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Part I: Using Machine Learning to enhance elements of 
Integer Optimization algorithms

Part II: Some relations between Integer (Linear) 
Optimization and Deep Learning



Background: Integer Optimization
IP:

Branch-and-bound: (B&B)

LP-
relaxation:

Value of best feasible 
solution found so far

Solve LP-
relaxation

If we cannot prune, 
choose a variable 



LP(k) = LP-relaxation in node k = LP-relaxation in k obtained by 
adding all constraints on the path from the root node to k.

Variable Selection Problem:
Choose the non-integer 
variable to “branch” on in a 
given B&B-node

• If LP(k) has integral solution. IP(k) has been solved to optimality. 

• If LP(k) is infeasible. IP(k) is infeasible.

• If                        . Prune by bound.

We can prune the tree under node k if one of the following happens:



• If LP(k) has integral solution.

• If LP(k) is infeasible.

• If .

We can prune the tree under node k if one of the following happens:

If we cannot prune under node k, we need to branch on a non-integer 
variable, i.e., solve the Branching Variable Selection Problem (VSP)

Depending on how “well” we solve the VSP, the size of the resulting 
search tree can differ a lot!

In addition to VSP, we also need to solve the Branching Node 
Selection Problem (NSP), i.e., which of the non-pruned nodes should 
we investigate next?



How is the VSP solved in academic/commercial solvers?

Four important rules:

• Pseudocost branching: keeps a history of objective gain per unit   
change in variable value

• Strong branching: computes progress in objective value for each 
fractional variable, and chooses the best

• Reliability branching: start with strong branching until pseudocost
branching becomes “reliable” 

Strong branching seems to result in the smallest search trees. 

Drawback: Computationally heavy!

• Hybrid branching: combination of several rules, also from the CP/SAT 
community



Node Selection Problem:
Choose which of the non-
pruned B&B-nodes to explore 
next.

Two basic strategies:

• Best-first: Choose the node k that has the smallest value               . 

• Depth-first: go deeper and deeper and backtrack only when a node 
is pruned.



Cutting planes:

IP: LP-
relaxation:



•

How can we improve the “natural” 
LP-relaxation?

LP-optimum Add a new constraint that cuts off the 
current LP-optimum, but none of the 
integer feasible points.

Cutting planes that do not assume any specific problem structure:

• Gomory mixed-integer cuts

• Split cuts

• Mixed-integer rounding cuts



Theorem: (Gomory 1958) After adding finitely many Gomory 
cuts, the integer optimum is achieved (under some technical 
conditions).

All modern commercial/academic B&B solvers for (mixed)-integer 
optimization problem include:

• Presolve to reduce problem size and improve bounds. 

• Advanced algorithms for the variable and node selection problems. 

QUESTION:  Can we use machine learning to “learn” any of 
these components?

• Cutting plane generating algorithms. (Improves )

• Heuristics for finding good feasible solutions. (Improves )



Not easy to improve on what the best solvers already do!

From: Achterberg & Wunderling: Mixed Integer Programming: 
Analyzing 12 Years of  Progress. 
In: M. Jünger, G. Reinelt (eds.) Facets of Combinatorial Optimization: 
Festschrift for Martin Grötschel. Springer, Berlin, pp 449-481, 2013.



In the first part I will focus on the variable selection problem. 

For the node selection problem, see e.g.:

H. He, H. Daumé III, J. Eisner (2014). Learning to search in 
branch-and-bound algorithms. In: Z. Ghahramani, M. Welling, 
C. Cortes, N.D. Lawrence, K.Q. Weinberger (eds.) Advances in 
Neural Information Processing Systems 27, pp 3293-3301.

For learning to cut, see e.g.:

R. Baltean-Lugojan, R. Misener, P. Bonami, A. Tramontani (2018). 
Strong sparse cut selection via trained neural nets for quadratic 
semidefinite outer-approximation. Tech report, Imperial College.

Y. Tang, S. Agrawal, Y. Faenza (2019). Reinforcement learning for 
integer programming: learning to cut. arXiv:1906.04859v1 [cs.LG] 
11 Jun 2019.



Background: Machine Learning
Accessible online, gives a broad 
introduction to machine learning



Background: Machine Learning

Just published…



Background: Machine Learning

Papers that introduce how machine learning is used in optimization

• A. Lodi and G. Zarapellon (2017). On learning and branching:   
a survey. TOP 25:207-236.

