Distributional Reinforcement Learning

Rémi Munos

ﬂ

7
Marc Bellemare, Will Dabney, Georg Ostrovskl Mark Rowland

\@ | DeepMindParis

Deep RL is already a successful empirical research domain

Can we make it a fundamental research domain?

Related theoretical works:

- RL side: bandits, convergence of Q-learning, sample complexity, linear TD,
Approximate DP, ...

- Deep learning side: VC-dim, convergence, stability, robustness against
adversarial attacks, ...

Nice theoretical results, but how much do they tell us about deepRL?

Can we make it a fundamental research domain?

Related fundamental works:

- RL side: bandits, convergence of Q-learning, sample complexity, linear TD,
Approximate DP, ...

- Deep learning side: VC-dim, convergence, stability, robustness against
adversarial attacks, ...

Nice theoretical results, but how much do they tell us about deepRL?

What is specific about RL when combined with deep learning?

Distributional-RL

Shows interesting interactions between RL and deep-learning

Outline:

Introduction to deep reinforcement learning
The idea of distributional-RL

Elements of theory

Represents distributions in a neural net
Numerical results on Atari

Discussion about how/why this ‘works’

Reinforcement Learning (RL)

Learn to make good decisions

Learn from one’s own experience
(by trial and error)

~
No supervision. Learn from rewards ((

| learned to ride with RL™

The RL agent in its environment

The agent

—— v/ Y -

state Ty / o

Ti41 ~ p('|$t,at)

The environment

action a; ~ 7r(-|:ct)

Remi Munos DeepMind

2 core ingredients of RL

Credit assignment problem:
which actions are responsible for a reward?
— Value-based methods ([Bellman 1957]'s Dynamic programming)
— Policy-based methods ([Pontryagin 1957]'s Maximum principle)

Representation problem:
how to represent functions, models and policies?
— use deep learning!
— DeepRL

Bellman’s dynamic programming

» Define the value function Q™ of a policy m(alx):

Q" (x,a) = E[nytrt‘x, g 7r] ,

t>0

and the optimal value function:
Q*(x,a) = max Q™ (x, a).
s

(expected sum of future rewards if the agent plays optimally).

» Bellman equations:

Qﬂ-(aj’ CL) — 7“(33, CL) + ny a:: ~ p((~||£C,/§L) [Qﬁ(wla CL/)]

Q*(gj, a) — T(ZU, a) + VEx’Np(-Ix,a) [HLE}X Q*(x/’ a/)}

» Optimal policy m*(x) = arg max, Q*(x, a)
Remi Munos DeepMind

Use a neural net for approximating the value function

Convglution Convglution Fully cgnnected Fully cgnnected
: =
-

g=a B /=
s B
g
o L

oo | =) m N\ 3\ .
fe®: 1@ =
= . » . \

of] @ A .
g L] L] .

ol H\=
.
8

State x o | =] \=

Weights w

¢

Q-value Q, (x.a)

Represent Q using a neural network

» How to train Qu(x,a)? We don't have supervised values.

Qu(x,a) = r(x,a) + YEy [ma}x Qu (X, a")

%3
» After a transition x;, ar — X¢41,

train Qu (x¢, a;) to predict ry + v max Qu (x¢41,a)
a

N -
N

target values

2
» Minimize loss (rt + v max Q(st+1,a) — Q(st, at)) .
a

N -

temporal (ﬁﬂ’erence St
» At the end of learning, E[§;] = 0.

Remi Munos DeepMind

Deep Q-Networks (DQN) [Mnih et al. 2013, 2015]

Problems: (1) data is not iid, (2) target values change
Idea: be as close as possible to supervised learning

1. Dissociate acting from learning:

» Interact with the environments by following behavior policy
» Store transition samples x;, ar, X;+1, rr into a memory replay
» Train by replaying iid from memory

2. Use target network fixed for a while

2
loss = (e + 7 MaxX Quipe (Xe41,2) — Qu(xe, a2))

Properties: DQN is off-policy, and uses 1-step bootstrapping.

