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Deep RL is already a successful empirical research domain

Computer go
StarCraft DMLab30

Capture the Flag Atari 57 games



Can we make it a fundamental research domain?

Related theoretical works: 
- RL side: bandits, convergence of Q-learning, sample complexity, linear TD, 

Approximate DP, ...
- Deep learning side: VC-dim, convergence, stability, robustness against 

adversarial attacks, ...

Nice theoretical results, but how much do they tell us about deepRL?



Can we make it a fundamental research domain?

Related fundamental works: 
- RL side: bandits, convergence of Q-learning, sample complexity, linear TD, 

Approximate DP, ...
- Deep learning side: VC-dim, convergence, stability, robustness against 

adversarial attacks, ...

Nice theoretical results, but how much do they tell us about deepRL?

What is specific about RL when combined with deep learning?



Distributional-RL

Shows interesting interactions between RL and deep-learning

Outline:

● Introduction to deep reinforcement learning
● The idea of distributional-RL
● Elements of theory
● Represents distributions in a neural net
● Numerical results on Atari
● Discussion about how/why this ‘works’



Reinforcement Learning (RL)

Learn to make good decisions

Learn from one’s own experience 
(by trial and error)

No supervision. Learn from rewards
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The agent

The environment



2 core ingredients of RL

Credit assignment problem: 
which actions are responsible for a reward? 
→ Value-based methods ([Bellman 1957]’s Dynamic programming)
→ Policy-based methods ([Pontryagin 1957]’s Maximum principle)

Representation problem: 
how to represent functions, models and policies?
→ use deep learning!
→ DeepRL



Remi Munos DeepMind



Use a neural net for approximating the value function

  State x        Q-value Qw(x,a)

Weights w
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The same algorithm learns to play 57 games



[van Hasselt et al., 2015]

[Schaul et al., 2015]

[Wang et al., 2015]



[Bellemare et al., 2015]

[Hessel et al., 2017]

[Munos et al., 2016]



Distributional-RL

● Introduction
● Elements of theory
● Neural net representations
● Experiments on Atari
● Conclusion



Intro to distributional RL

Expected immediate reward

Random variable reward:



The return = sum of future discounted rewards

● Returns are often complex, multimodal
● Modelling the expected return hides this intrinsic randomness
● Model all possible returns!



The r.v. Return

= +10

+8

-2Captures intrinsic randomness from:
● Immediate rewards
● Stochastic dynamics
● Possibly stochastic policy



The expected Return

The value function

Satisfies the Bellman equation
  



Distributional Bellman equation?

We would like to write a Bellman equation for the distributions:

Does this equation make sense?



Example
Reward = Bernoulli (½), discount factor 𝛾 = ½

Bellman equation: , thus V = 1
 

Return                                     Distribution?
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               (rewards = binary expansion of a real number)



Example
Reward = Bernoulli (½), discount factor 𝛾 = ½

Bellman equation: , thus V = 1
 

Return                                     Distribution?

Distributional Bellman equation: 

In terms of distribution: 



Distributional Bellman operator

Does there exists a fixed point?



Properties
Theorem [Rowland et al., 2018]

  is a contraction in Cramer metric 

Theorem [Bellemare et al., 2017]

 is a contraction in Wasserstein metric, 

(but not in KL neither in total variation)
Intuition: the size of the support shrinks. 



Distributional dynamic programming

For a given policy 𝜋, the distributional Bellman operator

Is a contraction mapping, thus has a unique fixed point, which is 

And the iterate                            converges to



The control case
Define the distributional Bellman optimality operator

Is this operator a contraction mapping?



The control case
Define the distributional Bellman optimality operator

Is this operator a contraction mapping?

No! (it’s not even continuous)



The dist. opt. Bellman operator is not smooth

Consider distributions 

If 𝜀 > 0 we back up a bimodal distribution

If 𝜀 < 0 we back up a Dirac in 0

Thus the map                        is not continuous 



Theorem [Bellemare et al., 2017]

if the optimal policy is unique, then the iterates
converge to 

Intuition: The distributional Bellman operator preserves the mean, thus 
the mean will converge to the optimal policy        eventually. If the policy 
is unique, we revert to iterating        , which is a contraction.  

Distributional Bellman optimality operator



How to represent distributions?

● Categorical 

● Inverse CDF for specific quantile levels

● Parametric inverse CDF 
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Categorical distributions

Distributions supported on a finite support 

Discrete distribution  

z0 z1 z2 …                 zn



Projected Distributional Bellman Update

Transition



Discount / Shrink

Projected Distributional Bellman Update



Reward / Shift

Projected Distributional Bellman Update



Projected Distributional Bellman Update

Fit / Project



Projected distributional Bellman operator

Let           be the projection onto the support (piecewise linear interpolation)

Theorem:                          is a contraction (in Cramer distance)

Intuition:          is a non-expansion (in Cramer distance). 

