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Self-concordant Barrier

Def: Let C' € R™ be an open nonempty convex set.
Let f: C' +— R be a 3 times continuously diff’able convex function.
A tfunction f is called self-concordant if there exists a constant

p > 0 such that

V2 () by )| < 207 (92 () [, )P,
Ve € C,VYh: x+h € C. (Wethen say that f is p-self-concordant).

Note that a self-concordant function is always well approximated by
the quadratic model because the error of such an approximation can

be bounded by the 3/2 power of V2f(z)[h, h].
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Self-concordant Barrier

Lemma The barrier function — log x is self-concordant on R .

Proof:
Consider f(x) = —logx and compute

f/(:c) = —:1:_1, f”(:z:) — 2 2 and fm(:c) — Qg3
and check that the self-concordance condition is satisfied for p = 1.

Lemma
The barrier function 1/x%, with o € (0, 00) is not self-concordant
on R_|_.

Lemma
The barrier function e1/% is not self-concordant on Ry

Use self-concordant barriers in optimization
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Second-Order Cone Programming (SOCP)
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SOCP: Second-Order Cone Programming

Generalization of QP.
Deals with conic constraints.

Solved with IPMs.

Numerous applications:

quadratically constrained quadratic programs,

problems involving sums and maxima/minima of norms,
SOC-representable functions and sets,

matrix-fractional problems,

problems with hiperbolic constraints,

robust LP/QP,
robust least-squares.
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SOCP: Second-Order Cone Programming

This lecture is based on three papers:

e M. Lobo, L. Vandenberghe, S. Boyd and H. Lebret,
Applications of Second-Order Cone Programming, Linear Al-
gebra and its Appls 284 (1998) pp. 193-228.

e .. Vandenberghe and S. Boyd, Semidefinite Program-
ming, SIAM Review 38 (1996) pp. 49-95.

e EE.D. Andersen, C. Roos and T. Terlaky,
On Implementing a Primal-Dual IPM for Conic Optimization,
Mathematical Programming 95 (2003) pp. 249-273.

Paris. January 2018 7



J. Gondzio 1L9&10: SOCP and SDP

Cones: Background

Def. A set K € R" is called a cone if for any x € K and for any
A>0 \r e K.

Convex Cone:

Example:

n
K:{xERn:x%ZZx?,xle}.
1=2
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Example: Three Cones
R_|_:

R+:{£C€RZCCZO}.

Quadratic Cone:

Rotated Quadratic Cone:

n
Ky={xeR": 2x129 > Zx?, ri,x9 > 0}.

Paris. January 2018 9



J. Gondzio 1L9&10: SOCP and SDP

Matrix Representation of Cones

Each of the three most common cones has a matrix representation
using orthogonal matrices T" and/or Q).

(Orthogonal matrix: Q1 Q = I).

Quadratic Cone K. Define

Q = ~1

and write:
Kq:{xERn:xTQa:ZO, ry > 0}.

FExample: x% > x% + x% ol
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Matrix Representation of Cones (cont’d)

Rotated Quadratic Cone K,. Define

0 1
10
0 = —1

—1

and write:

Ky={xeR": 1Or >0, 21,20 > 0}.

Example:  2x1x9 > ZC% + CISZ + -+ x%
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Matrix Representation of Cones (cont’d)

Consider a linear transformation 7 : R? — R?:

I
V2 V2

[t corresponds to a rotation by 7 /4. Indeed, write:

i)=nl)

that is

to get
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Matrix Representation of Cones (cont’d)

Now, define

S-Sl
S-Sl

1

and observe that the rotated quadratic cone satisfies

Tze K, it ze€lkK,.
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Example: Conic constraint

Consider a constraint:

1
§H:1:'H2 +alz <.

Observe that g(x) = %SCTSC +a’ z—bis convex hence the constraint
defines a convex set.
The constraint may be reformulated as an intersection of an affine
(linear) constraint and a quadratic one:
alex+z=10
y =1
|z|* < 2yz, y,2 > 0.
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Example: Conic constraint (cont’d)

Now, substitute:

U+ v U — v
Z: , f—
vz TR
to get
aTa?+u+v = b

V2
Uu—v = \/5

HxH2+02 < u?.
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Dual Cone
Let K € R" be a cone.
Def. The set: . = {seR”:STCCZO, Ve € K}

15 called the dual cone.
Def. The set: KP — {S c Rn : STQZ' S O7 Vo c K}
is called the polar cone (Fig below).

