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Deep RL is already a successful empirical research domain




Can we make it a fundamental research domain?

Related theoretical works:

- RL side: bandits, convergence of Q-learning, sample complexity, linear TD,
Approximate DP, ...

- Deep learning side: VC-dim, convergence, stability, robustness against
adversarial attacks, ...

Nice theoretical results, but how much do they tell us about deepRL?



Can we make it a fundamental research domain?

Related fundamental works:

- RL side: bandits, convergence of Q-learning, sample complexity, linear TD,
Approximate DP, ...

- Deep learning side: VC-dim, convergence, stability, robustness against
adversarial attacks, ...

Nice theoretical results, but how much do they tell us about deepRL?

What is specific about RL when combined with deep learning?



Distributional-RL

Shows interesting interactions between RL and deep-learning

Outline:

Introduction to deep reinforcement learning
The idea of distributional-RL

Elements of theory

Represents distributions in a neural net
Numerical results on Atari

Discussion about how/why this ‘works’



Reinforcement Learning (RL)

Learn to make good decisions

Learn from one’s own experience
(by trial and error)

~
No supervision. Learn from rewards ((

| learned to ride with RL™



The RL agent in its environment

The agent

—— v/ Y -

state Ty / o

Ti41 ~ p('|$t,at)

The environment

action a; ~ 7r(-|:ct)
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2 core ingredients of RL

Credit assignment problem:
which actions are responsible for a reward?
— Value-based methods ([Bellman 1957]'s Dynamic programming)
— Policy-based methods ([Pontryagin 1957]'s Maximum principle)

Representation problem:
how to represent functions, models and policies?
— use deep learning!
— DeepRL



Bellman’s dynamic programming

» Define the value function Q™ of a policy m(alx):

Q" (x,a) = E[nytrt‘x, g 7r] ,

t>0

and the optimal value function:
Q*(x,a) = max Q™ (x, a).
s

(expected sum of future rewards if the agent plays optimally).

» Bellman equations:

Qﬂ-(aj’ CL) — 7“(33, CL) + ny a:: ~ p((~||£C,/§L) [Qﬁ(wla CL/)]

Q*(gj, a) — T(ZU, a) + VEx’Np(-Ix,a) [HLE}X Q*(x/’ a/)}

» Optimal policy m*(x) = arg max, Q*(x, a)
Remi Munos DeepMind



Use a neural net for approximating the value function
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Represent Q using a neural network

» How to train Qu(x,a)? We don't have supervised values.

Qu(x,a) = r(x,a) + YEy [ma}x Qu (X, a")

%3
» After a transition x;, ar — X¢41,

train Qu (x¢, a;) to predict ry + v max Qu (x¢41,a)
a

N -
N

target values

2
» Minimize loss (rt + v max Q(st+1,a) — Q(st, at)) .
a

N -

temporal (ﬁﬂ’erence St
» At the end of learning, E[§;] = 0.
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Deep Q-Networks (DQN) [Mnih et al. 2013, 2015]

Problems: (1) data is not iid, (2) target values change
Idea: be as close as possible to supervised learning

1. Dissociate acting from learning:

» Interact with the environments by following behavior policy
» Store transition samples x;, ar, X;+1, rr into a memory replay
» Train by replaying iid from memory

2. Use target network fixed for a while

2
loss = (e + 7 MaxX Quipe (Xe41,2) — Qu(xe, a2))

Properties: DQN is off-policy, and uses 1-step bootstrapping.

Remi Munos DeepMind



DQN Results in Atari
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The same algorithm learns to play 57 games
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S
Improvements since Nature DQN

» Double DQN: Remove upward bias caused by max, Q(s, a,w)

» Current Q-network w is used to select actions
> Older Q-network wiarget is used to evaluate actions

Q(Sa a) r(sa a) T "YQ(S/a argmax Q(Sla a, w), W_) [van Hasselt et al., 2015]
a/

» Prioritised replay: Weight experience according to surprise
» Store experience in priority queue according to DQN error

|r+~ maxa'Q(s’,a',w™) — Q(s, a, w)| [Schaul et al., 2015]

» Duelling network: Split Q-network into two channels

» Action-independent value function V(s, v)
» Action-dependent advantage function A(s, a,w)

W tal., 2015
Q(s,a) = V(s,v) + A(s,a,w) [Wang et a ]



Other improvements

» Persistent DQN: Repeat same action at next state if next
state is very similar to previous state. Update Q(s, a)

Q(s, a)  r(s,a) + [5 max Q(s',a') + (1 - B)Q(s, a)] .

