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Jon Lee, Bai Zou. Optimal rank-sparsity decomposition. Journal of
Global Optimization, 2013.
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The problem

Given a real matrix C , our problem is to decompose C as
C = A + B, where A is sparse and B has low rank.
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The problem

Given a real matrix C , our problem is to decompose C as
C = A + B, where A is sparse and B has low rank.

Additionally, and critically, we treat the situation where we are
given convex sets of matrices A, B, which we require A and B to
be chosen from.

We assume that A and B are specified in convenient forms (e.g.,
via linear matrix inequalities, and for additional convenience, we
prefer to assume that these sets are compact).

Also, for purely pedagogical purposes, we assume that our
matrices are square.

Finally, for specificity, we look at the (NP-hard) version:

min{γ‖A‖0 + r(B) : A + B = C , A ∈ A, B ∈ B} ,

where γ is a parameter that can be varied.
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Motivation

Such decomposition problems arise in a number of settings, with
the interpretation of the sparse and low-rank matrices depending
on the application.

In statistical model selection, the sparse matrix can correspond to
a Gaussian graphical model, and the low-rank matrix summarizes
the effect of a small number of latent, unobserved variables
(corresponding to some systematic noise).

In computational complexity theory, rigidity of a matrix is the
least number of entries that must be changed in order to reduce
the rank of the matrix below some given constant.

In system identification, the low-rank matrix represents a system
with a small “model order”, and the sparse matrix represents a
system with a sparse “impulse response”.
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Convex approximation

min{γ‖A‖0 + r(B) : A + B = C , A ∈ A, B ∈ B}
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Convex approximation

min{γ‖A‖0 + r(B) : A + B = C , A ∈ A, B ∈ B}

= min{γ‖A‖0 + ‖σ(B)‖0 : A + B = C , A ∈ A, B ∈ B}

≈
min{γ‖A‖1 + ‖σ(B)‖1 : A + B = C , A ∈ A, B ∈ B}

= min{γ‖A‖1 + ‖B‖∗ : A + B = C , A ∈ A, B ∈ B}

‖A‖1 :=
∑

i,j |aij | (the usual entrywise 1-norm)

‖B‖∗ :=
∑

k σk(B) (the nuclear norm)

The nuclear norm is also known as the trace norm, the Ky Fan
n-norm, and the Schatten 1-norm. It has the alternative definition

(for a real matrix) as ‖B‖∗ := Tr(
√

BtB)
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Semidefinite programming

Recast as

min
A,B,W1,W2,Z

γ etZe +
1

2
(Tr(W1) + Tr(W2))

s.t.

(

W1 B
Bt W2

)

� 0,

− Z ≤ A ≤ Z ,

A + B = C ,

A ∈ A, B ∈ B,

where e is the n-vector of all ones.
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Semidefinite programming

Recast as

min
A,B,W1,W2,Z

γ etZe +
1

2
(Tr(W1) + Tr(W2))

s.t.

(

W1 B
Bt W2

)

� 0,

− Z ≤ A ≤ Z ,

A + B = C ,

A ∈ A, B ∈ B,

where e is the n-vector of all ones.

CAUTION! convex approximation 6= convex relaxation.

The 0-norm is not a norm! e.g., it is invariant under scaling.
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Bounds to get bounds

We assume that:

The maximum-norm ‖A‖max := max{|aij |} is bounded on A.
That is, we have a scalar α > 0, so that

‖A‖max ≤ α, ∀A ∈ A.

Jon Lee (·) Matrix optimization stories PGMO 8 / 46



Bounds to get bounds

We assume that:

The maximum-norm ‖A‖max := max{|aij |} is bounded on A.
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Bounds to get bounds

We assume that:

The maximum-norm ‖A‖max := max{|aij |} is bounded on A.
That is, we have a scalar α > 0, so that

‖A‖max ≤ α, ∀A ∈ A.

Then we have
1

α
‖A‖1 ≤ ‖A‖0, ∀A ∈ A.

The spectral norm σ1(B) is bounded on B. That is, we have a
scalar β > 0, so that

σ1(B) ≤ β, ∀B ∈ B.

Then we have
1

β
‖B‖∗ ≤ r(B), ∀B ∈ B.

