
Integer optimization and machine learning:
Some recent developments

Karen Aardal
TU Delft

PGMO Days, Paris, December 3, 2019

Part I: Using Machine Learning to enhance elements of
Integer Optimization algorithms

Part II: Some relations between Integer (Linear)
Optimization and Deep Learning

Background: Integer Optimization
IP:

Branch-and-bound: (B&B)

LP-
relaxation:

Value of best feasible
solution found so far

Solve LP-
relaxation

If we cannot prune,
choose a variable

LP(k) = LP-relaxation in node k = LP-relaxation in k obtained by
adding all constraints on the path from the root node to k.

Variable Selection Problem:
Choose the non-integer
variable to “branch” on in a
given B&B-node

• If LP(k) has integral solution. IP(k) has been solved to optimality.

• If LP(k) is infeasible. IP(k) is infeasible.

• If . Prune by bound.

We can prune the tree under node k if one of the following happens:

• If LP(k) has integral solution.

• If LP(k) is infeasible.

• If .

We can prune the tree under node k if one of the following happens:

If we cannot prune under node k, we need to branch on a non-integer
variable, i.e., solve the Branching Variable Selection Problem (VSP)

Depending on how “well” we solve the VSP, the size of the resulting
search tree can differ a lot!

In addition to VSP, we also need to solve the Branching Node
Selection Problem (NSP), i.e., which of the non-pruned nodes should
we investigate next?

How is the VSP solved in academic/commercial solvers?

Four important rules:

• Pseudocost branching: keeps a history of objective gain per unit
change in variable value

• Strong branching: computes progress in objective value for each
fractional variable, and chooses the best

• Reliability branching: start with strong branching until pseudocost
branching becomes “reliable”

Strong branching seems to result in the smallest search trees.

Drawback: Computationally heavy!

• Hybrid branching: combination of several rules, also from the CP/SAT
community

Node Selection Problem:
Choose which of the non-
pruned B&B-nodes to explore
next.

Two basic strategies:

• Best-first: Choose the node k that has the smallest value .

• Depth-first: go deeper and deeper and backtrack only when a node
is pruned.

Cutting planes:

IP: LP-
relaxation:

•

How can we improve the “natural”
LP-relaxation?

LP-optimum Add a new constraint that cuts off the
current LP-optimum, but none of the
integer feasible points.

Cutting planes that do not assume any specific problem structure:

• Gomory mixed-integer cuts

• Split cuts

• Mixed-integer rounding cuts

Theorem: (Gomory 1958) After adding finitely many Gomory
cuts, the integer optimum is achieved (under some technical
conditions).

All modern commercial/academic B&B solvers for (mixed)-integer
optimization problem include:

• Presolve to reduce problem size and improve bounds.

• Advanced algorithms for the variable and node selection problems.

QUESTION: Can we use machine learning to “learn” any of
these components?

• Cutting plane generating algorithms. (Improves)

• Heuristics for finding good feasible solutions. (Improves)

Not easy to improve on what the best solvers already do!

From: Achterberg & Wunderling: Mixed Integer Programming:
Analyzing 12 Years of Progress.
In: M. Jünger, G. Reinelt (eds.) Facets of Combinatorial Optimization:
Festschrift for Martin Grötschel. Springer, Berlin, pp 449-481, 2013.

In the first part I will focus on the variable selection problem.

For the node selection problem, see e.g.:

H. He, H. Daumé III, J. Eisner (2014). Learning to search in
branch-and-bound algorithms. In: Z. Ghahramani, M. Welling,
C. Cortes, N.D. Lawrence, K.Q. Weinberger (eds.) Advances in
Neural Information Processing Systems 27, pp 3293-3301.

For learning to cut, see e.g.:

R. Baltean-Lugojan, R. Misener, P. Bonami, A. Tramontani (2018).
Strong sparse cut selection via trained neural nets for quadratic
semidefinite outer-approximation. Tech report, Imperial College.

Y. Tang, S. Agrawal, Y. Faenza (2019). Reinforcement learning for
integer programming: learning to cut. arXiv:1906.04859v1 [cs.LG]
11 Jun 2019.

Background: Machine Learning
Accessible online, gives a broad
introduction to machine learning

Background: Machine Learning

Just published…

Background: Machine Learning

Papers that introduce how machine learning is used in optimization

• A. Lodi and G. Zarapellon (2017). On learning and branching:
a survey. TOP 25:207-236.