Remi Munos DeepMind

DQN Results in Atari

00
£
o
c
c
3
£ =)
-
Al
c
9 0
%0 o
€«
evl
£ %
tt
o0
c 0
< 8
22
Mt
v 8
R~

o
<ix
X
o

%000€
L

and then hitting the ball behind the wall

%0001 %009 %005 %00 %00€ %002 %00L %0

1)Ll | | | | |

[
%

%2
%S

S

]
28

%.
%EL
%vl

%S
%ZE
%Zv
%EY
%LS
%LS
%Z9
%b9
%L9
%L9

|oAs|-ueWNY Mojaq %69

[abuanay s ewnzay
B ak3 ajeaud

| seynes

" auqisosq

" spiosaisy

| uewoed ‘s

B Buimog

" sung aianog

B 1sanbeag

| aunuap

B ually

B Jepiwy

B pley Janry

" 1s1H yueg

B apadiua)

B puewwo) Jaddoys
" Jom Jo prezp

" auoz ameg

| xuaisy

AAOQE JO |3A3J-UBWINY JB %9L

%8L
%6L
%26
%E6
%L6
%001
%20L

%Zh
%611
%ITh
%eEL
%Sl
%8¥1
%¥eT
%2ET
%9VT
%llT
%8LT
%¥6T
%00%
%64y
%IS¥
%80§
%865
%lZEL

o OY3IH
Heg.0

B £ax20H 89|

B umoq pue dn

B Aaquaq Bulysiy

" ounpu3

" 1014 oy

B Remoaiy4

B Jaise n4-Buny

B weyjuen)

" Jopiy weag

B sJapeAu| aoedg

B Buog

| puog sawep

B SUIET

B oosefuey

" souuny peoy

jInessy

" iy

| aweo siy) swen

™ soeny uowsq

B Jaydos

B Jaquui) Azesn

" snuepy

I juejoqoy

B Jauung Jeis

| 1noxeasg

" Buixog

B |equid O8pIA

The same algorithm learns to play 57 games

Remi Munos DeepMind

S
Improvements since Nature DQN

» Double DQN: Remove upward bias caused by max, Q(s, a,w)

» Current Q-network w is used to select actions
> Older Q-network wiarget is used to evaluate actions

Q(Sa a) r(sa a) T "YQ(S/a argmax Q(Sla a, w), W_) [van Hasselt et al., 2015]
a/

» Prioritised replay: Weight experience according to surprise
» Store experience in priority queue according to DQN error

|r+~ maxa'Q(s’,a',w™) — Q(s, a, w)| [Schaul et al., 2015]

» Duelling network: Split Q-network into two channels

» Action-independent value function V(s, v)
» Action-dependent advantage function A(s, a,w)

W tal., 2015
Q(s,a) = V(s,v) + A(s,a,w) [Wang et a]

Other improvements

» Persistent DQN: Repeat same action at next state if next
state is very similar to previous state. Update Q(s, a)

Q(s, a) r(s,a) + [5 max Q(s',a') + (1 - B)Q(s, a)] .

[Bellemare et al., 2015]

» Multi-steps updates: Propagate information over several steps:

n—1
Q(s, a) Z vre+ 7" m;,‘X Q(sn, ") [Hessel et al., 2017]
t=0
Faster propagation of information but this is an on-policy
algorithm (i.e. actions are greedy w.r.t. current Q).
» Retrace & vtrace algorithms: multi-steps off-policy learning:

Q(s,a) < Y '(a...c) (rt +ymax Q(st,a’) — Q(st, at)), [Munos et al., 2016]
a
t>0

where ¢; = min (1, (ad]5t)

Distributional-RL

Introduction

Elements of theory

Neural net representations
Experiments on Atari
Conclusion

Intro to distributional RL

2,2 LUXURY Expected immediate reward
g G - TAX g
e P , E[R(z)] = — x (~2000) + -2 x (200) = 138.88
0| | S| = e
PRICE $400 PAY $75.00 PRICE $350 .