Jon Lee (·) Matrix optimization stories PGMO 8 / 46



A true convex relaxation

So we have the rigorous lower bound

γ

α
‖A‖1 +

1

β
‖B‖∗ ≤ γ‖A‖0 + r(B), ∀A ∈ A, B ∈ B,

which we can calculate by simply tweaking the SDP to

min
A,B,W1,W2,Z

γ

α
etZe +

1

2β
(Tr(W1) + Tr(W2))

s.t.

(

W1 B
Bt W2

)

� 0,

− Z ≤ A ≤ Z ,

A + B = C ,

A ∈ A, B ∈ B,

where e is the n-vector of all ones.
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Branch-and-bound

Now that we have a rigorous lower bound, we can build a
branch-and-bound algorithm toward global optimization, by:

devising an effective branching technique, compatible with the
lower-bounding method;

crafting a good upper-bounding heuristic;

putting it all together (branching-object selection rule, subproblem
selection rule, policy for running the heuristic, algorithms/software
for lower and upper bound calculation).
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Branching on the sparsity pattern

Notation for a sparse matrix: For a subset S of {1, . . . , n}2,
AS : S → R is defined by AS(i, j) := aij . Then we define
‖AS‖0 := |{(i, j) ∈ S : aij 6= 0}|.
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Branching on the sparsity pattern

Notation for a sparse matrix: For a subset S of {1, . . . , n}2,
AS : S → R is defined by AS(i, j) := aij . Then we define
‖AS‖0 := |{(i, j) ∈ S : aij 6= 0}|.
We consider partitions of {1, . . . , n}2 into sets Z (“zero”), N
(“nonzero”), U (“unbranched”), and such a partition determines a
subproblem:

γ|N | + min {γ‖AU‖0 + r(B) : A + B = C , A ∈ A,

B ∈ B, aij = 0 for (i, j) ∈ Z} .

So, sparsity of A is enforced on the index set Z, and nonzeros are
charged for on the index set N , regardless of whether or not they
are nonzero in A.
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Branching on the sparsity pattern

Notation for a sparse matrix: For a subset S of {1, . . . , n}2,
AS : S → R is defined by AS(i, j) := aij . Then we define
‖AS‖0 := |{(i, j) ∈ S : aij 6= 0}|.
We consider partitions of {1, . . . , n}2 into sets Z (“zero”), N
(“nonzero”), U (“unbranched”), and such a partition determines a
subproblem:

γ|N | + min {γ‖AU‖0 + r(B) : A + B = C , A ∈ A,

B ∈ B, aij = 0 for (i, j) ∈ Z} .

So, sparsity of A is enforced on the index set Z, and nonzeros are
charged for on the index set N , regardless of whether or not they
are nonzero in A.

Relax to an SDP (including aij = 0 for (i, j) ∈ Z) as before.

Tighten α (for subtrees) as the branching proceeds.
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Branch-and-bound

A list of active subproblems is maintained, each subproblem with
an associated solution of its relaxation.
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an associated solution of its relaxation.

An active subproblem, determined by a partition Z, N , U is
selected, according to some rule, and a branching index (i ′, j ′) ∈ U
is selected.
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selected, according to some rule, and a branching index (i ′, j ′) ∈ U
is selected.

Then the subproblem determined by the partition Z, N , U is
replaced with two subproblems, determined by partitions: (i)
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Branch-and-bound

A list of active subproblems is maintained, each subproblem with
an associated solution of its relaxation.

An active subproblem, determined by a partition Z, N , U is
selected, according to some rule, and a branching index (i ′, j ′) ∈ U
is selected.

Then the subproblem determined by the partition Z, N , U is
replaced with two subproblems, determined by partitions: (i)
Z + (i ′, j ′), N , U − (i ′, j ′), and (ii) Z, N + (i ′, j ′), U − (i ′, j ′).