• Y. Bengio, A. Lodi, A. Prouvost (2018). Machine learning for
combinatorial optimization: a methodological tour d’horizon.
arXiv:1811.06128v1 [cs.LG] 15 Nov 2018. Submitted.

• P. Domingos (2012). A few useful things to know about
machine learning. Commun. ACM 55(10):78-87.

Overview paper:

• Supervised learning

Some learning settings:

• Unsupervised learning

• Deep learning

• Reinforcement learning

Data consists of pairs consisting of a set of features
and the correct/optimal outcome that is then used
for training.

Data consist of features, and the process of learning
should detect a “pattern” in the features.

An “agent” interacts with the environment through a
MDP. The agent is given a state of the environment
and chooses an action that gives a certain reward.
The training is done so as to maximize sum of future
rewards.

Input is passed successively through a number of
layers in a directed acyclic network. In each vertex of
each layer an affine transformation followed by a
non-linear operation is applied. The parameters of
these transformations/operations are learned by
minimizing a “loss” function.

Learning to branch (VSP)

Important: which features should be used in the ML-algorithm?

• There should be strong enough statistical dependencies between
the chosen features and the desired output.

• The features should be fast to compute.

• The number of features used should be independent of instance size.

• Features should be invariant to irrelevant changes to instance.

• Features should be invariant under scaling of instance input

We describe results from two papers regarding the VSP:

A. Marcos Alvarez, Q. Louveaux, L. Wehenkel (2017). A machine
learning-based approximation of strong branching. INFORMS J on
Comp. 29(1): 185-195.

M. Gasse, D. Chételat, N. Ferroni, L. Charlin, A. Lodi (2019). Exact
combinatorial optimization with graph convolutional neural
networks. arXiv:1906.01692v2 [cs.LG] 7 Jun 2019.

For more results we refer to the survey papers:

• A. Lodi and G. Zarapellon (2017). On learning and branching:
a survey. TOP 25:207-236.

• Y. Bengio, A. Lodi, A. Prouvost (2018). Machine learning for
combinatorial optimization: a methodological tour d’horizon.
arXiv:1811.06128v1 [cs.LG] 15 Nov 2018. Submitted.

A. Marcos Alvarez, Q. Louveaux, L. Wehenkel (2017).
A machine learning-based approximation of strong
branching. INFORMS J on Comp. 29(1): 185-195.

Supervised learning: Train to approximate strong branching.

Learning algorithm: Extremely Randomized Trees (Geurts et al, 2006).

Static features:

objective related:

constraint related:

sign of

things that represent the influence of the
constraint coefficients of variable .

examples:

only the max and the min value over all constraints
of each feature is added to the features vector.

Features (describe variable in the current node):

A. Marcos Alvarez, Q. Louveaux, L. Wehenkel (2017).
A machine learning-based approximation of strong
branching. INFORMS J on Comp. 29(1): 185-195.
Features:

Dynamic features:

Problem related: • proportion of fixed variables at current solution

• up and down fractionalities of variable

• normalized “Driebeck penalties” up and down
for variable (bound on the increase in
objective value)

• normalized sensitivity range of

Optimization related:
• relative objective increase up and down of

variable

• number of times variable has been branched on
normalized by total number of branchings

A. Marcos Alvarez, Q. Louveaux, L. Wehenkel (2017).
A machine learning-based approximation of strong
branching. INFORMS J on Comp. 29(1): 185-195.

Computational result:

Tested on 0-1 IPs: Randomly generated and selection of MIPLIB instances.

Instance size: couple of hundreds of variables, about 100 constraints.

Use CPLEX libary, turn off cuts, heuristics, presolve, parallelization.

Conclusions:

A. Marcos Alvarez, Q. Louveaux, L. Wehenkel (2017).
A machine learning-based approximation of strong
branching. INFORMS J on Comp. 29(1): 185-195.

Random problems: (none were solved within the given limits)

With #B&B-nodes limit:

The closed gap is comparable to Reliability Branching (RB), and
slightly worse than Strong Branching (SB).

closed gap

If closed gap , we are closed to verifying optimal solution.

A. Marcos Alvarez, Q. Louveaux, L. Wehenkel (2017).
A machine learning-based approximation of strong
branching. INFORMS J on Comp. 29(1): 185-195.