A

Kpg
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Conic Optimization

Consider an optimization problem:
T

min c'x
st. Ax =0,
r e K,

where K 1s a convex closed cone.

We assume that
K=K'xK?x...x KF

that is, cone K is a product of several individual cones each of which
is one of the three cones defined earlier.
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Primal and Dual SOCPs
Consider a primal SOCP

min cly
s.t. Ax =0,
x e K,

where K 1s a convex closed cone.

The associated dual SOCP

max bly
st. Aly+s=c¢,
s € K.

Weak Duality:
If (z,y,s) is a primal-dual feasible solution, then

' — bTy = zls > 0.

Paris. January 2018
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IPM for Conic Optimization

Conic Optimization problems can be solved in polynomial time with
[PMs.

Consider a quadratic cone
Ko={(z,t):z e R" t e R, 2> |z||?, t >0},

and define the (convex) logarithmic barrier function for this
cone f: R"—R

fa,t) = { —In( — ||]|?) if ||| < ¢

+00 otherwise.
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Logarithmic Barrier Fctn for Quadratic Cone

[ts derivatives are given by:

2 T
VHet) = | 5|
and
2 (t?—alz)[+2za!  —2ta
V2f(x,t)= .
fla,t) <t2—ngaj)2 otz 24l
Theorem:

f(x,t) is a self-concordant barrier on K.

Exercise: Prove 1t in case n = 2.
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Examples of SOCP

LP, QP use the cone R (positive orthant).

SDP uses the cone SR!™" (symmetric positive definite matrices).

SOCP uses two quadratic cones Ky and K.
Quadratically Constrained Quadratic Programming (QCQP) is a
particular example of SOCP.

Typical trick to replace a quadratic constraint as a conic one!!!
Consider a constraint:

1
§H:z:H2 +alz <b.

Rewrite 1t as:

H:z:H2 1 0? < u?.
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QCQP and SOCP

Let P; € R ™ be a symmetric positive definite matrix and ¢; € R™.
Define a quadratic function f;(z) = ! Pz + QQZTx + r; and an
associated ellipsoid & = {z | f;(z) < 0}.

The set of constraints f;(x) < 0,4 = 1,2,...,m defines an inter-
section of (convex) ellipsoids and of course defines a convex set.

The optimization problem

min  fo(z)
st. filx) <0,i=1,2,...,m,

is an example of quadratically constrained quadratic program (QCQP).

QCQP can be reformulated as SOCP.
QCQP can be also reformulated as SDP.
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SOCP Example: Linear Regression

The least squares solution of a linear system of equations
Ax = b is the solution of the following optimization problem

min  ||Ax — b

i
and 1t can be recast as:
min t
S.1. |Ax — b|| <t
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Ellipsoids: Background
Sphere with (0,0) centre:
:1:‘% + x% <1
Ellipsoid, centre at (0, 0), radii a, b:
{3
a? " b?
Ellipsoid, centre at (p, q), radii a, b:

@1;m2+@a—®2

<1

o =

General ellipsoid:
(2 —z0)" H (z — 20) < 1,

where H is a positive definite matrix. Let H = LLL. Then we can
rewrite the ellipsoid as

| L (z — )| < 1.
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Ellipsoids are everywhere

Obélix Gérard Depardieu as Obélix
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SOCP Example: Robust LP

Consider an LP:
min 'y
S.t. a;-ra? <bj,1=12,...,m,
and assume that the values of a; are uncertain.
Suppose that a; € &;, 1 =1,2,...,m, where &; are given ellipsoids
& ={a;+ Pu: [ju]| <1},

where P; is a symmetric positive definite matrix.
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SOCP Example: Robust LP (cont’d)

Observe that
a;-rx <b;Va; €& ift d;x + HPZZEH < b,,

because for any x € R"

max{a’ z:a € &} = alz + max{u! Pz : |ul| <1}

= a'x + || Pz||.
Hence robust LP formulated as SOCP is:
min cly

st aix+||Px| <b;,i=1,2,...,m.
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SOCP Example: Robust QP