For each of these subproblems, we solve the associated relaxation;
if its optimal value is greater than our global upper bound (or if it
is infeasible), then we discard the subproblem; otherwise we
update our global lower bound (to the minimum objective value
over all active relaxations), and we update our global upper bound
(by evaluating the objective function of the solution of the
relaxation, but according to the objective function of the original
problem, and comparing it to the current global upper bound).
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An upper-bounding heuristic
Motivated by the approach of:

Mohan, K.; Fazel, M. Iterative reweighted algorithms for matrix
rank minimization, J. of Mach. Learn. Res. 13 (2012) 3441–3473.
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An upper-bounding heuristic
Motivated by the approach of:

Mohan, K.; Fazel, M. Iterative reweighted algorithms for matrix
rank minimization, J. of Mach. Learn. Res. 13 (2012) 3441–3473.

At any subproblem of a b&b search, choose 0 ≤ p, q ≤ 1, and formulate
the objective function

min {γ‖AU‖p + ‖σ(B)‖q : A + B = C , A ∈ A,
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An upper-bounding heuristic
Motivated by the approach of:

Mohan, K.; Fazel, M. Iterative reweighted algorithms for matrix
rank minimization, J. of Mach. Learn. Res. 13 (2012) 3441–3473.

At any subproblem of a b&b search, choose 0 ≤ p, q ≤ 1, and formulate
the objective function

min {γ‖AU‖p + ‖σ(B)‖q : A + B = C , A ∈ A,

B ∈ B, aij = 0 for (i, j) ∈ Z} .

For p = q = 0, we have the true objective.
For p = q = 1, we have the nonsmooth but convex approximation
used by Maryam, Pablo, et al.
As a heuristic, we propose to find local optima, for choices of
0 < p, q < 1 (smooth but nonconvex), using as a starting point the
(global) optimum of the associated (convex) subproblem (having
p = q = 1).
Evaluate each local solution using the true objective and update
the upper bound.
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Software and experiments

Bai Zou implemented our methods using the open-source software
CVX in conjunction with Matlab.
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Software and experiments

Bai Zou implemented our methods using the open-source software
CVX in conjunction with Matlab.

Developed and maintained by Michael Grant and Stephen Boyd,
CVX is a Matlab-based modeling system for “disciplined” convex
optimization. CVX enables Matlab to be used as a modeling
language; so constraint and objective functions can be easily
specified using standard Matlab syntax. CVX is distributed under
the GNU General Public License 2.0.
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Software and experiments

Bai Zou implemented our methods using the open-source software
CVX in conjunction with Matlab.

Developed and maintained by Michael Grant and Stephen Boyd,
CVX is a Matlab-based modeling system for “disciplined” convex
optimization. CVX enables Matlab to be used as a modeling
language; so constraint and objective functions can be easily
specified using standard Matlab syntax. CVX is distributed under
the GNU General Public License 2.0.

We have gathered some evidence for assessing the quality of earlier
heuristic techniques.
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Increasing the lower bound (2 hr.)

We ran our b&b scheme for 2 hours on each of 24 randomly
generated test problems.

We generated examples of the form C := A + γDE t, where A is
n × n, pA is the probability that an entry of A is set to 0, and D
and E t are n × r .

For these tests, our branching is reducing the gap by 40% on
average.

This is a significant average gap reduction, and it is a conservative
estimate as we compare to our upper bound and not a confirmed
optimal solution.

We observe a large variation of the gap reduction, from 3% to 95%.

Generally, we reduce more gap for larger γ. This is expected as
larger γ puts more weight on the sparsity, and we only branch on
sparsity.
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Increasing the lower bound (2 hr.)

# pA r n γ initial gap final gap % reduction

1 0.3 5 10 0.01 3.1639 1.3491 57.36
2 0.1 6.8156 3.3858 50.32
3 1 17.3964 4.0558 76.69
4 10 162.4377 8.094 95.02

5 0.5 5 10 0.01 1.608 0.6289 60.89
6 0.1 8.3568 4.1565 50.26
7 1 11.5938 4.3658 62.34
8 10 80.4045 6.5351 91.87

9 0.3 3 10 0.01 3.466 1.8541 46.51
10 0.1 7.6032 4.479 41.09
11 1 16.7836 4.4365 73.57
12 10 132.1638 7.1222 94.61
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Increasing the lower bound (2 hr.), cont’d

# pA r n γ initial gap final gap % reduction

13 0.3 10 15 0.01 3.5226 3.3812 4.01
14 0.1 26.3345 25.2141 4.25
15 1 49.2981 43.8938 10.96
16 10 371.1931 268.0499 27.79