Its fixed point           can be computed by value iteration

Theorem: [Rowland et al., 2018]



Projected distributional Bellman operator

Policy iteration: iterate
- Policy evaluation:

- Policy improvement:   

Theorem: Assume there is a unique optimal policy. 
  converges to           , whose greedy policy is optimal. 



Distributional Q-learning

Observe transition samples

Update: 

Theorem  
Under the same assumption as for Q-learning, 
assume there is a unique optimal policy      , 
then                     and the resulting policy is optimal.

 

[Rowland et al., 2018]



DeepRL implementation

 



DQN [Mnih et al., 2013]



Categorical DQNDQN [Bellemare et al., 2017]



Categorical DQN



Randomness from future choices







Mean Median >human

DQN 228% 79% 24

Double DQN 307% 118% 33

Dueling 373% 151% 37

Prio. Duel. 592% 172% 39

C51 701% 178% 40

Results on 57 games Atari 2600 



Categorical representation

x

p0 p1 p2 … pn-1 

0

1

… z0 + i𝚫z ...

Fixed support, learned probabilities



Quantile Regression Networks

x

z0 z1 z2 … zn-1

0
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Fixed probabilities, learned support

𝚫p

z0  z1 z2      …  zn-1



Inverse CDF learnt by Quantile Regression
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l2-regression

mean



l1-regression

median



¼-quantile-regression

¼-quantile



¾-quantile-regression

¾-quantile



many-quantiles-regression

many-quantiles



Quantile Regression = projection in Wasserstein!
(on a uniform grid)

𝛕0

𝛕1

𝛕2

𝛕3

z0    z1   z2       zn



QR distributional Bellman operator

Theorem:                             is a contraction (in Wasserstein)       [Dabney et al., 2018]

Intuition: quantile regression = projection in Wasserstein

Reminder:
●          is a contraction (both in Cramer and Wasserstein)

●                 is a contraction (in Cramer)



DQN



C51DQN



QR-DQNC51DQN



Quantile-Regression DQN

Mean Median

DQN 228% 79%

Double DQN 307% 118%

Dueling 373% 151%

Prio. Duel. 592% 172%

C51 701% 178%

QR-DQN 864% 193%



Implicit Quantile Networks (IQN)

 

Learn a parametric inverse CDF
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QR-DQNC51DQN



QR-DQNC51 IQNDQN



Implicit Quantile Networks for TD





Implicit Quantile Networks

Mean Median Human starts

DQN 228% 79% 68%

Prio. Duel. 592% 172% 128%

C51 701% 178% 116%

QR-DQN 864% 193% 153%

IQN 1019% 218% 162%

Almost as good as SOTA (Rainbow/Reactor) which combine prio/dueling/categorical/...



What is going on?

● We learn these distributions, but in the end we only use their mean



What is going on?

● We learn these distributions, but in the end we only use their mean

Non-trivial interactions between deep learning and RL:

● Learn richer representations
○ Same signal to learn from but more predictions
○ More predictions → richer signal → better representations
○ Can better disambiguate between different states (state aliasing)

● Density estimation instead of l2-regressions
○ Express RL in terms of usual tools in deep learning
○ Variance reduction



What is going on?

● We learn these distributions, but in the end we only use their mean

Non-trivial interactions between deep learning and RL:

● Learn richer representations
○ Same signal to learn from but more predictions
○ More predictions → richer signal → better representations
○ Can better disambiguate between different states (state aliasing)

● Density estimation instead of l2-regressions
○ Express RL in terms of usual tools in deep learning
○ Variance reduction

Now maybe we could start using those distributions? (e.g, risk-sensitive 
control, exploration, …)



Distributional RL

Agents:
DQN, A3C, Impala,
DDPG, TRPO, PPO, ...

Policy:
- Risk-neutral
- Risk seeking/averse
- Exploration: (optimism, 
Thompson sampling)

Distributional loss
- Wasserstein
- Cramer
- other?

Convergence analysis
- Contraction property
- Control case
- SGD friendly

Algorithms:
- Value-based
- Policy-based

Distribution over
- Returns
- Policies

Deep Learning impact:
- Lower variance gradients
- Richer representations

Other:
- State aliasing
- Reward clipping
- Undiscounted RL

Environments
Atari, DMLab30, 
Control suite, Go,...

Theory

Algorithms Evaluation

Deep Learning

Representation of distributions
- Categorical
- Quantile regression
- Mixture of Gaussians
- Generative models



Thanks!

● A distributional perspective on reinforcement learning, 
(Bellemare, Dabney, Munos, ICML 2017)

● An Analysis of Categorical Distributional Reinforcement Learning, 
(Rowland, Bellemare, Dabney, Munos, Teh, AISTATS 2018)

● Distributional reinforcement learning with quantile regression, 
(Dabney, Rowland, Bellemare, Munos, AAAI 2018)

● Implicit Quantile Networks for Distributional Reinforcement Learning, 
(Dabney, Ostrovski, Silver, Munos, ICML 2018)
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