Random variable reward:

| —2000 w.p. 1/36
R(z) = { 200 w.p. 35/36

The return = sum of future discounted rewards

e I d‘“\r
o
.eo N “T
b / e “\;,,’:
.~ ° o s
i\ o LA
\‘.':::’\/m
= = W
"':::W

R(x()) gy ’yR(xl) i ’YZR(LIZQ) G

e Returns are often complex, multimodal
e Modelling the expected return hides this intrinsic randomness
e Model all possible returns!

The r.v. Return Z7(z,a) = 3,00 7' (2e, ay)|

ro—x,ap—a,7m

@ Y A =+10

Captures intrinsic randomness from:

e Immediate rewards
e Stochastic dynamics
e Possibly stochastic policy

The expected Return

The value function Q™ (x,a) = E[Z™ (x, a)]

Satisfies the Bellman equation
Q" (z,a) = E[r(z,a) +7Q" (2, a’)]

where ' ~ p(-|z,a) and a’ ~ w(-|z")

Distributional Bellman equation?

We would like to write a Bellman equation for the distributions:

7" (z,a) =2 R(xz,a) +~vZ7 (2, a")

where =’ ~ p(-|z,a) and a’ ~ 7(:|z")

Does this equation make sense?

Example

Reward = Bernoulli (%), discount factor y = %2

Bellman equation: |V = % 1 %V thus V = 1

Return [/ = Z 2_th Distribution?
£>0

Example

@R:{ 1 w.p. 1/2
Reward = Bernoulli (*2), discount factor y = %% 0 w.p. 1/2
Bellman equation: |V = % 1 %V thus V = 1 Q

Return Z:ZQ—th Distribution? ([0, 2])

t>0 : .
- (rewards = binary expansion of a real number)

Example

R =
Reward = Bernoulli (72), discount factor y = 72 @

Bellman equation: |V = % 1 %V thus V = 1 Q

Return 7 — Z 2~t*R, Distribution? L{([O, 2])

>0
Distributional Bellman equation: 7 — B(%) + %Z
o 1
In terms of distribution: n(z) = 5 (6(0) +6(1)) = 2n(22)

=n(22) +n(2(z — 1))

Distributional Bellman operator

"7z R(z,a) +vZ(x',a)
R(z,a) +~vZ(x',a)

Does there exists a fixed point?

Properties
Theorem [Rowland et al., 2018]

Tﬂ' is a contraction in Cramer metric

BxY) = /R (Fx (1) —Fy(t))2dt>1/ i

Theorem [Bellemare et al., 2017]

['™is a contraction in Wasserstein metric,

1/p

w(X,¥) = ([(50 -) ar)

(but not in KL neither in total variation)
Intuition: the size of the support shrinks.

Wasserstein

Distributional dynamic programming

For a given policy z, the distributional Bellman operator

T"Z(x,a) = R(xz,a) +vZ(z',a’)

Is a contraction mapping, thus has a unique fixed point, which is Zﬂ-

And the iterate 7 «— T 77 convergesto /7

The control case

Define the distributional Bellman optimality operator

TZ(x,a) L r(x,a) +vZ(x', w7 (x"))

where 2’ ~ p(:|z,a) and 7z (z') = argmax, E[Z(z’,a’)]

|s this operator a contraction mapping?

The control case

Define the distributional Bellman optimality operator

TZ(z,a) = r(z,a) +vZ (&', 7z (z"))
where &’ ~ p(-|z,a) and 7z (z’') = arg max, E[Z (2, a’)]

|s this operator a contraction mapping?