Consider a QP with “uncertain” objective:

min max 2! Pz + 2qT:z: +r
r Pe&

subject to linear constraints. “Uncertain” symmetric positive defi-
nite matrix P belongs to the ellipsoid:

m
Pe&={Py+Y Pu;:|ul| <1},
1=1
where P; are symmetric positive semidefinite matrices.
The definition of ellipsoid £ implies that

m

max 2! Pz = x' Pyr + max (:UTPZ-:U)uZ'.
Pe€ Jull<1 4=
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SOCP Example: Robust QP (cont’d)

From Cauchy-Schwartz inequality:

- - 1/2
@' Payu < [ (@'Pa)? | |
1=1 1=1
hence
1/2
m m
max > (2! Px)u; < Z(xTPZ-x)Z
Jull<1 3= i=1

We get a reformulation of robust QP:

1/2
min z!Pyx + ( 7-11(513TP7;:1:)2) +2¢ 'z + 7
X

[/
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SOCP Example: Robust QP (cont’d)

This problem can be written as:

min t+v+2qT:z:+7“
st. ||zl <t, a'Pyxr <w, 2Pz <z,i=1,...,m.

SOCP reformulation:

min t+v+2¢lx+r
5.5. 2]l <4,
1P, 2~ D < %+ 1, 2 >0,i=1.m,
1/2

H(QP() r,o—1)| <v+1, v>0.
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Semidefinite Programming (SDP)
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SDP: Semidefinite Programming

e Generalization of LP.

e Deals with symmetric positive semidefinite
matrices (Linear Matrix Inequalities, LMI).

e Solved with IPMs.

e Numerous applications:
cigenvalue optimization problems,
quasl-convex programs,
convex quadratically constrained optimization,
robust mathematical programming,
matrix norm minimization,
combinatorial optimization (provides good relaxations),
control theory,
statistics.

Paris. January 2018
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SDP: Semidefinite Programming

This lecture is based on two survey papers:

e .. Vandenberghe and S. Boyd,
Semidefinite Programming,

STAM Review 38 (1996) pp. 49-95.

e M.J. Todd.
Semidefinite Optimization,
Acta Numerica 10 (2001) pp. 515-560.
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SDP: Background

Def. A matrix H € R™™ is positive semidefinite if 2 Hx > 0
for any x # 0. We write H > 0.

Def. A matrix H € R™ " is positive definite if 2 Hx > 0 for any
x # 0. We write H > 0.

We denote with SR™ "™ (SRI™") the set of symmetric and sym-
metric positive semidefinite matrices.

Let U,V € SR™ "™ We define the inner product between U and
Vas UeV = trace(UTV), where trace(H) = S hy;.

The associated norm is the Frobenius norm,

written ||U||p = (U o U)L/2 (or just |U]).
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Linear Matrix Inequalities

Def. Linear Matrix Inequalities
Let U,V € SR™™ "

We write U =V it U—-V = 0.
We write U =V it U -V = 0.
We write U <V it U—-V <0.

Wewrite U <V ift U—-V <0.

Paris. January 2018
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Properties

1. If PeR™™and Q € R" ™ then trace(PQ) = trace(QP).

2. IfU,V € SR and Q € R™ ™ is orthogonal (i.e. Q1'Q = 1),
then UeV =(QTUQ) e (QTVQ).

More generally, if P is nonsingular, then

UeV = (PUPLYe (P~ TV P,

3. Every U € SR™ " can be written as U= QAQL, where Q is
orthogonal and A is diagonal. Then U(Q) = QA.

In other words the columns of () are the eigenvectors, and the diag-
onal entries of A the corresponding eigenvalues of U.

4. TfU € SR™™ and U = QAQ!, then
trace(U) = trace(\) = ) . A;.
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Properties (cont’d)
5. For Ue SR"™*™ the following are equivalent:
(i) U>=0(U = 0)
(i) 21Uz >0,V eR" (z1Uzx>0,Y0 # zeRM).
(iii) If U = QAQT, then A =0 (A > 0).
(iv) U = PTP for some matrix P (U = PP for some square

nonsingular matrix P).