• Y. Bengio, A. Lodi, A. Prouvost (2018). Machine learning for    
combinatorial optimization: a methodological tour d’horizon.
arXiv:1811.06128v1 [cs.LG] 15 Nov 2018. Submitted.

• P. Domingos (2012). A few useful things to know about 
machine learning. Commun. ACM 55(10):78-87.

Overview paper:



• Supervised learning

Some learning settings:

• Unsupervised learning

• Deep learning

• Reinforcement learning

Data consists of pairs consisting of a set of features 
and the correct/optimal outcome that is then used 
for training.

Data consist of features, and the process of learning 
should detect a “pattern” in the features. 

An “agent” interacts with the environment through a 
MDP. The agent is given a state of the environment 
and chooses an action that gives a certain reward.  
The training is done so as to maximize sum of future 
rewards.

Input is passed successively through a number of 
layers in a directed acyclic network. In each vertex of 
each layer an affine transformation followed by a 
non-linear operation is applied. The parameters of 
these transformations/operations are learned by
minimizing a “loss” function.



Learning to branch (VSP)

Important: which features should be used in the ML-algorithm? 

• There should be strong enough statistical dependencies between   
the chosen features and the desired output.

• The features should be fast to compute.

• The number of features used should be independent of instance size.

• Features should be invariant to irrelevant changes to instance.

• Features should be invariant under scaling of instance input



We describe results from two papers regarding the VSP:

A. Marcos Alvarez, Q. Louveaux, L. Wehenkel (2017). A machine 
learning-based approximation of strong branching. INFORMS J on 
Comp. 29(1): 185-195.

M. Gasse, D. Chételat, N. Ferroni, L. Charlin, A. Lodi (2019). Exact 
combinatorial optimization with graph convolutional neural
networks. arXiv:1906.01692v2 [cs.LG] 7 Jun 2019.

For more results we refer to the survey papers:

• A. Lodi and G. Zarapellon (2017). On learning and branching:   
a survey. TOP 25:207-236.

• Y. Bengio, A. Lodi, A. Prouvost (2018). Machine learning for    
combinatorial optimization: a methodological tour d’horizon.
arXiv:1811.06128v1 [cs.LG] 15 Nov 2018. Submitted.



A. Marcos Alvarez, Q. Louveaux, L. Wehenkel (2017). 
A machine learning-based approximation of strong 
branching. INFORMS J on Comp. 29(1): 185-195.

Supervised learning: Train to approximate strong branching. 

Learning algorithm: Extremely Randomized Trees (Geurts et al, 2006).

Static features:

objective related:

constraint related:

sign of 

things that represent the influence of the 
constraint coefficients of variable   . 

examples: 

only the max and the min value over all constraints 
of each feature is added to the features vector.

Features (describe variable in the current node): 



A. Marcos Alvarez, Q. Louveaux, L. Wehenkel (2017). 
A machine learning-based approximation of strong 
branching. INFORMS J on Comp. 29(1): 185-195.
Features: 

Dynamic features:

Problem related: • proportion of fixed variables at current solution

• up and down fractionalities of variable  

• normalized “Driebeck penalties” up and down 
for variable    (bound on the increase in 
objective value)

• normalized sensitivity range of 

Optimization related:
• relative objective increase up and down of 

variable  

• number of times variable has been branched on  
normalized by total number of branchings 



A. Marcos Alvarez, Q. Louveaux, L. Wehenkel (2017). 
A machine learning-based approximation of strong 
branching. INFORMS J on Comp. 29(1): 185-195.

Computational result:

Tested on 0-1 IPs: Randomly generated and selection of MIPLIB instances.

Instance size: couple of hundreds of variables, about 100 constraints.

Use CPLEX libary, turn off cuts, heuristics, presolve, parallelization.

Conclusions:



A. Marcos Alvarez, Q. Louveaux, L. Wehenkel (2017). 
A machine learning-based approximation of strong 
branching. INFORMS J on Comp. 29(1): 185-195.

Random problems: (none were solved within the given limits)

With #B&B-nodes limit:

The closed gap is comparable to Reliability Branching (RB), and 
slightly worse than Strong Branching (SB).



closed gap                      

If closed gap          , we are closed to verifying optimal solution. 



A. Marcos Alvarez, Q. Louveaux, L. Wehenkel (2017). 
A machine learning-based approximation of strong 
branching. INFORMS J on Comp. 29(1): 185-195.

With #B&B-nodes limit:

Computing time factor 2 worse than RB, but factor 4 better than SB.