17 0.5 10 15 0.01 3.9443 3.8272 2.97
18 0.1 31.6241 29.6816 6.14
19 1 41.1424 37.522 8.80
20 10 261.5299 209.9086 19.74

21 0.3 5 15 0.01 7.8066 6.2523 19.91
22 0.1 33.3281 26.1391 21.57
23 1 50.8432 46.8181 7.92
24 10 369.5897 258.4647 30.07

40.19
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Decreasing the upper bound

We generated 4 random matrices, all with n = 25, with the
different combinations of pA = .3, .5 and r = 10, 15.
And we made 4 instances from each, by setting
γ = 0.01, .1, 1, 10. So this gave us 16 instances.
Finally, for each of the instances, we started a limit b&b search
and took as a starting point for the heuristic, the subproblem with
the best (i.e., minimum) upper bound after K = 0, 5, 20, 40
relaxation subproblems were solved. So this gave us a final set of
64 instances.
For each of these instances, we first calculated the baseline upper
bound determined by the solution (A, B) of the SDP, evaluated
with the exact objective function. Then, we used that solution as
a starting point for finding local optima of the nonconvex
program, for choices of 0 < p, q ≤ 1. Specifically, we took all 100
combinations of p, q ∈ {0.1, 0.2, . . . , 1.0}.
We used the Matlab function fmincon() using the
‘interior-point’ algorithmic option.
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Decreasing the upper bound

# K pA r γ UB %∆ UB # K pA r γ UB %∆ UB

1 0 0.3 15 0.01 31.21 3.33 33 0 0.5 10 0.01 8.18 0.00
2 0.1 63.6 0.00 34 0.1 63.6 0.00
3 1 261 0.00 35 1 173 0.00
4 10 2305 0.00 36 10 1645 0.00

5 5 0.3 15 0.01 31.19 1.22 37 5 0.5 10 0.01 31.21 2.40
6 0.1 86.7 3.11 38 0.1 86.9 4.37
7 1 257 0.00 39 1 192 0.00
8 10 2195 0.00 40 10 1665 0.00

9 20 0.3 15 0.01 31.19 1.22 41 20 0.5 10 0.01 31.21 2.40
10 0.1 86.7 3.11 42 0.1 87 7.70
11 1 257 0.00 43 1 192 0.00
12 10 2195 0.00 44 10 1665 0.00
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Decreasing the upper bound, cont’d

# K pA r γ UB %∆ UB # K pA r γ UB %∆ UB

13 40 0.3 15 0.01 8.19 0.00 45 40 0.5 10 0.01 23.98 0.00
14 0.1 63.9 0.00 46 0.1 86.6 6.24
15 1 242 0.00 47 1 192 0.00
16 10 2195 0.00 48 10 1665 0.00

17 0 0.3 10 0.01 9.17 0.00 49 0 0.5 15 0.01 31.21 3.75
18 0.1 75.8 0.00 50 0.1 63 0.00
19 1 233 0.00 51 1 194 0.00
20 10 2225 0.00 52 10 1625 0.00

21 5 0.3 10 0.01 31.21 1.44 53 5 0.5 15 0.01 27.21 0.00
22 0.1 86.8 0.00 54 0.1 86.6 11.20
23 1 257 0.00 55 1 184 0.00
24 10 2345 0.00 56 10 1615 0.00
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Decreasing the upper bound, cont’d

# K pA r γ UB %∆ UB # K pA r γ UB %∆ UB

25 20 0.3 10 0.01 31.21 1.44 57 20 0.5 15 0.01 23.98 0.00
26 0.1 86.7 0.00 58 0.1 86.6 11.20
27 1 257 0.00 59 1 184 0.00
28 10 2345 0.00 60 10 1615 0.00

29 40 0.3 10 0.01 31.19 1.80 61 40 0.5 15 0.01 8.21 0.00
30 0.1 86.7 0.46 62 0.1 82.6 3.51
31 1 257 0.00 63 1 184 0.00
32 10 2345 0.00 64 10 1615 0.00

Improvements for 17 out of the 64 instances
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Rank

To get to a full specification of a global-optimization algorithm, we
need to develop a global-optimization method for pure-rank
subproblems.
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need to develop a global-optimization method for pure-rank
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We can control the rank of B directly by writing B as the product
of two matrices. That is, B = DE t, where D and E have n rows
but a small number of columns.
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Rank

To get to a full specification of a global-optimization algorithm, we
need to develop a global-optimization method for pure-rank
subproblems.

