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Lecture 3
Large Routing Games: Wardrop or Poisson?

Roberto Cominetti
Universidad Adolfo Ibáñez

Based on joint work with:
Marco Scarsini (LUISS)

Marc Schröder (RWTH Aachen)
Nicolás Stier-Moses (Facebook)

Journées SMAI MODE 2020
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1 Convergence of Large Games
Splittable routing games −→ Wardop equilibrium
Weighted atomic games −→ Wardop equilibrium
Games with random players −→ Poisson equilibrium
Convergence of PoA for sequences of ARGs

2 Price-of-Anarchy for Atomic Routing Games
Smoothnes framework
PoA for Bernoulli ARGs
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Convergence of Large Games

You are planning your commute route for tomorrow, not sure about exact
departure time nor who will be on the road...

Games with “many small players”
are frequently modeled as nonatomic
games with a continuum of players.

In which sense is a continuous model
close to the discrete system ?

The answer depends on what we mean by “small players”...

player i has a small load wi ≈ 0 to be transported with certainty
player i has a unit load but is present with small probability pi ≈ 0

Each interpretation yields a different continuous limit.
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Convergence of Large Games

Network Routing Games
We are given a graph (V,E) with

a set of edges e ∈ E with continuous non-decreasing costs ce : R+ → R+

a set of OD pairs κ ∈ K with corresponding routes r ∈ Rκ ⊆ 2E

a set of demands dκ ≥ 0 for each κ ∈ K

O1

O2

D

x

x 2

1 1

Demands can be...
non-atomic: continuous, infinitesimal players → Wardrop

atomic


splittable: continuous, few players → fluids, sand, telecom
unsplittable: discrete, few players → vessels, airplanes
random: unpredictable → packets or vehicles on a network
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Convergence of Large Games

Non-Atomic Routing Games — Wardrop equilibrium
Let F be the set of splittings (y, x) of the demands dκ into route-flows yr ≥ 0,
together with their induced edge-loads xe :

dκ =
∑

r∈Rκ
yr (∀κ ∈ K ),

xe =
∑

r∋e yr (∀e ∈ E).

A Wardrop equilibrium is a pair (ŷ, x̂) ∈ F that uses only shortest routes:

(∀κ ∈K )(∀r, r ′∈Rκ) ŷr > 0 ⇒
∑
e∈r

ce(x̂e) ≤
∑
e∈r ′

ce(x̂e).

Characterized as the optimal solutions of the convex program

min
(y,x)∈F

∑
e∈E

∫ xe

0
ce(z) dz.
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Convergence of Large Games Splittable routing games −→ Wardop equilibrium

Atomic Splittable Routing Games
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Convergence of Large Games Splittable routing games −→ Wardop equilibrium

Atomic Splittable Routing Games

Atomic splittable routing games are similar in that demands are continuous and
can be split over different routes, except that now there are finitely many players
i ∈ N = {1, . . . , n}, each one controlling a non-negligible amount of traffic di > 0,
on a given OD pair κi ∈ K .

Player i splits traffic over routes yir ≥ 0 with di =
∑

r∈Rκi
yir

This induces edge loads xie =
∑

r∋e yir

Player i’s cost is Ci(x) =
∑

e∈E xie ce(xie+x-ie) with x-ie =
∑

j ̸=i xje.

Definition
A splittable Nash equilibrium is a family of feasible flows (yi, xi)i∈N such that

Ci(xi, x-i) ≤ Ci(xi
′, x-i) ∀i ∈ N, ∀xi

′ feasible flow
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Convergence of Large Games Splittable routing games −→ Wardop equilibrium

Atomic Splittable Routing Games

Debreu-Glicksberg-Fan’s extension of Nash’s Theorem yields

Theorem (Rosen, 1965)
1 ce(·) non-decreasing and convex ⇒ ∃ splittable Nash equilibria.
2 ...under suitable monotonicity conditions it is unique.