The closed gap is comparable to Reliability Branching (RB), and 
slightly worse than Strong Branching (SB).

With time limit:

The closed gap is inbetween (SB) and (RB). Using a factor 1-2 less 
nodes than RB, but a factor 3 more nodes than SB.

Random problems: (none were solved within the given limits)



A. Marcos Alvarez, Q. Louveaux, L. Wehenkel (2017). 
A machine learning-based approximation of strong 
branching. INFORMS J on Comp. 29(1): 185-195.

MIPLIB problems: (solved within the node/time limit)

With #B&B-nodes limit:

Computing time factor 7-8 better than RB and SB.

The #B&B-nodes used comparable to Reliability Branching (RB), 
and a factor of 2 worse than Strong Branching (SB).

With time limit:

Time used is comparable to RB and a factor 2 better than SB.

Uses twice as many nodes as RB and SB.



A. Marcos Alvarez, Q. Louveaux, L. Wehenkel (2017). 
A machine learning-based approximation of strong 
branching. INFORMS J on Comp. 29(1): 185-195.

MIPLIB problems: (not solved by at least one method within the 
node/time limit)

With #B&B-nodes limit:

Computing time factor 6 better than SB and comparable to RB.

The closed gap is comparable to Reliability Branching (RB), and 
slightly worse than Strong Branching (SB).

With time limit:

Closed gap slightly worse than RB and SB.

Uses factor 2 fewer nodes than RB and a factor 3 more nodes 
than SB.

Number of nodes used comparable to RB and SB.



M. Gasse, D. Chételat, N. Ferroni, L. Charlin, A. Lodi (2019). 
Exact combinatorial optimization with graph convolutional 
neural networks. arXiv:1906.01692v2 [cs.LG] 7 Jun 2019.

Imitation learning: Solve training problems with strong branching. 

“Ideally”: model the B&B process as a MDP.

The “state” of the process comprises all relevant info about the 
current B&B tree.

The “action” to be taken is to choose a variable to branch on.

This is computationally too heavy. Therefore, the “state” is encoded 
as a bipartite graph:

“constraint 
nodes”

“variable nodes”Edge between variable 
j and constraint i if 



Features are associated to both the constraint and variable nodes.

Variable selection policy is parametrized using a 
Graph Convolutional Neural Network

Input layer

Bipartite graph 
with features

Hidden layers Output layer

Branching 
policy

In state t



Computational result:

M. Gasse, D. Chételat, N. Ferroni, L. Charlin, A. Lodi (2019). 
Exact combinatorial optimization with graph convolutional 
neural networks. arXiv:1906.01692v2 [cs.LG] 7 Jun 2019.

They test on three classes of combinatorial optimization problems:

• Set cover: 1000 variables, train on 500 constraints, test on  
500, 1000, and 2000 rows

• Combinatorial auction: train on 100 items, 500 bids (100, 500), 
test on (100, 500), (200, 1000), (300, 1500)

• Capacitated facility location: 100 facilities, train on 100 customers, 
test on 100, 200, and 400 customers 

Use SCIP with time limit 1 hour. Allow for cutting planes in root node. 
All other SCIP settings are default.



Comparison is made with:

• Three other ML-algorithms

• Default SCIP branching 

• Strong branching

Some conclusions:

• Strong branching always gives far fewer nodes, but at 
substantially higher computational cost.

• Small instances: LMART (Hansknecht et al. 2018) is faster, and 
SCIP uses fewer nodes.

• Medium and large instances: GCNN is faster and uses fewer 
nodes.

Set cover:



• Small instances: LMART (Hansknecht et al. 2018) is faster, and 
SCIP uses fewer nodes.

• Medium instances: GCNN is faster, and SCIP uses fewer nodes.

• Large instances: GCNN is faster and uses fewer nodes.

• Small and medium instances: GCNN is faster, and SCIP uses 
fewer nodes.

• Large instances: SVMRANK (Khalil et al. (2016) is faster, and SCIP 
uses fewer nodes.

Combinatorial auction:

Capacitated facility location:



Part II: Some relations between Integer (Linear) 
Optimization and Deep Learning



A bit more on Deep Learning
Deep Neural network (DNN):

Directed acyclic network with weigths on every edge and vertex

input layer hidden layer 1 hidden layer 2 hidden layer k output layer



input layer hidden layer 1 hidden layer 2 hidden layer k output layer

Number of nodes in the input and output layer is related to the 
problem at hand.

Example: we wish to recognize hand written numbers.