With #B&B-nodes limit:

Computing time factor 2 worse than RB, but factor 4 better than SB.

The closed gap is comparable to Reliability Branching (RB), and
slightly worse than Strong Branching (SB).

With time limit:

The closed gap is inbetween (SB) and (RB). Using a factor 1-2 less
nodes than RB, but a factor 3 more nodes than SB.

Random problems: (none were solved within the given limits)

A. Marcos Alvarez, Q. Louveaux, L. Wehenkel (2017).
A machine learning-based approximation of strong
branching. INFORMS J on Comp. 29(1): 185-195.

MIPLIB problems: (solved within the node/time limit)

With #B&B-nodes limit:

Computing time factor 7-8 better than RB and SB.

The #B&B-nodes used comparable to Reliability Branching (RB),
and a factor of 2 worse than Strong Branching (SB).

With time limit:

Time used is comparable to RB and a factor 2 better than SB.

Uses twice as many nodes as RB and SB.

A. Marcos Alvarez, Q. Louveaux, L. Wehenkel (2017).
A machine learning-based approximation of strong
branching. INFORMS J on Comp. 29(1): 185-195.

MIPLIB problems: (not solved by at least one method within the
node/time limit)

With #B&B-nodes limit:

Computing time factor 6 better than SB and comparable to RB.

The closed gap is comparable to Reliability Branching (RB), and
slightly worse than Strong Branching (SB).

With time limit:

Closed gap slightly worse than RB and SB.

Uses factor 2 fewer nodes than RB and a factor 3 more nodes
than SB.

Number of nodes used comparable to RB and SB.

M. Gasse, D. Chételat, N. Ferroni, L. Charlin, A. Lodi (2019).
Exact combinatorial optimization with graph convolutional
neural networks. arXiv:1906.01692v2 [cs.LG] 7 Jun 2019.

Imitation learning: Solve training problems with strong branching.

“Ideally”: model the B&B process as a MDP.

The “state” of the process comprises all relevant info about the
current B&B tree.

The “action” to be taken is to choose a variable to branch on.

This is computationally too heavy. Therefore, the “state” is encoded
as a bipartite graph:

“constraint
nodes”

“variable nodes”Edge between variable
j and constraint i if

Features are associated to both the constraint and variable nodes.

Variable selection policy is parametrized using a
Graph Convolutional Neural Network

Input layer

Bipartite graph
with features

Hidden layers Output layer

Branching
policy

In state t

Computational result:

M. Gasse, D. Chételat, N. Ferroni, L. Charlin, A. Lodi (2019).
Exact combinatorial optimization with graph convolutional
neural networks. arXiv:1906.01692v2 [cs.LG] 7 Jun 2019.

They test on three classes of combinatorial optimization problems:

• Set cover: 1000 variables, train on 500 constraints, test on
500, 1000, and 2000 rows

• Combinatorial auction: train on 100 items, 500 bids (100, 500),
test on (100, 500), (200, 1000), (300, 1500)

• Capacitated facility location: 100 facilities, train on 100 customers,
test on 100, 200, and 400 customers

Use SCIP with time limit 1 hour. Allow for cutting planes in root node.
All other SCIP settings are default.

Comparison is made with:

• Three other ML-algorithms

• Default SCIP branching

• Strong branching

Some conclusions:

• Strong branching always gives far fewer nodes, but at
substantially higher computational cost.

• Small instances: LMART (Hansknecht et al. 2018) is faster, and
SCIP uses fewer nodes.

• Medium and large instances: GCNN is faster and uses fewer
nodes.

Set cover:

• Small instances: LMART (Hansknecht et al. 2018) is faster, and
SCIP uses fewer nodes.

• Medium instances: GCNN is faster, and SCIP uses fewer nodes.

• Large instances: GCNN is faster and uses fewer nodes.

• Small and medium instances: GCNN is faster, and SCIP uses
fewer nodes.

• Large instances: SVMRANK (Khalil et al. (2016) is faster, and SCIP
uses fewer nodes.

Combinatorial auction:

Capacitated facility location:

Part II: Some relations between Integer (Linear)
Optimization and Deep Learning

A bit more on Deep Learning
Deep Neural network (DNN):

Directed acyclic network with weigths on every edge and vertex

input layer hidden layer 1 hidden layer 2 hidden layer k output layer

input layer hidden layer 1 hidden layer 2 hidden layer k output layer

Number of nodes in the input and output layer is related to the
problem at hand.