As the number of players increases and their individual demands become smaller,
one expects convergence towards a Wardrop equilibrium.
Proved by (Haurie-Marcotte, 1985; Milchtaich, 2000; Jacquot-Wan, 2018) tipically
assuming that each player controls the same amount of traffic. The following
more general statement seems to be new... though expected!
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Convergence of Large Games Splittable routing games −→ Wardop equilibrium

Convergence to Wardrop — Vanishing Traffic Demands

Let (yn, xn) be equilibria for a sequence of atomic splittable routing games with
smooth costs ce(·) ∈ C1 and

a) |Nn| → ∞
b) maxi∈Nn dn

i → 0
c) dn

κ ≜
∑

i:κn
i =κ dn

i → dκ for all κ ∈ K

Theorem
1 The aggregate route flows yn

r =
∑

i∈N yn
ir and edge loads xn

e =
∑

i∈N xn
ie are

bounded and each limit point (ȳ, x̄) is a Wardrop equilibrium for demands dκ.
2 If the ce’s are strictly increasing then x̄ is unique and xn → x̄.
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Convergence of Large Games Weighted atomic games −→ Wardop equilibrium

Weighted Atomic Routing Games
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Convergence of Large Games Weighted atomic games −→ Wardop equilibrium

Weighted Atomic Routing Games— G (w)

A weighted routing game has a finite set of players i ∈ N with OD pairs κi ∈ K ,
and unsplittable weights wi > 0 that must be routed over a single path ri ∈ Rκi

chosen at random using a mixed strategy πi ∈ ∆(Rκi).

Yr =
∑

i∈N wi 1{ri=r} are the random route-flows
Xe =

∑
i∈N wi 1{e∈ri} are the corresponding edge-loads

Definition
A mixed strategy profile π = (πi)i∈N is a Nash equilibrium iff for each player i ∈ N
and routes r, r ′ ∈ Rκi with πi(r) > 0 we have

E
[∑

e∈r ce(Xe)|ri = r
]
≤ E

[∑
e∈r ′ ce(Xe)|ri = r ′ ]
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Convergence of Large Games Weighted atomic games −→ Wardop equilibrium

Weighted ARGs with identical weights wi ≡ w are potential games and admit
pure equilibria (Rosenthal’73). The potential for a profile r = (ri)i∈N is

Φ(r) =
∑
e∈E

ne(r)∑
k=1

ce(k w)w ; ne(r) ≜ |{i ∈ N : e ∈ ri}|.

For heterogeneous weights we only have existence of mixed equilibria.
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Convergence of Large Games Weighted atomic games −→ Wardop equilibrium

Example: Routing n players over 2 identical parallel links.

n ⇒ O D

c(x)

c(x)

Symmetric mixed equilibrium: each player randomizes ( 1
2 ,

1
2 ).

If players’ weights are wi ≡ d/n then we have random edge-loads

Xe ∼ d
n Binomial(n, 1

2 )

which converge almost surely to the Wardrop equilibrium ( d
2 ,

d
2 ).

What happens for non-symmetric equilibria? What if weights are not
homogeneous? And with different costs? And more complex topologies?
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Convergence of Large Games Weighted atomic games −→ Wardop equilibrium

Wardrop Convergence for Vanishing Weights

Let πn be a sequence of mixed equilibria for weighted ARGs G (wn) with
a) |Nn| → ∞
b) maxi∈Nn wn

i → 0
c) dn

κ ≜
∑

i:κn
i =κ wn

i → dκ for all κ ∈ K

Theorem
1 The expected flows (yn, xn) = (EYn,EXn) are bounded and each cluster point

(ŷ, x̂) is a Wardrop equilibrium with demands dκ and costs ce(·).
2 Along any convergent subsequence, the random route-flows and edge-loads

(Yn,Xn) converge in L2 to the (constant) Wardrop equilibrium (ŷ, x̂).
3 If the costs ce(·) are strictly increasing, then x̂ is unique and Xn L2

→ x̂.
4 If ce ∈ C 2 with c′e(·) > 0, then there is a constant κ such that

∥Xn − x̂∥L2 ≤ κ(
√

maxi∈N wn
i +

√
∥dn − d∥1).
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Convergence of Large Games Weighted atomic games −→ Wardop equilibrium

Nice and simple... but reality looks more like this
Copenhagen – Source: DTU Transport (www.transport.dtu.dk)
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Convergence of Large Games Weighted atomic games −→ Wardop equilibrium

Traffic count data – Dublin 2017-2018
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Data source: Transport Infrastructure Ireland
https://www.tii.ie/roads-tolling/operations-and-maintenance/traffic-count-data/
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Convergence of Large Games Games with random players −→ Poisson equilibrium

Bernoulli Routing Games
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Convergence of Large Games Games with random players −→ Poisson equilibrium

Bernoulli Atomic Routing Games — G (p)

A Bernoulli routing game has a finite set of players i ∈ N with OD pairs κi ∈ K ,
unit weights wi = 1, and a probability of being active pi = P(Ui = 1). Each player
i ∈ N selects a route ri ∈ Rκi using a mixed strategy πi ∈ ∆(Rκi).

