrained minimizer is at x̂ = (1

2
, 1
2
), with minimum f̂ = 0.5.
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Duality: Example (continued)
Lagrangian:

L(x, y) = x21 + x22 + y(1− x1 − x2).

The Lagrangian dual function:

LD(y) = min
x

[x21 + x22 + y(1− x1 − x2)].

For any y the Lagrangian L(x, y) is convex in x. We can use the stationarity
condition to replace the minimization. We write:

∇xL(x, y) =

[

2x1 − y

2x2 − y

]

=

[

0
0

]

,

which gives x1 = 0.5y and x2 = 0.5y.
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Example (continued)
Having substituted x1 = 0.5y and x2 = 0.5y, we obtain:

LD(y) = y −
1

2
y2.

The dual problem

max
y≥0

LD(y),

thus becomes

max
y≥0

[y −
1

2
y2].

It has the obvious solution ŷ = 1.
We observe that LD(ŷ) =

1

2
= f̂ = f(x̂), so strong duality holds.

We have calculated these optimal solutions ŷ and x̂, but even if we did not already
know they were optimal, the Corollary 3 would confirm they were optimal.
As observed, this is a convex program so it was to be expected that strong duality
would hold and the duality gap would be zero.
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Duality and Convexity
The weak duality holds regardless of the form of functions f , g and set X :

min
x∈X

max
y≥0

L(x, y) ≥ max
y≥0

min
x∈X

L(x, y).

What do we need for the inequality in the weak duality to become an equation?
If

• X ⊆ Rn is open and convex;
• f and g are convex;
• optimal solution is finite;
• some mysterious regularity conditions hold,

then strong duality holds. That is

min
x∈X

max
y≥0

L(x, y) = max
y≥0

min
x∈X

L(x, y).

An example of regularity conditions:
∃x ∈ int(X) such that g(x) < 0.
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Lagrange duality does not need differentiability.
Suppose f and g are convex and differentiable. Suppose X is convex.
The dual function

LD(y) = min
x∈X

L(x, y).

requires minimization with respect to x.
Instead of minimization with respect to x,
we ask for a stationarity with respect to x:

∇xL(x, y) = 0.

Lagrange dual problem:

max
y≥0

LD(y)

(

i.e., max
y≥0

min
x∈X

L(x, y)

)

.

Wolfe dual problem:

max L(x, y)

s.t. ∇xL(x, y) = 0

y ≥ 0.
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Lagrange Duality and Wolfe Duality

If f and g are convex and differentiable and X = Rn, then minxL(x, y) occurs
where ∇xL(x, y) = 0.

Hence the Wolfe Dual Problem is equivalent to the Langrangian Dual Problem.

However even then, the Wolfe Dual Problem is not necessarily a convex problem.

Lagrangian duality is very general:
no assumptions on f, g and X are made.

Wolfe duality requires differentiability of f and g.
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Dual Linear Program

Consider a linear program

min cTx

s.t. Ax = b,

x ≥ 0,

where c, x ∈ Rn, b ∈ Rm, A ∈ Rm×n.
We associate Lagrange multipliers y ∈ Rm and s ∈ Rn (s≥0)
with the constraints Ax = b and x ≥ 0, and write the Lagrangian

L(x, y, s) = cTx− yT (Ax− b)− sTx.

To determine the Lagrangian dual

LD(y, s) = min
x∈X

L(x, y, s)

we need stationarity with respect to x:

∇xL(x, y, s) = c− ATy − s = 0.
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Hence

LD(y, s) = cTx− yT (Ax− b)− sTx

= bTy + xT (c− ATy − s) = bTy.

and the dual LP has a form:

max bTy

s.t. ATy + s = c,

y free, s ≥ 0,

where y ∈ Rm and s ∈ Rn.

Primal Problem Dual Problem

min cTx max bTy

s.t. Ax = b, s.t. ATy + s = c,

x ≥ 0; s ≥ 0.
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Dual Quadratic Program

Consider a quadratic program

min cTx + 1

2
xTQx

s.t. Ax = b,

x ≥ 0,

where c, x ∈ Rn, b ∈ Rm, A ∈ Rm×n, Q ∈ Rn×n.
We associate Lagrange multipliers y ∈ Rm and s ∈ Rn (s≥0)
with the constraints Ax = b and x ≥ 0, and write the Lagrangian

L(x, y, s) = cTx +
1

2
xTQx− yT (Ax−b)− sTx.