We can control the rank of B directly by writing B as the product
of two matrices. That is, B = DE t, where D and E have n rows
but a small number of columns.

The cost is quadratic nonconvexity!

Concretely, suppose that B has rank at most r , and we write the
SVD B = UΣV t, with U = [u1| · · · |ur ] and V = [v1| · · · |vr ] both
being n × r matrices having orthonormal columns, and
Σ = Diag(σ1, . . . , σr ) and σ1 ≥ · · · ≥ σr ≥ 0.
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Rank

To get to a full specification of a global-optimization algorithm, we
need to develop a global-optimization method for pure-rank
subproblems.

We can control the rank of B directly by writing B as the product
of two matrices. That is, B = DE t, where D and E have n rows
but a small number of columns.

The cost is quadratic nonconvexity!

Concretely, suppose that B has rank at most r , and we write the
SVD B = UΣV t, with U = [u1| · · · |ur ] and V = [v1| · · · |vr ] both
being n × r matrices having orthonormal columns, and
Σ = Diag(σ1, . . . , σr ) and σ1 ≥ · · · ≥ σr ≥ 0.

Let Ū := U
√

Σ and V̄ = V
√

Σ, so that B = Ū V̄ t =
∑r

l=1 ūl v̄
t
l .
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Rank

To get to a full specification of a global-optimization algorithm, we
need to develop a global-optimization method for pure-rank
subproblems.

We can control the rank of B directly by writing B as the product
of two matrices. That is, B = DE t, where D and E have n rows
but a small number of columns.

The cost is quadratic nonconvexity!

Concretely, suppose that B has rank at most r , and we write the
SVD B = UΣV t, with U = [u1| · · · |ur ] and V = [v1| · · · |vr ] both
being n × r matrices having orthonormal columns, and
Σ = Diag(σ1, . . . , σr ) and σ1 ≥ · · · ≥ σr ≥ 0.

Let Ū := U
√

Σ and V̄ = V
√

Σ, so that B = Ū V̄ t =
∑r

l=1 ūl v̄
t
l .

Now, the restriction of σ1(B) ≤ β relaxes to ‖ul‖2 ≤ √
β and

‖vl‖2 ≤ √
β, for l = 1, . . . , r .
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Rank, cont’d.

We can control the rank more directly using indicator variables
yl ∈ {0, 1}, for l = 1, . . . , r , and having

∑r
l=1 yl ≤ 1.
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∑r
l=1 yl ≤ 1.

The meaning of yl = 1 is that the rank of B is restricted to be no
more than l. So y1 = · · · = yr = 0 corresponds to B being all zero,
and yr = 1 corresponds to B being allowed to have rank up to r .
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The meaning of yl = 1 is that the rank of B is restricted to be no
more than l. So y1 = · · · = yr = 0 corresponds to B being all zero,
and yr = 1 corresponds to B being allowed to have rank up to r .
Then we impose the rank restriction on Ū and V̄ , via

‖ul‖2 ≤
√

β

r∑

k=l

yk , l = 1, . . . , r ;

‖vl‖2 ≤
√

β

r∑

k=l

yk , l = 1, . . . , r ,

and we force B = Ū V̄ t via the bilinear equations

bij =
∑r

l=1
ūil v̄jl , i, j = 1, . . . , n.
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Rank, cont’d.

We can control the rank more directly using indicator variables
yl ∈ {0, 1}, for l = 1, . . . , r , and having

∑r
l=1 yl ≤ 1.

The meaning of yl = 1 is that the rank of B is restricted to be no
more than l. So y1 = · · · = yr = 0 corresponds to B being all zero,
and yr = 1 corresponds to B being allowed to have rank up to r .
Then we impose the rank restriction on Ū and V̄ , via

‖ul‖2 ≤
√

β

r∑

k=l

yk , l = 1, . . . , r ;

‖vl‖2 ≤
√

β

r∑

k=l

yk , l = 1, . . . , r ,

and we force B = Ū V̄ t via the bilinear equations

bij =
∑r

l=1
ūil v̄jl , i, j = 1, . . . , n.