Yr =
∑

i∈N Ui 1{ri=r} are the random route-flows
Xe =

∑
i∈N Ui 1{e∈ri} are the corresponding edge-loads

Definition
A strategy profile π = (πi)i∈N is a Bayes-Nash equilibrium if for each player i ∈ N
and routes r, r ′ ∈ Rκi with πi(r) > 0 we have

E
[∑

e∈r ce(Xe)|Ui = 1, ri = r
]
≤ E

[∑
e∈r ′ ce(Xe)|Ui = 1, ri = r ′ ] .

Remark. Costs need only be defined over the integers ce : N → R+.
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Convergence of Large Games Games with random players −→ Poisson equilibrium

Bernoulli ARGs are Potential Games

Proposition
Every Bernoulli ARG is a potential game with potential

Φ(r) ≜ E

∑
e∈E

Ne(r)∑
k=1

ce(k)

 ; Ne(r) ≜
∑
i:e∈ri

Ui

Corollary
Every Bernoulli ARG has Nash equilibria in pure strategies.
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Convergence of Large Games Games with random players −→ Poisson equilibrium

Example: Routing n random players over 2 identical parallel links.

n ⇒ O D

c(x)

c(x)

Symmetric mixed equilibrium: each player randomizes ( 1
2 ,

1
2 ).

If each player is present with probability pi = d/n, the random edge-loads are

Xe ∼ Binomial(n, d
2n )

which for large n converges to a Poisson( d
2 ).

What happens for other non-symmetric equilibria? What if players are not
homogeneous? And with different costs? And more complex topologies?
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Convergence of Large Games Games with random players −→ Poisson equilibrium

Toolkit — Sums of Bernoullis ≈ Poisson

The total variation distance between two integer-valued random variables U,V is

dtv(U,V) = 1
2

∑
k∈N

∣∣P(U = k)− P(V = k)
∣∣.

Theorem (Barbour & Hall 1984, Borizov & Ruzankin 2002)

Let S = X1 + . . .+ Xn be a sum of independent Bernoullis with P(Xi = 1) ≤ p,
and X ∼ Poisson(x) with the same expectation E[X] = x = E[S]. Then

dTV(S,X) ≤ p.

Moreover, if h : N → R is such that E|∆2h(X)| ≤ ν, then

|Eh(S)− Eh(X)| ≤ x ν
2

p ep

(1 − p)2 .

Remark: ∆2h(x) ≜ h(x+2)− 2h(x+1) + h(x).

Roberto Cominetti – UAI Large Routing Games: Wardrop or Poisson? 21 / 41



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
22/41

Convergence of Large Games Games with random players −→ Poisson equilibrium

Poisson Convergence for Vanishing Probabilities

Standing Assumption: E[X 2ce(1+X)] < ∞ for all e ∈ E and X ∼ Poisson(x).

This is a mild condition. It holds for costs with polynomial or exponential growth.
It fails for fast growing costs such as factorials k! or bi-exponentials exp(exp(k)).

We introduce the expected cost functions c̃e : R+ → R+ defined by

c̃e(x) ≜ E[ce(1+X)] =
∑∞

k=0 ce(1+k)e−x xk

k! .
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Convergence of Large Games Games with random players −→ Poisson equilibrium

Poisson Convergence for Vanishing Probabilities

Let πn be a sequence of Bayes-Nash equilibria for Bernoulli ARGs G (pn) with
a) |Nn| → ∞,

b) maxi∈Nn pn
i → 0,

c) dn
κ ≜

∑
i:κn

i =κ pn
i → dκ for all κ ∈ K .

Theorem
1 The expected flows (yn, xn) = (EYn,EXn) are bounded and each cluster point

(ỹ, x̃) is a Wardrop equilibrium with demands dκ and costs c̃e(·).
2 Along any convergent subsequence we have

the edge-loads Xn
e converge in total variation to Xe ∼ Poisson(x̃e),

the route-flows Yn
r converge in total variation to Yr ∼ Poisson(ỹr),

the Poisson limits Yr are independent.
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Convergence of Large Games Games with random players −→ Poisson equilibrium

Poisson convergence for vanishing probabilities

Corollary
If the costs ce(k) are non-decreasing and non-constant, then the c̃e(·)’s are strictly
increasing, the edge-loads x̃e are the same in all Wardrop equilibria, and for every
sequence πn of Bayes-Nash equilibria we have

Xn
e

tv−→ Xe ∼ Poisson(x̃e).

