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Self-concordant Barrier

Def: Let C ∈ Rn be an open nonempty convex set.

Let f : C 7→ R be a 3 times continuously diff’able convex function.

A function f is called self-concordant if there exists a constant

p > 0 such that

|∇3f(x)[h, h, h]| ≤ 2p−1/2(∇2f(x)[h, h])3/2,

∀x ∈ C, ∀h : x+h ∈ C. (We then say that f is p-self-concordant).

Note that a self-concordant function is always well approximated by
the quadratic model because the error of such an approximation can
be bounded by the 3/2 power of ∇2f (x)[h, h].
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Self-concordant Barrier

Lemma The barrier function − log x is self-concordant on R+.

Proof:
Consider f (x) = − log x and compute

f
′
(x) = −x−1, f

′′
(x) = x−2 and f

′′′
(x) = −2x−3

and check that the self-concordance condition is satisfied for p = 1.

Lemma
The barrier function 1/xα, with α ∈ (0,∞) is not self-concordant
on R+.

Lemma
The barrier function e1/x is not self-concordant on R+.

Use self-concordant barriers in optimization
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Second-Order Cone Programming (SOCP)
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SOCP: Second-Order Cone Programming

• Generalization of QP.

• Deals with conic constraints.

• Solved with IPMs.

• Numerous applications:
quadratically constrained quadratic programs,
problems involving sums and maxima/minima of norms,
SOC-representable functions and sets,
matrix-fractional problems,
problems with hiperbolic constraints,
robust LP/QP,
robust least-squares.
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SOCP: Second-Order Cone Programming

This lecture is based on three papers:

• M. Lobo, L. Vandenberghe, S. Boyd and H. Lebret,
Applications of Second-Order Cone Programming, Linear Al-
gebra and its Appls 284 (1998) pp. 193-228.

• L. Vandenberghe and S. Boyd, Semidefinite Program-
ming, SIAM Review 38 (1996) pp. 49-95.

• E.D. Andersen, C. Roos and T. Terlaky,
On Implementing a Primal-Dual IPM for Conic Optimization,
Mathematical Programming 95 (2003) pp. 249-273.
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Cones: Background
Def. A set K ∈ Rn is called a cone if for any x ∈ K and for any
λ ≥ 0, λx ∈ K.

Convex Cone:
x

x

1

2

x3

Example:

K = {x ∈ Rn : x21 ≥
n
∑

j=2

x2j, x1 ≥ 0}.
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Example: Three Cones

R+:

R+ = {x ∈ R : x ≥ 0}.

Quadratic Cone:

Kq = {x ∈ Rn : x21 ≥
n
∑

j=2

x2j, x1 ≥ 0}.

Rotated Quadratic Cone:

Kr = {x ∈ Rn : 2x1x2 ≥
n
∑

j=3

x2j, x1, x2 ≥ 0}.
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Matrix Representation of Cones

Each of the three most common cones has a matrix representation
using orthogonal matrices T and/or Q.
(Orthogonal matrix: QTQ = I).

Quadratic Cone Kq. Define

Q =











1
−1

−1
. . .

−1











and write:

Kq = {x ∈ Rn : xTQx ≥ 0, x1 ≥ 0}.

Example: x21 ≥ x22 + x23 + · · · + x2n.
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Matrix Representation of Cones (cont’d)

Rotated Quadratic Cone Kr. Define

Q =











0 1
1 0

−1
. . .

−1











and write:

Kr = {x ∈ Rn : xTQx ≥ 0, x1, x2 ≥ 0}.

Example: 2x1x2 ≥ x23 + x24 + · · · + x2n.
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Matrix Representation of Cones (cont’d)

Consider a linear transformation T : R2 7→ R2:

T2 =





1√
2

1√
2

1√
2
− 1√

2



 .

It corresponds to a rotation by π/4. Indeed, write:
[

z
y

]

= T2

[

u
v

]

that is
z =

u + v√
2
, y =

u− v√
2

to get
2yz = u2 − v2.
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Matrix Representation of Cones (cont’d)

Now, define

T =















1√
2

1√
2

1√
2
− 1√

2
1
. . .