We even can directly express r(B) as
∑r

l=1 lyl .
We can treat the bilinear equations via standard spatial b&b (e.g.,
McCormick envelopes).
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Maximum-Entropy Sampling
(with Ko and Queyranne; with Anstreicher, Fampa and Williams; with
Burer; with Hoffman (and Williams); with ∅)

Motivation: Environmental monitoring

Define entropy and the problem: Maximum-Entropy Sampling

Properties of entropy

Branch-and-. . .

Bounds

Some references
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Motivation: Environmental Monitoring
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Information = Disorder

“Chance and chance alone has a message for us. Everything
that occurs out of necessity, everything expected, repeated day
in and day out, is mute. Only chance can speak to us. We
read its message much as gypsies read the images made by
coffee grounds at the bottom of a cup.”

- Milan Kundera (The Unbearable Lightness of Being)
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Entropy

R. Clausius (1865) — “entropy” (also Carnot and Kelvin in their
versions of the 2nd law of thermodynamics), arrow of time (“What
then is time? If no one asks me, I know what it is. If I wish to
explain it to him who asks, I do not know.” — St. Augustine)
L. Boltzmann (1877) — statistical mechanics
C. Shannon (1948) — information theory
D. Blackwell (1951) — statistics
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Maximum-Entropy Sampling

N = {1, 2, . . . , n}
Random YN = {Yj : j ∈ N} with continuous density gN

Goal: Choose S ⊂ N , with |S | = s, so that observing YS maximizes the
“information” obtained about YN .

Entropy: h(S) := −E [ln gS(YS)] .
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Nice Properties of Entropy

Submodularity: h(S ∪ T ) + h(S ∩ T ) ≤ h(S) + h(T )
[Another Talk on Approximation Algorithms]

The Gaussian distribution maximizes the entropy for a given
covariance matrix C

Gaussian case: h(S) = ks + k ln det C [S , S ]

Conditional Additivity:

h(N ) =

max
︷ ︸︸ ︷

h(S)
⇔

+

min
︷ ︸︸ ︷

h(N \ S |S)

(justifies our objective function)

Change coordinate systems: Entropy difference is logdet(Jacobian
of transformation)

Complementation:
ln det C [S , S ] = ln det C + ln det C−1[N \ S , N \ S ]
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Not-So-Nice Property

Proposition [Ko, Lee, Queyranne]. The maximum-entropy sampling
problem is NP-Hard (even for the Gaussian diagonally-dominant case)
Proof:

INDEPENDENT SET: Does a simple undirected graph G on n
vertices have an independent set of vertices of cardinality s ?

Let C := A(G) + 3nI

4

2

1

3








12 1 0 0
1 12 1 1
0 1 12 0
0 1 0 12
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(KLQ) Branch . . .

Fixing j out of S :

⇒ Strike out row and column j : C [N , N ] →

C [N − j, N − j]

Fixing j in S :

⇒ Schur complement of C [j, j]: C [N , N ] →

C [N −j, N −j]−C [N −j, j]C−1[j, j]C [j, N −j]

(and solution/bounds are shifted by ln C [j, j] ).

Jon Lee (·) Matrix optimization stories PGMO 31 / 46



. . . and Bound

Lower bounds: Greedy, local-search, rounding heuristics

Upper bounds:
◮ Spectral based bounds

⋆ Ko, Lee, Queyranne ’95 (original B&B and spectral bound)
⋆ Lee ’98 (extension to side constraints)
⋆ Hoffman, Lee & Williams ’01 (spectral partition bounds)
⋆ Lee, Williams ’03 (tightening HLW via ILP and matching)
⋆ Anstreicher, Lee ’04 (generalization of HLW)
⋆ Burer, Lee ’07 (another approach to computing the AL bound)

◮ NLP relaxation
⋆ Anstreicher, Fampa, Lee & Williams ’96 (continuous NLP

relaxation and parallel B&B)
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Complementary Bounds (Anstreicher, Fampa, Lee,