To determine the Lagrangian dual

LD(y, s) = min
x∈X

L(x, y, s)

we need stationarity with respect to x:

∇xL(x, y, s) = c +Qx− ATy − s = 0.
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Hence
LD(y, s) = cTx + 1

2
xTQx− yT (Ax− b)− sTx

= bTy + xT (c +Qx− ATy − s)− 1

2
xTQx

= bTy − 1

2
xTQx,

and the dual QP has the form:

max bTy − 1

2
xTQx

s.t. ATy + s−Qx = c,

x, s ≥ 0,

where y ∈ Rm and x, s ∈ Rn.

Primal Problem Dual Problem

min cTx + 1

2
xTQx max bTy − 1

2
xTQx

s.t. Ax = b, s.t. ATy + s−Qx = c,

x ≥ 0; s ≥ 0.
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Geometric View of Duality
Consider a mapping which for any x ∈ X defines a point in Rm+1 of the form
(g(x), f(x)). We write x 7→ (g, f). Let H be the image of X .
Example n = 2, m = 1. Hence: x ∈ X ⊆ R2 and f : R2 7→ R and g : R2 7→ R.
Lagrange multiplier: y ∈ R (y ≥ 0).

x    x[g( ),f( )]

yL  ( )D

x

x

x

1

2
f

X

(g,f)

f+yg = const
g

(g,f)
H

slope: -y

slope: -y
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Figure Interpretation

Primal problem:

We look for a point (g, f) ∈ H such that
g ≤ 0 and f attains its minimum.
This is the point (ĝ, f̂) in the Figure.
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Figure Interpretation

Dual problem:

Take y ≥ 0. To find LD(y), we need to minimize f(x) + yg(x) with respect to
x ∈ X . This corresponds to the minimization of the linear form f + yg in the
set H .
For a given y ≥ 0, the linear form f + yg has a fixed slope (equal to −y) and
the minimum is attained when the line f + yg touches the bottom of H . We say
that “the hyperplane f + yg supports the set H”.
The intersection of the supporting plane and the f line determines the value of
LD(y).

The dual problem consists in finding such a slope y that LD(y) is maximized, i.e.,
the intersection of the supporting plane and the f axis is the highest possible.

There are two supporting hyperplanes in the Figure. The one corresponding to
ŷ corresponds to the maximum of LD(y).
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Nonzero Duality Gap

When sufficient conditions for strong duality are not satisfied, we may observe a
nonzero duality gap:

min
x∈X

max
y≥0

L(x, y)−max
y≥0

min
x∈X

L(x, y) > 0.

In the Figure below:
f̂ − LD(ŷ) > 0.

x    x[g( ),f( )]

yL  ( )D

x

x2
f

X

(g,f)

g

(g,f)
H

slope: -y

x1

f
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Treatment of Equality Constraints

Let h : Rn 7→Rk define an equality constraint h(x) = 0 (understood as hj(x) =
0, j = 1, ..., k). Replace hj(x) = 0 with two inequalities:

hj(x) ≤ 0 and − hj(x) ≤ 0.

Then the optimization problem

min f(x)

s.t. g(x) ≤ 0,

h(x) = 0,

x ∈ X ⊆ Rn,

where f : Rn 7→R, g : Rn 7→Rm and h : Rn 7→Rk, becomes:

min f(x)

s.t. g(x) ≤ 0,

h(x) ≤ 0,

−h(x) ≤ 0,

x ∈ X ⊆ Rn.
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Equality Constraints (continued)
Use nonnegative Lagrange multipliers y ∈ Rm for g constraints.
Use a pair of Lagrange multipliers u+j ≥ 0 and u−j ≥ 0 for inequalities hj(x) ≤ 0
and −hj(x) ≤ 0, respectively. In other words, use two vectors u+ ≥ 0 and
u− ≥ 0, both in Rk and write the Lagrangian

L(x, y, u+, u−) = f(x) + yTg(x) + (u+)Th(x)− (u−)Th(x)

= f(x) + yTg(x) + (u+ − u−)Th(x)

= f(x) + yTg(x) + uTh(x),

where the vector u = u+ − u− ∈ Rk has no sign restriction.
The Lagrangian becomes:

L(x, y, u) = f(x) + yTg(x) + uTh(x),

and all theoretical results derived earlier can be replicated for this new problem
formulation.
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