No! (it's not even continuous)

The dist. opt. Bellman operator is hot smooth

Consider distributions Ze

If ¢ > 0 we back up a bimodal distribution
If ¢ < 0 we back up a Diracin O

Thus the map Z, +— I'Z, is not continuous

Distributional Bellman optimality operator

Theorem [Bellemare et al., 2017]

AT~ AR
if the optimal policy is unique, then the iterates | @@J
Zk-+1 +— TZ; convergetoZ7r |

Intuition: The distributional Bellman operator preserves the mean, thus
the mean will converge to the optimal policy 7* eventually. If the policy
IS unique, we revert to iterating TW*, which is a contraction.

How to represent distributions?

e C(Categorical

e Inverse CDF for specific quantile levels

e Parametric inverse CDF

Categorical distributions

Distributions supported on a finite support {21,..., 2, }

Discrete distribution {p;(x,a)}1<i<n

Z(iIZ, a) — sz'(ili, a’)dzz

Projected Distributional Bellman Update

Transition

vP" 7

Projected Distributional

PT('

Z
R+~P"Z 1
(©)

Bellman Update
Discount / Shrink

vP" 7

1L, T"Z I
—‘_lj (@)

Projected Distributional Bellman Update

Pz ~P"Z

(a)

+vP"Z

—_— >

(© —‘_lj (@)

Reward / Shift

Projected Distributional Bellman Update

P"Z

R+~P"Z

—
(©)

vP" 7

—

(b)

IL,T"Z

(d)

Fit / Project

Projected distributional Bellman operator

Let II,, be the projection onto the support (piecewise linear interpolation)

Theorem:

I1,,’T"is a contraction (in Cramer distance)

Intuition: Hn is a non-expansion (in Cramer distance).

Its fixed point /., can be computed by value iteration / <— 11,7 Z

Theorem:

03(Zn, Z7) <

1
(1 =)

2 v —

[Rowland et al., 2018]

Projected distributional Bellman operator

Policy iteration: iterate
Policy evaluation: 7, = 11, T7* Z,

Policy improvement: mx+1(z) = argmaxE[Z™ (z, a)]
a

Theorem:

Assume there is a unique optimal policy.
Zk converges to Zg , Whose greedy policy is optimal.

Distributional Q-learning

r
Observe transition samples T'¢, Q¢ - |

Update:
Z($t, at) = (]_ — Ozt)Z(ZBt, (lt) -+ Oétnc(’l"t -+ ’YZ(Q?t_|_1, 7Tz(£lft_|_1))

Theorem

Under the same assumption as for Q-learning,
assume there is a unique optimal policy T [Rowland et al., 2018]
then Z — Z,,Z[* and the resulting policy is optimal.

DeepRL implementation

DQN [Mnih et al., 2013]

Actions

Categorical DON [Bellemare et al., 2017]

Actions

Q DeepMind

Categorical DQN

Probability

1.0

o
wn

0.0

=10

10

Randomness from future choices

Fire
Left+Fire
Right+Fire

— Right
l Left w=

l

Noop

Return

g
o
£
L4

1.0
g
éo.s
0.0
4 6 L}
Return
10
g
go.s

Return

w e
o Ul

Games Superior
G

C51 vs. DQN

C51 vs. HUMAN

DQN vs. HUMAN

50 100 150 200
Training Frames (millions)

Results on 57 games Atari 2600

Mean Median >human
DQN 228% 79% 24
Double DQN 307% 118% 33
Dueling 373% 151% 37
Prio. Duel. 592% 172% 39
C51 701% 178% 40

Categorical representation

Po Py Py -

3

Fixed support. learned probabilities|

1

,/x

iTTiT

\

L

O-1=

L Zyt IAZ ...

Quantile Regression Networks

Fixed [probabilities, learned [support

VA
/ \
/ \
T ,\ \
X - .

Inverse CDF learnt by Quantile Regression

|2-regression

loss = x

mean

I1-regression

: : loss = |x|

median

Ya-quantile-regression

1
1% for x > 0
§|4 loss = ;

— 7% for x < 0

A~

Ya-quantile

%-quantile-regression

3
—x, for x > 0
4
loss =
1

——x, f >0
4:13, or r >

/A .