1















and observe that the rotated quadratic cone satisfies

Tx ∈ Kr iff x ∈ Kq.
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Example: Conic constraint

Consider a constraint:

1

2
‖x‖2 + aTx ≤ b.

Observe that g(x) = 1
2x

Tx+aTx− b is convex hence the constraint
defines a convex set.
The constraint may be reformulated as an intersection of an affine
(linear) constraint and a quadratic one:

aTx + z = b
y = 1

‖x‖2 ≤ 2yz, y, z ≥ 0.
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Example: Conic constraint (cont’d)

Now, substitute:

z =
u + v√

2
, y =

u− v√
2

to get

aTx +
u + v√

2
= b

u− v =
√
2

‖x‖2 + v2 ≤ u2.
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Dual Cone
Let K ∈ Rn be a cone.
Def. The set: K∗ := {s ∈ Rn : sTx ≥ 0, ∀x ∈ K}
is called the dual cone.
Def. The set: KP := {s ∈ Rn : sTx ≤ 0, ∀x ∈ K}
is called the polar cone (Fig below).

K

K P
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Conic Optimization

Consider an optimization problem:

min cTx
s.t. Ax = b,

x ∈ K,

where K is a convex closed cone.

We assume that

K = K1 ×K2 × · · · ×Kk,

that is, coneK is a product of several individual cones each of which
is one of the three cones defined earlier.
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Primal and Dual SOCPs
Consider a primal SOCP

min cTx
s.t. Ax = b,

x ∈ K,

where K is a convex closed cone.

The associated dual SOCP

max bTy

s.t. ATy + s = c,
s ∈ K∗.

Weak Duality:
If (x, y, s) is a primal-dual feasible solution, then

cTx− bTy = xTs ≥ 0.
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IPM for Conic Optimization

Conic Optimization problems can be solved in polynomial time with
IPMs.

Consider a quadratic cone

Kq = {(x, t) : x ∈ Rn−1, t ∈ R, t2 ≥ ‖x‖2, t ≥ 0},
and define the (convex) logarithmic barrier function for this
cone f : Rn 7→ R

f (x, t) =

{

− ln(t2 − ‖x‖2) if ‖x‖ < t
+∞ otherwise.
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Logarithmic Barrier Fctn for Quadratic Cone

Its derivatives are given by:

∇f (x, t) =
2

t2 − xTx

[

x
−t

]

,

and

∇2f (x, t)=
2

(t2−xTx)2

[

(t2−xTx)I+2xxT −2tx
−2txT t2+xTx

]

.

Theorem:
f (x, t) is a self-concordant barrier on Kq.

Exercise: Prove it in case n = 2.
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Examples of SOCP

LP, QP use the cone R+ (positive orthant).

SDP uses the cone SRn×n
+ (symmetric positive definite matrices).

SOCP uses two quadratic cones Kq and Kr.
Quadratically Constrained Quadratic Programming (QCQP) is a
particular example of SOCP.

Typical trick to replace a quadratic constraint as a conic one!!!
Consider a constraint:

1

2
‖x‖2 + aTx ≤ b.

Rewrite it as:

‖x‖2 + v2 ≤ u2.
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QCQP and SOCP

Let Pi∈Rn×n be a symmetric positive definite matrix and qi ∈ Rn.
Define a quadratic function fi(x) = xTPi x + 2qTi x + ri and an
associated ellipsoid Ei = {x | fi(x) ≤ 0}.
The set of constraints fi(x) ≤ 0, i = 1, 2, . . . ,m defines an inter-
section of (convex) ellipsoids and of course defines a convex set.

The optimization problem

min f0(x)
s.t. fi(x) ≤ 0, i = 1, 2, . . . ,m,

is an example of quadratically constrained quadratic program (QCQP).

QCQP can be reformulated as SOCP.