6. Every U € SR™ ™ has a square root Ul/2 e SR*n

Proof: From Property 5 (ii) we get U = QAQL.

Take UL/2 = Q/\l/ 207 where AY2 is the diagonal matrix whose
diagonal contains the (nonnegative) square roots of the eigenvalues

of U, and verify that Ul/2yl/2 =
Paris. January 2018 37
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Properties (cont’d)
7. Suppose

)

B C

where A and C' are symmetric and A > 0.

Then U =0 (U =0) iff C—BA™ BT =0(~0)

The matrix C — BA~1 B! is called the Schur complement of A in
U.

Proof: follows easily from the factorization:

A B
B C

T
U:[AB

I A-lpT
0 I

B I 0]TA 0
—BAL Il 0 c=BAIBY

8. IfU € SR™ ™ and zz € R"™, then 21Uz = U e zz! .
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Primal-Dual Pair of SDPs

Primal Dual
min C e X max bTy
st. A;,e X =0b;, i=1.m s.t. ;-11 y; A;+S = C,
X = 0; S =0,

where A; € SR™™, be R™, C € SR"™ "™ are given;
and X, 5 € SR " y € R"™ are the variables.
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Theorem: Weak Duality in SDP
[f X is feasible in the primal and (y, S) in the dual, then

C’oX—Iiy:XoSZO.

Proot: CoX—bTy = (ZyiAi—i—S)OX—bTy
1=1
m
= Z(AZOX)yZ+SoX—bTy
1=1
= SeX=XeS

Further, since X is positive semidefinite, it has a square root X 1/2
(Property 6), and so

XeS = trace(XS):trace(Xl/ZXl/QS):trace(Xl/QSXl/Z) > 0.

We use Property 1 and the fact that S and X /2 are positive

semidefinite, hence X /29 x1/2 g positive semidefinite and its trace
1S nonnegative.
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SDP Example 1: Minimize the Max. Eigenvalue

We wish to choose z € R¥ to minimize the maximum eigenvalue of
Alx)=Ap+x1A1+. . 42 AL, where A; € R and A; = A;-r.
Observe that

)\max(A<37)> <1

if and only if
Amaz(A(x) —tI) <0 <= A\pin(tl — A(x)) > 0.

This holds iff
tI — A(x) = 0.
So we get the SDP in the dual form:
max —t

s.t. tl — A(x) = 0,

where the variable is y := (¢, x).
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SDP Example 2: Logarithmic Chebyshev Approx.

Suppose we wish to solve Ax =~ b approximately,
where A = [a;...ay]l € R™% and b e R™
In Chebyshev approximation we minimize the £so-norm of the resid-

ual, 1.e., we solve -
min max |a;  — b;|.
(4

This can be cast as an LP, with x and an auxiliary variable t:

min ¢

st. —t < a;-rx —b; <t, 1=1.n.
In some applications b; has a dimension of a power of intensity, and
it is typically expressed on a logarithmic scale. In such cases the
more natural optimization problem is

min max | 1og(a?$> — log(b;)]
[

T

1
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Logarithmic Chebyshev Approximation (cont’d)

The logarithmic Chebyshev approximation problem can be cast as
a semidefinite program. To see this, note that

Hog(a?x)—log(bi)\ = log max(a;-rx/bi, bi/a;-rat).

Hence the problem can be rewritten as the following (nonlinear)
program
min ¢

st. 1/t < a;-ra?/bz- <t, i=1.n.

or,
min t
_t—a;-raz/bz- 0 0]
S.t. 0 a;x/bil =0, i=1..n
0 It

which is a semidefinite program.
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Logarithmic Barrier Function

Define the logarithmic barrier function for the cone SRfﬁxn
of positive definite matrices.

f: SR R

—Indet X 1if X =0
F(X) = { +00 otherwise.

Let us evaluate its derivatives.
Let X = 0, H € SR™ ™. Then

F(X +aH) = —Indet[X (I + X H)
— —Indet X — In(1 + atrace(X " H) + O(a?))
= f(X)—aX e H+0(”),

so that f/(X)=—X"land Df(X)[H] = -X"1eH.
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Logarithmic Barrier Function (cont’d)
Similarly

F (X +aH) = —[X(I+aX 'H)!
= —[I—aX'H+0(?) X!
= (X)) +aX'THX 7+ 02,

so that f/(X)[H] = X 'HX !

and D?f(X)[H,G]= X" 'THX e G.