[Bellemare et al., 2015]

» Multi-steps updates: Propagate information over several steps:

n—1
Q(s, a) Z vre+ 7" m;,‘X Q(sn, ") [Hessel et al., 2017]
t=0
Faster propagation of information but this is an on-policy
algorithm (i.e. actions are greedy w.r.t. current Q).
» Retrace & vtrace algorithms: multi-steps off-policy learning:

Q(s,a) < Y '(a...c) (rt +ymax Q(st,a’) — Q(st, at)), [Munos et al., 2016]
a
t>0

where ¢; = min (1, (ad]5t)



Distributional-RL

Introduction

Elements of theory

Neural net representations
Experiments on Atari
Conclusion



Intro to distributional RL

2,2 LUXURY Expected immediate reward
g G - TAX g
e P , E[R(z)] = — x (~2000) + -2 x (200) = 138.88
0| | S| = e
PRICE $400 PAY $75.00 PRICE $350 .

Random variable reward:

| —2000 w.p. 1/36
R(z) = { 200 w.p. 35/36




The return = sum of future discounted rewards

e I d‘“\r
o
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e Returns are often complex, multimodal
e Modelling the expected return hides this intrinsic randomness
e Model all possible returns!



The r.v. Return Z7(z,a) = 3,00 7' (2e, ay)|

ro—x,ap—a,7m

@ Y A =+10

Captures intrinsic randomness from:

e Immediate rewards
e Stochastic dynamics
e Possibly stochastic policy



The expected Return

The value function Q™ (x,a) = E[Z™ (x, a)]

Satisfies the Bellman equation
Q" (z,a) = E[r(z,a) +7Q" (2, a’)]

where ' ~ p(-|z,a) and a’ ~ w(-|z")




Distributional Bellman equation?

We would like to write a Bellman equation for the distributions:

7" (z,a) =2 R(xz,a) +~vZ7 (2, a")

where =’ ~ p(-|z,a) and a’ ~ 7(:|z")

Does this equation make sense?



Example

Reward = Bernoulli (%), discount factor y = %2

Bellman equation: |V = % 1 %V thus V = 1

Return [/ = Z 2_th Distribution?
£>0



Example

@R:{ 1 w.p. 1/2
Reward = Bernoulli (*2), discount factor y = %% 0 w.p. 1/2
Bellman equation: |V = % 1 %V thus V = 1 Q

Return Z:ZQ—th Distribution? ([0, 2])

t>0 : .
- (rewards = binary expansion of a real number)



Example

R =
Reward = Bernoulli (72), discount factor y = 72 @

Bellman equation: |V = % 1 %V thus V = 1 Q

Return 7 — Z 2~t*R, Distribution? L{([O, 2])

>0
Distributional Bellman equation: 7 — B(%) + %Z
o 1
In terms of distribution: n(z) = 5 (6(0) +6(1)) = 2n(22)

=n(22) +n(2(z — 1))



Distributional Bellman operator

"7z R(z,a) +vZ(x',a)
R(z,a) +~vZ(x',a)

Does there exists a fixed point?



Properties
Theorem [Rowland et al., 2018]

Tﬂ' is a contraction in Cramer metric

BxY) = /R (Fx (1) —Fy(t))2dt>1/ i

Theorem [Bellemare et al., 2017]

[ '™is a contraction in Wasserstein metric,

1/p

w(X,¥) = ([ (50 - ) ar)

(but not in KL neither in total variation)
Intuition: the size of the support shrinks.