QCQP can be also reformulated as SDP.
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SOCP Example: Linear Regression

The least squares solution of a linear system of equations
Ax = b is the solution of the following optimization problem

min
x

‖Ax− b‖

and it can be recast as:

min t

s.t. ‖Ax− b‖ ≤ t.
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Ellipsoids: Background
Sphere with (0, 0) centre:

x21 + x22 ≤ 1

Ellipsoid, centre at (0, 0), radii a, b:

x21
a2

+
x22
b2

≤ 1

Ellipsoid, centre at (p, q), radii a, b:

(x1 − p)2

a2
+
(x2 − q)2

b2
≤ 1

General ellipsoid:

(x− x0)
TH (x− x0) ≤ 1,

where H is a positive definite matrix. Let H = LLT . Then we can
rewrite the ellipsoid as

‖LT (x− x0)‖ ≤ 1.
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Ellipsoids are everywhere

Obélix Gérard Depardieu as Obélix
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SOCP Example: Robust LP

Consider an LP:

min cTx
s.t. aTi x ≤ bi, i = 1, 2, . . . ,m,

and assume that the values of ai are uncertain.

Suppose that ai ∈ Ei, i = 1, 2, . . . ,m, where Ei are given ellipsoids

Ei = {āi + Piu : ‖u‖ ≤ 1},
where Pi is a symmetric positive definite matrix.
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SOCP Example: Robust LP (cont’d)

Observe that

aTi x ≤ bi ∀ai ∈ Ei iff āTi x + ‖Pix‖ ≤ bi,

because for any x ∈ Rn

max{aTx : a ∈ E} = āTx + max{uTPx : ‖u‖ ≤ 1}
= āTx + ‖Px‖.

Hence robust LP formulated as SOCP is:

min cTx
s.t. āTi x + ‖Pix‖ ≤ bi, i = 1, 2, . . . ,m.
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SOCP Example: Robust QP

Consider a QP with “uncertain” objective:

min
x

max
P∈E

xTPx + 2qTx + r

subject to linear constraints. “Uncertain” symmetric positive defi-
nite matrix P belongs to the ellipsoid:

P ∈ E = {P0 +
m
∑

i=1

Piui : ‖u‖ ≤ 1},

where Pi are symmetric positive semidefinite matrices.
The definition of ellipsoid E implies that

max
P∈E

xTPx = xTP0x + max
‖u‖≤1

m
∑

i=1

(xTPix)ui.
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SOCP Example: Robust QP (cont’d)

From Cauchy-Schwartz inequality:

m
∑

i=1

(xTPix)ui ≤





m
∑

i=1

(xTPix)
2





1/2

‖u‖

hence

max
‖u‖≤1

m
∑

i=1

(xTPix)ui ≤





m
∑

i=1

(xTPix)
2





1/2

.

We get a reformulation of robust QP:

min
x

xTP0x +
(

∑m
i=1(x

TPix)
2
)1/2

+ 2qTx + r.
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SOCP Example: Robust QP (cont’d)

This problem can be written as:

min t + v + 2qTx + r

s.t. ‖z‖ ≤ t, xTP0x ≤ v, xTPix ≤ zi, i = 1, . . . ,m.

SOCP reformulation:

min t + v + 2qTx + r
s.t. ‖z‖ ≤ t,

‖(2P 1/2
i x, zi − 1)‖ ≤ zi + 1, zi ≥ 0, i = 1..m,

‖(2P 1/2
0 x, v − 1)‖ ≤ v + 1, v ≥ 0.
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Semidefinite Programming (SDP)
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SDP: Semidefinite Programming

• Generalization of LP.

• Deals with symmetric positive semidefinite
matrices (Linear Matrix Inequalities, LMI).

• Solved with IPMs.

• Numerous applications:
eigenvalue optimization problems,
quasi-convex programs,
convex quadratically constrained optimization,
robust mathematical programming,
matrix norm minimization,
combinatorial optimization (provides good relaxations),
control theory,
statistics.
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SDP: Semidefinite Programming

This lecture is based on two survey papers:

• L. Vandenberghe and S. Boyd,
Semidefinite Programming,
SIAM Review 38 (1996) pp. 49-95.