Theorem
If ce(2) > ce(1) for all e ∈ E then there is a constant κ such that

dTV(Xn
e ,Xe) ≤ κ(

√
maxi∈N pn

i +
√
∥dn − d∥1).
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Convergence of Large Games Convergence of PoA for sequences of ARGs

Convergence of PoA along sequences of ARGs

For an atomic routing game G we denote

C(π) = Eπ

[∑
e∈E Xe ce(Xe)

]
(expected social cost)

Copt(G ) = minπ C(π) (minimum social cost)

PoA(G ) = maxπ∈E (G ) C(π)/Copt(G ) (price-of-anarchy)

Theorem
Under the same conditions of the convergence theorems for weighted and
Bernoulli ARGs, we have

PoA(G (wn)) −→ PoA(Wardrop)

PoA(G (pn)) −→ PoA(Poisson)
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Convergence of Large Games Convergence of PoA for sequences of ARGs

Summary and Comments

1 Both wn
i → 0 and pn

i → 0 lead to different non-atomic limit games:
For vanishing weights, the random edge-loads Xn

e converge in L2 to
the constants edge-loads x̂e.
For vanishing probabilities, Xn

e remain random in the limit and converge
in total variation to Xe ∼ Poisson(x̃e).

2 The Poisson limit is consistent with empirical data on traffic counts.
Also pn

i → 0 is quite natural... congestion depends on players that are
present on a small window around your departure time.

3 The Poisson limit is a special case of Myerson’s Poisson games: the
normalized loads σ(r|t) = yr/dκ for r ∈ Rκ yield an equilibrium in the
Poisson game (Myerson, Int J Game Theory 1998).

4 Poisson games were defined without reference to a limit process, so our
convergence result as well as the connection with Wardrop seem new.
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Price-of-Anarchy for Atomic Routing Games
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PoA for Atomic Routing – Smoothness Framework
Consider an unweighted ARG and let the social cost be

C(r) =
∑
i∈N

Ci(r) =
∑
e∈E

ne ce(ne).

Definition
The game is called (λ, µ)-smooth with λ > 0 and 0 < µ < 1 if for all strategy
profiles r = (ri)i∈N and r ′ = (ri ′)i∈N we have∑

i∈N Ci(ri ′, r-i) ≤ λC(r ′) + µC(r).

Lemma (Dumrauf-Gairing, 2006; Harks-Vegh, 2007; Roughgarden, 2015)
For (λ, µ)-smooth atomic routing games we have PoA ≤ λ

1−µ .

Proof. For every Nash equilibrium r we have

C(r) =
∑

i∈N Ci(ri, r-i) ≤
∑

i∈N Ci(ri ′, r-i) ≤ λC(r ′) + µC(r).

hence C(r) ≤ λ
1−µC(r ′) and we conclude by minimizing over r ′. □
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PoA for Atomic Routing – Smoothness Framework

Translated in terms of arc costs (λ, µ)-smoothness becomes

k ce(m + 1) ≤ λ k ce(k) + µm ce(m) ∀k,m ∈ N

Theorem (Christodoulou-Koutsoupias, 2005; Awerbuch-Azar-Epstein, 2005)
Atomic routing games with affine costs are ( 5

3 ,
1
3 )-smooth and PoA ≤ 5

2 .

Almost twice larger than the bound PoA ≤ 4
3 for non-atomic routing.

What happens in Bernoulli ARGs as we move from the deterministic case pi ≡ 1
to the Wardrop limit when pi ↓ 0 ?
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PoA for Bernoulli ARGs
Consider a Bernoulli ARG with pi = P(Wi = 1) and social cost

C(π) =
∑

i∈N Ci(π) = E
[∑

e∈E Xe ce(Xe)
]
.

Theorem
Let G p denote the set of Bernoulli ARGs with pi ≤ p for all players. The largest
values of PoA(G (p)) occur for homogeneous players with pi ≡ p.

Proposition
A Bernoulli ARG with homogeneous players pi ≡ p is equivalent to a deterministic
unweighted ARG for the auxiliary costs

cp
e(k) = E[ce(1 + B)] with B ∼ Binomial(k−1, p)

⇒ any (λ, µ)-bound for this equivalent deterministic game remains valid for
non-homogeneous players with pi ≤ p.
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PoA for Bernoulli ARGs — Homogeneous players

From now on we focus on the homogeneous case and study PoA and PoS as a
function of p when we move from the deterministic case p = 1 to the limit p ↓ 0.

PoA(p) = sup
G p

max
π∈E (G p)

C(π)/Copt(G p) (Price-of-Anarchy)

PoS(p) = sup
G p

min
π∈E (G p)

C(π)/Copt(G p) (Price-of-Stability)

We search for the best (λ, µ)-smoothness parameters

k cp
e(m + 1) ≤ λ k cp

e(k) + µm cp
e(m) ∀k,m ∈ N.