Wasserstein




Distributional dynamic programming

For a given policy z, the distributional Bellman operator

T"Z(x,a) = R(xz,a) +vZ(z',a’)

Is a contraction mapping, thus has a unique fixed point, which is Zﬂ-

And the iterate 7 «— T 77 convergesto /7



The control case

Define the distributional Bellman optimality operator

TZ(x,a) L r(x,a) +vZ(x', w7 (x"))

where 2’ ~ p(:|z,a) and 7z (z') = argmax, E[Z(z’,a’)]

|s this operator a contraction mapping?



The control case

Define the distributional Bellman optimality operator

TZ(z,a) = r(z,a) +vZ (&', 7z (z"))
where &’ ~ p(-|z,a) and 7z (z’') = arg max, E[Z (2, a’)]

|s this operator a contraction mapping?

No! (it's not even continuous)



The dist. opt. Bellman operator is hot smooth

Consider distributions Ze

If ¢ > 0 we back up a bimodal distribution
If ¢ < 0 we back up a Diracin O

Thus the map Z, +— I'Z, is not continuous



Distributional Bellman optimality operator

Theorem [Bellemare et al., 2017]

AT~ AR
if the optimal policy is unique, then the iterates | @@J
Zk-+1 +— TZ; convergetoZ7r |

Intuition: The distributional Bellman operator preserves the mean, thus
the mean will converge to the optimal policy 7* eventually. If the policy
IS unique, we revert to iterating TW*, which is a contraction.



How to represent distributions?

e C(Categorical

e Inverse CDF for specific quantile levels

e Parametric inverse CDF




Categorical distributions

Distributions supported on a finite support  {21,..., 2, }

Discrete distribution {p;(x,a)}1<i<n

Z(iIZ, a) — sz'(ili, a’)dzz



Projected Distributional Bellman Update

Transition

vP" 7




Projected Distributional

PT('

Z
R+~P"Z 1
(©)

Bellman Update
Discount / Shrink

vP" 7

1L, T"Z I
—‘_lj (@)




Projected Distributional Bellman Update

Pz ~P"Z

(a)

+vP"Z

—_— >

(© —‘_lj (@)

Reward / Shift




Projected Distributional Bellman Update

P"Z

R+~P"Z

—
(©)

vP" 7

—

(b)

IL,T"Z

(d)

Fit / Project




Projected distributional Bellman operator

Let II,, be the projection onto the support (piecewise linear interpolation)

Theorem:

I1,,’T"is a contraction (in Cramer distance)

Intuition: Hn is a non-expansion (in Cramer distance).

Its fixed point /., can be computed by value iteration / <— 11,7 Z

Theorem:

03(Zn, Z7) <

1
(1 =)

2 v —

[Rowland et al., 2018]



Projected distributional Bellman operator

Policy iteration: iterate
Policy evaluation: 7, = 11, T7* Z,

Policy improvement: mx+1(z) = argmaxE[Z™ (z, a)]
a

Theorem:

Assume there is a unique optimal policy.
Zk converges to Zg , Whose greedy policy is optimal.




Distributional Q-learning

r
Observe transition samples  T'¢, Q¢ - |

Update:
Z($t, at) = (]_ — Ozt)Z(ZBt, (lt) -+ Oétnc(’l"t -+ ’YZ(Q?t_|_1, 7Tz(£lft_|_1))

Theorem

Under the same assumption as for Q-learning,
assume there is a unique optimal policy T [Rowland et al., 2018]
then Z — Z,,Z[* and the resulting policy is optimal.




DeepRL implementation



DQN [Mnih et al., 2013]

Actions




Categorical DON [Bellemare et al., 2017]

Actions

Q DeepMind



Categorical DQN

Probability

1.0

o
wn

0.0

=10

10



Randomness from future choices

Fire
Left+Fire
Right+Fire

— Right
l Left w=

l

Noop

Return
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C51 vs. DQN

C51 vs. HUMAN

DQN vs. HUMAN

50 100 150 200
Training Frames (millions)



Results on 57 games Atari 2600

Mean Median >human
DQN 228% 79% 24
Double DQN 307% 118% 33
Dueling 373% 151% 37
Prio. Duel. 592% 172% 39
C51 701% 178% 40




Categorical representation

Po Py Py -

3

Fixed support. learned probabilities|

1

,/x

iTTiT

\

L

O-1=

L Zyt IAZ ...