Example: we wish to recognize hand written numbers.

nodes input layer = # of pixels in the image

nodes output layer = # of possible numbers in
the data set, here 10 (0-9)

What goes on in the hidden layers?

is called an “activation” function

Examples: ReLU (Rectified Linear Unit)

Sigmoid

node

node

Examples: ReLU (Rectified Linear Unit)

Sigmoid

ReLU:

Sigmoid:

Some theoretical results for DNNs

Expressiveness: What family of functions can one
represent using ReLU-DNNs?

Theorem: (Arora, Basu, Mianjy, Mukherjee 2018)
Any ReLU-DNN with inputs implements a continuous piecewise
affine function on . Conversely, any continuous piecewise affine
function on can be implemented by some ReLU-DNN. Moreover,
at most hidden layers are needed.

input layer hidden layer 1 hidden layer 2 hidden layer output layer
width width width

Size of the DNN =

Depth of the DNN =

Width of the DNN =

Size, depth, and width of a DNN

Efficiency: How many layers and vertices do we need to
represent functions in the family of continuous
piecewize linear functions?

Theorem: (Arora et al, 2018) For every natural number , there
exists a family of functions such that for any function in
the family, we have:

1. is in ReLU-DNN(,)

2. is not in ReLU-DNN(,)

hidden layers size

So, there are “hard” functions which, if represented in a
shallower DNN, require a DNN of exponentially larger size.

Training:

Given the architecture and data points , find weights for
the best fit function.

Theorem: (Arora et al, 2018) Let and be natural numbers, and
a set of data points in . There

exists an algorithm that solves the following training problem to
optimality:

The running time of the algorithm is

Polynomial in data size for fixed en .

Bienstock, Muñoz, Pokutta (2018) generalize and extend the
training results og Arora et al (2018).

They convert the training problem, for an arbitrary number of
layers, into a linear programming (LP) problem with size(LP) linear
in and exponential in input and parameter space dimensions.

Make use of Bienstock & Muñoz reformulation of non-convex
problems to approximate LPs.

Adversarial machine learning and MIP

Model a ReLU-DNN as a MIP:

M. Fischetti, J. Jo (2018). Deep neural networks and mixed integer
linear optimization. Constraints 23:296-309.

What goes on in the hidden layers?

is called an “activation” function

ReLU (Rectified Linear Unit)

node

node

Adversarial machine learning and MIP

Model a ReLU-DNN as a MIP:

M. Fischetti, J. Jo (2018). Deep neural networks and mixed integer
linear optimization. Constraints 23:296-309.

Recall: ReLU (Rectified Linear Unit)

How can we make sure that and do not both take positive values?

Standard MIP modeling technique!

Adversarial machine learning and MIP
M. Fischetti, J. Jo (2018). Deep neural networks and mixed integer
linear optimization. Constraints 23:296-309.

How can we make sure that and do not both take positive values?

Standard MIP modeling technique!

Introduce binary variables : should imply
should imply

MIP model:

The input is obtained from training.

Fischetti and Jo use their MIP model to find “adversarial” instances:

How little can we change the input such that the DNN makes a mistake?

Example: The MNIST data set again.

We are given an input vector correcty classified as a “0”.
Example: We want to produce a similar vector that is wrongly
classified as a “5”.

Add constraints for the final layer:

This means that the activation of the output element corresponding
to the “5” should be 20% higher than for any other digit.

Introduce an ad-hoc objective function to minimize the
-norm distance between and .

The new additional variables should satisfy the constraints

For the MNIST examples the change in input vector is only
attributed to a very few (2-3) pixels!

Other papers discussing MILP models of DNNs:

C.-H. Cheng et al. (2017). Maximum resilience in artificial neural
networks. In: D. D’Souza, K. Narayan Kumar (eds.) Automated
technology for verification and analysis, Springer pp 251-268.

T. Serra et al. (2017). Bounding and counting linear regions of deep
neural networks. CoRR arXiv:1711.02114.

V. Tjeng, R. Tedrake (2017). Verifying neural networks with mixed
integer programming. CoRR arXiv:1711.07356.

Open questions

• Can we learn how to branch on hyperplanes rather
than on single variables?

• How to use learning in MIP in a parallel environment?

• Can we use learning to classify problems (instances)
in terms of “difficulty”?