• M.J. Todd,
Semidefinite Optimization,
Acta Numerica 10 (2001) pp. 515-560.
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SDP: Background

Def. A matrix H ∈ Rn×n is positive semidefinite if xTHx ≥ 0
for any x 6= 0. We write H � 0.

Def. A matrix H ∈ Rn×n is positive definite if xTHx > 0 for any
x 6= 0. We write H ≻ 0.

We denote with SRn×n (SRn×n
+ ) the set of symmetric and sym-

metric positive semidefinite matrices.

Let U, V ∈ SRn×n. We define the inner product between U and
V as U • V = trace(UTV ), where trace(H) =

∑n
i=1 hii.

The associated norm is the Frobenius norm,
written ‖U‖F = (U • U)1/2 (or just ‖U‖).
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Linear Matrix Inequalities

Def. Linear Matrix Inequalities

Let U, V ∈ SRn×n.

We write U � V iff U − V � 0.

We write U ≻ V iff U − V ≻ 0.

We write U � V iff U − V � 0.

We write U ≺ V iff U − V ≺ 0.
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Properties

1. If P ∈ Rm×n and Q ∈ Rn×m, then trace(PQ) = trace(QP ).

2. If U, V ∈ SRn×n, andQ ∈ Rn×n is orthogonal (i.e. QTQ = I),
then U • V = (QTUQ) • (QTV Q).
More generally, if P is nonsingular, then
U • V = (PUPT ) • (P−TV P−1).

3. Every U ∈ SRn×n can be written as U= QΛQT, where Q is
orthogonal and Λ is diagonal. Then UQ = QΛ.
In other words the columns of Q are the eigenvectors, and the diag-
onal entries of Λ the corresponding eigenvalues of U .

4. If U ∈ SRn×n and U = QΛQT , then
trace(U) = trace(Λ) =

∑

i λi.
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Properties (cont’d)

5. For U∈SRn×n, the following are equivalent:

(i) U � 0 (U ≻ 0)

(ii) xTUx ≥ 0,∀x∈Rn (xTUx>0,∀ 0 6= x∈Rn).

(iii) If U = QΛQT , then Λ � 0 (Λ ≻ 0).

(iv) U = PTP for some matrix P (U = PTP for some square
nonsingular matrix P ).

6. Every U ∈ SRn×n has a square root U1/2 ∈ SRn×n.
Proof: From Property 5 (ii) we get U = QΛQT .

Take U1/2 = QΛ1/2QT , where Λ1/2 is the diagonal matrix whose
diagonal contains the (nonnegative) square roots of the eigenvalues

of U , and verify that U1/2U1/2 = U .
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Properties (cont’d)

7. Suppose

U =

[

A BT

B C

]

,

where A and C are symmetric and A ≻ 0.
Then U � 0 (U ≻ 0) iff C − BA−1BT � 0 (≻ 0).
The matrix C −BA−1BT is called the Schur complement of A in
U .

Proof: follows easily from the factorization:
[

A BT

B C

]

=

[

I 0
BA−1 I

] [

A 0
0 C − BA−1BT

] [

I A−1BT

0 I

]

.

8. If U ∈ SRn×n and x ∈ Rn, then xTUx = U • xxT .
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Primal-Dual Pair of SDPs

Primal Dual

min C •X max bTy

s.t. Ai •X = bi, i = 1..m s.t.
∑m

i=1 yiAi+S = C,

X � 0; S � 0,

where Ai ∈ SRn×n, b ∈ Rm, C ∈ SRn×n are given;
and X,S ∈ SRn×n, y ∈ Rm are the variables.
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Theorem: Weak Duality in SDP
If X is feasible in the primal and (y, S) in the dual, then

C •X − bTy = X • S ≥ 0.