Finally,
f"X)VH,G =-X"1THXlegx ' - Xx"lex—gx—1
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Logarithmic Barrier Function (cont’d)

Theorem: f(X)= —Indet X is a convex barrier for SR!™".

Proof: Define ¢(a) = f(X+aH). We know that f is convex if,

for every X € SR!™™ and every H € SR ", ¢(«) is convex in
Q.
Consider a set of « such that X +aH = 0. On this set

¢"(a)=D*fX)H, H =X 'HX "o H,
where X = X+aH.
Since X >0, so is V=X"1/2 (Property 6), and
¢ () = VHV? o H = trace(V?HV?H)
— trace((VHV)(VHV)) = |[VHV|% > 0.

S0 ¢ is convex.
When X > 0 approaches a singular matrix, its determinant ap-
proaches zero and f(X) — oo.
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Simplified Notation

Define A : SR™* "™ —» R™
AX = (A; 0 X)) € R™,

Note that, for any X € SR"*" and y € R™,

m

(AX) = (A0 X)y; = () _yid) e X,
i—1 i=1

so the adjoint of A is given by
m
Ay =N yiA;.
1=1

A* is a mapping from R to SR™*".

Paris. January 2018
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Simplified Notation (cont’d)

With this notation the primal SDP becomes

min C' e X
S.t. AX
X

where X € SR™"* "™ is the variable.

b,
0,

Y]

The associated dual SDP writes

where y € R™ and S € SR™*™ are the variables.
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Solving SDPs with IPMs
Replace the primal SDP

min C' e X
st.  AX = b,
X =0,

with the primal barrier SDP

min C'e X + uf(X)
s.t. AX =0,

(with a barrier parameter p > 0).
Formulate the Lagrangian

with y € R, and write the first order conditions (FOC) for a
stationary point of L:

C+uf(X)— A%y =0.
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Solving SDPs with IPMs (cont’d)

Use f(X) = —Indet(X) and f/(X)=-X"1
Therefore the FOC become:

C—uX1— A*y=0.

Denote S = uX 1, ie., XS = ul.
For a positive definite matrix X its inverse is also positive definite.

The FOC now become:

AX = b,
A*y+ S = C,
XS = ul,

with X = 0 and S = 0.
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Newton direction

We derive the Newton direction for the system:

AX = b,
A*y+ S = C,
—uX"t+8 =0.

Recall that the variables in FOC are (X, y,.5),
where X, S € SR and y € R™.

Hence we look for a direction (AX, Ay, AS),
where AX,AS € SRIV™ and Ay € R™.

Paris. January 2018
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Newton direction (cont’d)

The differentiation in the above system is a nontrivial operation.
The direction is the solution of the system:

A 0 0] TAXT] T[&°
0 AT |. Ay | =& | .
_,u(X_lG)X_l) 0 7 AS | [

We introduce a useful notation P ©® () for n x n matrices P and ().
This is an operator from SR™*"™ to SR"*" defined by

(POQ)U = %(PUQT L QuPT)
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Logarithmic Barrier Function

for the cone SR!™™ of positive definite matrices, f : SRI™" — R

—Indet X if X =0
F(X) = { +00 otherwise.

LP:  Replace x >0 with —p) 7 Inz;.
SDP: Replace X =0 with —u 5 1 InA; = —pIn(JTj=; Aj).

Nesterov and Nemirovskii,

Intertor Point Polynomaial Algorithms in Convex Programming:
Theory and Applications, STAM, Philadelphia, 1994.

Lemma  The barrier function f(X) isself-concordant on SR} *".
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Interior Point Methods:

e Logarithmic barrier functions for SDP and SOCP
Self-concordant barriers
— polynomial complexity (predictable behaviour)

e Unified view of optimization

— from LP via QP to NLP, SDP, SOCP
e Lifficiency
— good for SOCP

— problematic for SDP because solving the problem of size
n involves linear algebra operations in dimension n?

§

— and this requires n"~ flops!

Use IPMs in your research!
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