For the special case of affine costs we get PoA ≤ 5
2 .

But we expect sharper bounds with PoA ≈ 4
3 for small p.
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PoA for Bernoulli ARGs – Affine Costs
For affine costs ce(x) = αe x + βe with αe, βe ≥ 0 we have

cp
e(k) = E[ce(1 + B(k−1, p))]

= αe(1 + (k−1)p) + βe

and (λ, µ)-smoothness reduces to

k (1+p m) ≤ λ k (1−p +p k) + µm (1−p +p m) ∀k,m ∈ N. (1)

The best combination of λ and µ for fixed p requires to solve

PoA ≤ B(p) ≜ min
λ>0,µ∈(0,1)

{
λ

1−µ : subject to (1)
}

which reduces to a 1D problem noting that the smallest λ compatible with (1) is

λ = sup
(k,m)∈P

k(1+pm)−µ m(1−p+pm)
k(1−p+pk)
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PoA for Bernoulli ARGs – Affine Costs

The previous reduction leads to the equivalent minimization problem

B(p) = inf
µ∈(0,1)

φp(
µ

1−µ ) = inf
y>0

φp(y)

where φp(·) is the convex envelop function

φp(y) = sup
(k,m)∈P

1+pm
1−p+pk + k(1+pm)−m(1−p+pm)

k(1−p+pk) y.

For each p the unique optimum y can be found explicitly, and then we recover the
optimal combination (λ, µ).

This reveals some unexpected phase transitions !
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PoA for Bernoulli ARGs – Affine Costs
Theorem (C-Scarsini-Schröder-Stier, 2019)
Let p̄0 = 1

4 and p̄1 ∼ 0.3774 the unique real root of 8p3 + 4p2 = 1.
For Bernoulli ARGs with affine costs and pi ≤ p we have

PoA ≤ B(p) =


4
3 if 0 < p ≤ p̄0

1+p+
√

p(2+p)
1−p+

√
p(2+p)

if p̄0 ≤ p ≤ p̄1

1 + p + p2

1+p if p̄1 ≤ p ≤ 1

0.0 0.2 0.4 0.6 0.8 1.0
1.0

1.5

2.0

2.5

p

PoA(p)

p0

p1
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Tight lower bounds for large p

d1

d2 d3 ce(x) =


x if e = hi

p x if e = gi

0 if dashed

g1g2

g3

h1h2

h3

o1

o2

o3

⇒ PoA(G p) = 1 + p +
p2

1 + p .
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Tight lower bounds for small p

ō d̄

ē

o1 d1e1

o2 d2e2

o3 d3e3

ok dkek

...

2k players
ce(x) =


1

1+2kp x if e = ē
x if e = ei

0 if dashed

k

⇒ PoA(G p) = PoS(G p) ≥ 4kp+2−2p
3kp+2−p → 4

3 as k → ∞
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Tight lower bounds for intermediate p

a1

b1

c1

h1
g1

a2

b2
c2

h2

g2

a3

b3

c3

h3

g3

a4

b4

c4

h4g4

a5

b5

c5

h5

g5

a6

b6

c6

h6

g6

o1

d1

ce(x) =


α x if e = hi

x if e = gi

0 if dashed
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Bounds on the Price-of-Anarchy are Tight

PoA(p) = B(p) =


4
3 if 0 < p ≤ p̄0

1+p+
√

p(2+p)
1−p+

√
p(2+p)

if p̄0 ≤ p ≤ p̄1

1 + p + p2

1+p if p̄1 ≤ p ≤ 1

0.0 0.2 0.4 0.6 0.8 1.0
1.0

1.5

2.0

2.5

p

PoA(p)

p0

p1
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Price-of-Anarchy vs Price-of-Stability
Combined with (Kleer-Schäfer, 2018) we also get tight bounds for PoS

PoS(p) =
{

4
3 if 0 < p ≤ p̄0

1 +
√

p/(2+p) if p ≥ p̄0

0.0 0.2 0.4 0.6 0.8 1.0
1.0

1.5

2.0

2.5

p

p0

p1

PoA(p)

PoS(p)
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Conclusion

1 Convergence of ARGs towards non-atomic games:
vanishing weights −→ Wardrop
vanishing probabilities −→ Poisson/Wardrop

2 Convergence of PoA/PoS, plus sharp bounds for affine costs
3 Some open questions

- Mixed limits: weights & probabilities
- Tight bounds for polynomial costs
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Questions ?
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