# nodes input layer =  # of pixels in the image

# nodes output layer = # of possible numbers in  
the data set, here 10 (0-9) 



What goes on in the hidden layers?

is called an “activation” function

Examples: ReLU (Rectified Linear Unit)

Sigmoid

node

node



Examples: ReLU (Rectified Linear Unit)

Sigmoid

ReLU:

Sigmoid:



Some theoretical results for DNNs

Expressiveness: What family of functions can one 
represent using ReLU-DNNs?

Theorem: (Arora, Basu, Mianjy, Mukherjee 2018) 
Any ReLU-DNN with inputs implements a continuous piecewise 
affine function on       . Conversely, any continuous piecewise affine 
function on        can be implemented by some ReLU-DNN. Moreover, 
at most                      hidden layers are needed. 



input layer hidden layer 1 hidden layer 2 hidden layer output layer
width width width 

Size of the DNN = 

Depth of the DNN = 

Width of the DNN = 

Size, depth, and width of a DNN



Efficiency: How many layers and vertices do we need to 
represent functions in the family of continuous 
piecewize linear functions?

Theorem: (Arora et al, 2018) For every natural number     , there 
exists a family of                  functions such that for any function    in 
the family, we have:

1. is in ReLU-DNN(       ,        )

2. is not in ReLU-DNN(     ,                              )

# hidden layers size

So, there are “hard” functions which, if represented in a 
shallower DNN, require a DNN of exponentially larger size.



Training:

Given the architecture and data points             , find weights for 
the best fit function.

Theorem: (Arora et al, 2018) Let     and     be natural numbers, and     
a set of      data points in                   . There 

exists an algorithm that solves the following training problem to 
optimality:      

The running time of the algorithm is  

Polynomial in data size      for fixed     en     . 



Bienstock, Muñoz, Pokutta (2018) generalize and extend the 
training results og Arora et al (2018).

They convert the training problem, for an arbitrary number of 
layers, into a linear programming (LP) problem with size(LP) linear 
in      and exponential in input and parameter space dimensions.

Make use of Bienstock & Muñoz reformulation of non-convex 
problems to approximate LPs.



Adversarial machine learning and MIP

Model a ReLU-DNN as a MIP:

M. Fischetti, J. Jo (2018). Deep neural networks and mixed integer 
linear optimization. Constraints 23:296-309.



What goes on in the hidden layers?

is called an “activation” function

ReLU (Rectified Linear Unit)

node

node



Adversarial machine learning and MIP

Model a ReLU-DNN as a MIP:

M. Fischetti, J. Jo (2018). Deep neural networks and mixed integer 
linear optimization. Constraints 23:296-309.

Recall: ReLU (Rectified Linear Unit)

How can we make sure that       and       do not both take positive values?

Standard MIP modeling technique!



Adversarial machine learning and MIP
M. Fischetti, J. Jo (2018). Deep neural networks and mixed integer 
linear optimization. Constraints 23:296-309.

How can we make sure that       and       do not both take positive values?

Standard MIP modeling technique!

Introduce binary variables      : should imply
should imply



MIP model:

The input                                   is obtained from training.



Fischetti and Jo use their MIP model to find “adversarial” instances:

How little can we change the input such that the DNN makes a mistake?

Example: The MNIST data set again.



We are given an  input vector     correcty classified as a “0”. 
Example: We want to produce a similar vector      that is wrongly 
classified as a “5”. 

Add constraints for the final layer:

This means that the activation of the output element corresponding 
to the “5” should be 20% higher than for any other digit.

Introduce an ad-hoc objective function                  to minimize the            
-norm distance between      and       .   

The new additional variables      should satisfy the constraints

For the MNIST examples the change in input vector is only 
attributed to a very few (2-3) pixels!



Other papers discussing MILP models of DNNs:

C.-H. Cheng et al. (2017). Maximum resilience in artificial neural 
networks. In: D. D’Souza, K. Narayan Kumar (eds.) Automated 
technology for verification and analysis, Springer pp 251-268.

T. Serra et al. (2017). Bounding and counting linear regions of deep 
neural networks. CoRR arXiv:1711.02114.

V. Tjeng, R. Tedrake (2017). Verifying neural networks with mixed 
integer programming. CoRR arXiv:1711.07356.



Open questions

• Can we learn how to branch on hyperplanes rather
than on single variables?

• How to use learning in MIP in a parallel environment?

• Can we use learning to classify problems (instances) 
in terms of “difficulty”?