Proof: C •X − bTy = (

m
∑

i=1

yiAi + S) •X − bTy

=

m
∑

i=1

(Ai •X) yi + S •X − bTy

= S •X = X • S.
Further, since X is positive semidefinite, it has a square root X1/2

(Property 6), and so

X • S = trace(XS)= trace(X1/2X1/2S)= trace(X1/2SX1/2) ≥ 0.

We use Property 1 and the fact that S and X1/2 are positive
semidefinite, henceX1/2SX1/2 is positive semidefinite and its trace
is nonnegative.
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SDP Example 1: Minimize the Max. Eigenvalue

We wish to choose x ∈ Rk to minimize the maximum eigenvalue of
A(x)=A0+x1A1+. . .+xkAk, where Ai ∈ Rn×n and Ai = AT

i .
Observe that

λmax(A(x)) ≤ t

if and only if

λmax(A(x)− tI) ≤ 0 ⇐⇒ λmin(tI − A(x)) ≥ 0.

This holds iff
tI − A(x) � 0.

So we get the SDP in the dual form:

max −t

s.t. tI − A(x) � 0,

where the variable is y := (t, x).
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SDP Example 2: Logarithmic Chebyshev Approx.

Suppose we wish to solve Ax ≈ b approximately,
where A = [a1 . . . an]

T ∈ Rn×k and b ∈ Rn.
In Chebyshev approximation we minimize the ℓ∞-norm of the resid-
ual, i.e., we solve

min max
i

|aTi x− bi|.

This can be cast as an LP, with x and an auxiliary variable t:
min t
s.t. −t ≤ aTi x− bi ≤ t, i = 1..n.

In some applications bi has a dimension of a power of intensity, and
it is typically expressed on a logarithmic scale. In such cases the
more natural optimization problem is

min max
i

| log(aTi x)− log(bi)|

(assuming aTi x > 0 and bi > 0).

Paris, January 2018 42



J. Gondzio L9&10: SOCP and SDP

Logarithmic Chebyshev Approximation (cont’d)

The logarithmic Chebyshev approximation problem can be cast as
a semidefinite program. To see this, note that

| log(aTi x)−log(bi)| = logmax(aTi x/bi, bi/a
T
i x).

Hence the problem can be rewritten as the following (nonlinear)
program

min t

s.t. 1/t ≤ aTi x/bi ≤ t, i = 1..n.
or,

min t

s.t.





t−aTi x/bi 0 0

0 aTi x/bi 1
0 1 t



 � 0, i = 1..n

which is a semidefinite program.
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Logarithmic Barrier Function

Define the logarithmic barrier function for the cone SRn×n
+

of positive definite matrices.
f : SRn×n

+ 7→ R

f (X) =

{

− ln detX if X ≻ 0
+∞ otherwise.

Let us evaluate its derivatives.
Let X ≻ 0, H ∈ SRn×n. Then

f (X + αH) = − ln det[X(I + αX−1H)]

= − ln detX − ln(1 + αtrace(X−1H) +O(α2))

= f (X)− αX−1 •H +O(α2),

so that f ′(X) = −X−1 and Df (X)[H ] = −X−1 •H .
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Logarithmic Barrier Function (cont’d)

Similarly

f ′(X + αH) = −[X(I + αX−1H)]−1

= −[I−αX−1H +O(α2)]X−1

= f ′(X) + αX−1HX−1 +O(α2),

so that f ′′(X)[H ] = X−1HX−1

and D2f (X)[H,G] = X−1HX−1 •G.

Finally,
f ′′′(X)[H,G] = −X−1HX−1GX−1 −X−1GX−1HX−1.
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Logarithmic Barrier Function (cont’d)

Theorem: f (X) = − ln detX is a convex barrier for SRn×n
+ .

Proof: Define φ(α) = f (X+αH). We know that f is convex if,
for every X ∈ SRn×n

+ and every H ∈ SRn×n, φ(α) is convex in
α.
Consider a set of α such that X+αH ≻ 0. On this set

φ′′(α) = D2f (X̄)[H,H ] = X̄−1HX̄−1 •H,

where X̄ = X+αH .
Since X̄≻0, so is V =X̄−1/2 (Property 6), and

φ′′(α) = V 2HV 2 •H = trace(V 2HV 2H)

= trace((V HV )(V HV )) = ‖V HV ‖2F ≥ 0.