Quantile Regression Networks

Fixed [probabilities, learned [support

VA
/ \
/ \
T ,\ \
X - .




Inverse CDF learnt by Quantile Regression




|2-regression

loss = x

mean



I1-regression

: : loss = |x|

median



Ya-quantile-regression

1
1% for x > 0
§|4 loss = ;

— 7% for x < 0

A~

Ya-quantile




%-quantile-regression

3
—x, for x > 0
4
loss =
1

——x, f >0
4:13, or r >

/A .

¥a-quantile




many-quantiles-regression

W Tx, for x > 0
=\ loss =
(t — D)x, for x >0

many-quantiles



Quantile Regression = projection in Wasserstein!

(on a uniform grid)




QR distributional Bellman operator

Theorem:

HQRTW is a contraction (in Wasserstein)

Intuition: quantile regression = projection in Wasserstein

Reminder:

e I’ is a contraction (both in Cramer and Wasserstein)

e II,,’T" is a contraction (in Cramer)

[Dabney et al., 2018]












Quantile-Regression DQN

Mean Median
DQN 228% 79%
Double DQN 307% 118%
Dueling 373% 151%
Prio. Duel. 592% 172%
C51 701% 178%

QR-DQN 864 % 193%




Implicit Quantile Networks (IQN)

_A‘

T
Learn a parametric inverse CDF J
—1
T— F, (1) 0

Qr






ION

£\ r~B()

/N




Implicit Quantile Networks for TD

T~U|0,1], 2z=Z (x¢, a)
T ~U[0,1], 2 =Z (vi41,a")

5t =T+ ’YZ, — <
QR loss: p-(0) = (7 — [5<0)



ATVIEION

020508
SECTOR 14

20 2 24 26
Return

Return




Implicit Quantile Networks

Mean Median Human starts
DQN 228% 79% 68%
Prio. Duel. 592% 172% 128%
C51 701% 178% 116%
QR-DQN 864% 193% 153%
IQN 1019% 218% 162%

Almost as good as SOTA (Rainbow/Reactor) which combine prio/dueling/categoricall...



What is going on?

e \We learn these distributions, but in the end we only use their mean



What is going on?

e \We learn these distributions, but in the end we only use their mean
Non-trivial interactions between deep learning and RL.:

e Learn richer representations

o Same signal to learn from but more predictions

o More predictions — richer signal — better representations

o Can better disambiguate between different states (state aliasing)
e Density estimation instead of I12-regressions

o Express RL in terms of usual tools in deep learning

o Variance reduction



What is going on?

e \We learn these distributions, but in the end we only use their mean
Non-trivial interactions between deep learning and RL.:

e Learn richer representations

o Same signal to learn from but more predictions

o More predictions — richer signal — better representations

o Can better disambiguate between different states (state aliasing)
e Density estimation instead of 12-regressions

o Express RL in terms of usual tools in deep learning

o Variance reduction

Now maybe we could start using those distributions? (e.g, risk-sensitive
control, exploration, ...)



Algorithms

Algorithms: Evaluation

- Value-based  pgents:
- Policy-based DQN, A3C, Impala,
DDPG, TRPO, PPO, ...

Policy:
- Risk-neutral

- Risk seeking/averse

- Exploration: (optimism,
Thompson sampling)
Distribution over Environments

- Ret.u.rns Atari, DMLab30,

- Policies Control suite, Go,...

Ogtletr: . Distributional RL

petateialiasing Deep Learning impact:

- Se\é\/_ard Clli)p(;nIgL - Lower variance gradients
naiscounte - Richer representations

Convergence analysis
- Contraction property Representation of distributions
- Control case Distributional loss Categc_)rical _
- SGD friendly _Wasserstein - Quantile regression
- Mixture of Gaussians
- Cramer - Generative models

Theory

- other?

Deep Learning
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