¥a-quantile

many-quantiles-regression

W Tx, for x > 0
=\ loss =
(t — D)x, for x >0

many-quantiles

Quantile Regression = projection in Wasserstein!

(on a uniform grid)

QR distributional Bellman operator

Theorem:

HQRTW is a contraction (in Wasserstein)

Intuition: quantile regression = projection in Wasserstein

Reminder:

e I’ is a contraction (both in Cramer and Wasserstein)

e II,,’T" is a contraction (in Cramer)

[Dabney et al., 2018]

Quantile-Regression DQN

Mean Median
DQN 228% 79%
Double DQN 307% 118%
Dueling 373% 151%
Prio. Duel. 592% 172%
C51 701% 178%

QR-DQN 864 % 193%

Implicit Quantile Networks (IQN)

_A‘

T
Learn a parametric inverse CDF J
—1
T— F, (1) 0

Qr

ION

£\ r~B()

/N

Implicit Quantile Networks for TD

T~U|0,1], 2z=Z (x¢, a)
T ~U[0,1], 2 =Z (vi41,a")

5t =T+ ’YZ, — <
QR loss: p-(0) = (7 — [5<0)

ATVIEION

020508
SECTOR 14

20 2 24 26
Return

Return

Implicit Quantile Networks

Mean Median Human starts
DQN 228% 79% 68%
Prio. Duel. 592% 172% 128%
C51 701% 178% 116%
QR-DQN 864% 193% 153%
IQN 1019% 218% 162%

Almost as good as SOTA (Rainbow/Reactor) which combine prio/dueling/categoricall...

What is going on?

e \We learn these distributions, but in the end we only use their mean

What is going on?

e \We learn these distributions, but in the end we only use their mean
Non-trivial interactions between deep learning and RL.:

e Learn richer representations

o Same signal to learn from but more predictions

o More predictions — richer signal — better representations

o Can better disambiguate between different states (state aliasing)
e Density estimation instead of I12-regressions

o Express RL in terms of usual tools in deep learning

o Variance reduction

What is going on?

e \We learn these distributions, but in the end we only use their mean
Non-trivial interactions between deep learning and RL.:

e Learn richer representations

o Same signal to learn from but more predictions

o More predictions — richer signal — better representations

o Can better disambiguate between different states (state aliasing)
e Density estimation instead of 12-regressions

o Express RL in terms of usual tools in deep learning

o Variance reduction

Now maybe we could start using those distributions? (e.g, risk-sensitive
control, exploration, ...)

Algorithms

Algorithms: Evaluation

- Value-based pgents:
- Policy-based DQN, A3C, Impala,
DDPG, TRPO, PPO, ...

Policy:
- Risk-neutral

- Risk seeking/averse

- Exploration: (optimism,
Thompson sampling)
Distribution over Environments

- Ret.u.rns Atari, DMLab30,

- Policies Control suite, Go,...

Ogtletr: . Distributional RL

petateialiasing Deep Learning impact:

- Se\é\/_ard Clli)p(;nIgL - Lower variance gradients
naiscounte - Richer representations

Convergence analysis
- Contraction property Representation of distributions
- Control case Distributional loss Categc_)rical _
- SGD friendly _Wasserstein - Quantile regression
- Mixture of Gaussians
- Cramer - Generative models

Theory

- other?

Deep Learning

References:

A distributional perspective on reinforcement learning,
(Bellemare, Dabney, Munos, ICML 2017)

An Analysis of Categorical Distributional Reinforcement Learning,
(Rowland, Bellemare, Dabney, Munos, Teh, AISTATS 2018)
Distributional reinforcement learning with quantile regression,
(Dabney, Rowland, Bellemare, Munos, AAAI 2018)

Implicit Quantile Networks for Distributional Reinforcement Learning,
(Dabney, Ostrovski, Silver, Munos, ICML 2018)

Thanks!