So φ is convex.
When X ≻ 0 approaches a singular matrix, its determinant ap-
proaches zero and f (X) → ∞.
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Simplified Notation

Define A : SRn×n 7→ Rm

AX = (Ai •X)mi=1 ∈ Rm.

Note that, for any X ∈ SRn×n and y ∈ Rm,

(AX)Ty =

m
∑

i=1

(Ai •X) yi = (

m
∑

i=1

yiAi) •X,

so the adjoint of A is given by

A∗y =

m
∑

i=1

yiAi.

A∗ is a mapping from Rm to SRn×n.
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Simplified Notation (cont’d)

With this notation the primal SDP becomes

min C •X
s.t. AX = b,

X � 0,

where X ∈ SRn×n is the variable.

The associated dual SDP writes

max bTy
s.t. A∗y + S = C

S � 0,

where y ∈ Rm and S ∈ SRn×n are the variables.
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Solving SDPs with IPMs

Replace the primal SDP

min C •X
s.t. AX = b,

X � 0,

with the primal barrier SDP

min C •X + µf (X)
s.t. AX = b,

(with a barrier parameter µ ≥ 0).
Formulate the Lagrangian

L(X, y, S) = C •X + µf (X)− yT (AX − b),

with y ∈ Rm, and write the first order conditions (FOC) for a
stationary point of L:

C + µf ′(X)−A∗y = 0.
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Solving SDPs with IPMs (cont’d)

Use f (X) = − ln det(X) and f ′(X) = −X−1.
Therefore the FOC become:

C − µX−1 −A∗y = 0.

Denote S = µX−1, i.e., XS = µI .
For a positive definite matrix X its inverse is also positive definite.

The FOC now become:

AX = b,
A∗y + S = C,

XS = µI,

with X ≻ 0 and S ≻ 0.
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Newton direction

We derive the Newton direction for the system:

AX = b,
A∗y + S = C,

−µX−1 + S = 0.

Recall that the variables in FOC are (X, y, S),
where X,S ∈ SRn×n

+ and y ∈ Rm.

Hence we look for a direction (∆X,∆y,∆S),
where ∆X,∆S ∈ SRn×n

+ and ∆y ∈ Rm.
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Newton direction (cont’d)

The differentiation in the above system is a nontrivial operation.
The direction is the solution of the system:





A 0 0
0 A∗ I

µ(X−1 ⊙X−1) 0 I



·
[

∆X
∆y
∆S

]

=

[

ξb
ξC
ξµ

]

.

We introduce a useful notation P ⊙Q for n×n matrices P and Q.
This is an operator from SRn×n to SRn×n defined by

(P ⊙Q)U =
1

2
(PUQT +QUPT ).
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Logarithmic Barrier Function

for the cone SRn×n
+ of positive definite matrices, f : SRn×n

+ 7→ R

f (X) =

{

− ln detX if X ≻ 0
+∞ otherwise.

LP: Replace x ≥ 0 with −µ
∑n

j=1 ln xj.

SDP: Replace X � 0 with −µ
∑n

j=1 lnλj = −µ ln(
∏n

j=1 λj).

Nesterov and Nemirovskii,
Interior Point Polynomial Algorithms in Convex Programming:
Theory and Applications, SIAM, Philadelphia, 1994.

Lemma The barrier function f (X) is self-concordant on SRn×n
+ .
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Interior Point Methods:

• Logarithmic barrier functions for SDP and SOCP
Self-concordant barriers
→ polynomial complexity (predictable behaviour)

• Unified view of optimization
→ from LP via QP to NLP, SDP, SOCP

• Efficiency

– good for SOCP

– problematic for SDP because solving the problem of size
n involves linear algebra operations in dimension n2

→ and this requires n6 flops!

Use IPMs in your research!
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