Williams)

ln det C [S , S ] = ln det C + ln det C−1[N \ S , N \ S ]

So a maximum entropy s-subset of N with respect to C is the
complement of a maximum entropy (n − s)-subset of N with
respect to C−1

So a bound on the complementary problem plus the entropy of the
entire system is a bound on the original problem

These complementary bounds can be quite effective
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NLP Bound (AFLW)

max f (x) := ln det

(

Diag(x
pj

j ) C Diag(x
pj

j ) + Diag(d
xj

j − djx
pj

j )

)

subject to
∑

j∈N

aijxj ≤ bi , ∀i; ⇐= CONSTRAINTS

∑

j∈N

xj = s;

0 ≤ xj ≤ 1, ∀j,

where the constants dj > 0 and pj ≥ 1 satisfy
dj ≤ exp(pj − √

pj), and Diag(dj) − C [N , N ] � 0.
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NLP Bound, cont’d

max f (x) := ln det

(

Diag(x
pj

j ) C Diag(x
pj

j ) + Diag(d
xj

j − djx
pj

j )

)

For (

S
︷ ︸︸ ︷

1, 1, . . . , 1,

N\S
︷ ︸︸ ︷

0, 0, . . . , 0)

Diag(d
xj

j − djx
pj

j ) = Diag(

S
︷ ︸︸ ︷

0, 0, . . . , 0,

N\S
︷ ︸︸ ︷

1, 1, . . . , 1) .

Diag(x
pj

j ) C Diag(x
pj

j ) =

(

C [S , S ] 0

0 0

)
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NLP Bound: Properties

Concavity: Assume D � C , pj ≥ 1, 0 < dj ≤ exp(pj − √
pj). Then

f is concave for 0 < x ≤ e

Dominance: Assume that p and d satisfy the above, and p′ ≥ p.
Let f ′ be defined as above, but using p′ for p. Then f ′(x) ≥ f (x) ∀
0 < x ≤ e

Scaling C by γ adds s ln(γ) to the obj. Let

fγ(x) := ln det
(

γXp/2(C − D)Xp/2 + (γD)x
)

− s ln(γ)

◮ Scaling: Assume I � D � C , p = e. Then fγ(x) ≥ f (x) ∀ 0 ≤ x ≤ e,
eT x = s and 0 < γ ≤ 1

◮ Assume D � C , D � I . Then fγ(x) ≥ f (x) ∀ 0 < x ≤ e, eT x = s
and γ ≥ 1, where p is chosen as above

These results give us some guidance for choosing the pj , dj and γ
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Spectral Bound (KLQ)

z ≤
s∑

l=1

ln λl(C )

Determinant = product of eigenvalues.

Eigenvalue interlacing.















λ1 ≥ λ′
1

λ2 ≥ λ′
2

λ3 ≥ λ′
3

...
λs ≥ λ′

s
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Lagrangian Spectral Bound (Lee)

For handling linear side constraints

min
π∈R

m
+

v(π)

where

v(π) :=







s∑

l=1

ln λl (Dπ C Dπ) +
∑

i∈M

πibi






,

and Dπ is the diagonal matrix having

Dπ
jj := exp






−1

2

∑

i∈M

πiaij
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Optimizing the Lagrangian Spectral Bound

vπ is convex (in π)

vπ is analytic when λs (Dπ C Dπ) > λs+1 (Dπ C Dπ)

v(  )

0.005 0.01 0.015 0.02 0.025 0.03

26

26.2

26.4

26.6

π

π

Jon Lee (·) Matrix optimization stories PGMO 39 / 46



Optimizing the Bound, cont’d

Let x l be the eigenvector (of unit Euclidean norm) associated with
λl .

Define the continuous solution x̃ ∈ R
N by x̃j :=

∑s
l=1

(

x l
j

)2
, for

j ∈ N .

Define γ ∈ R
M by γi := bi −∑

j∈N aij x̃j .

If λs > λs+1, then γ is the gradient of f at π.

Can incorporate this in a Quasi-Newton (or, with an expression
for the Hessian, a Newton) method for finding the minimum.
(Implemented using LBFGS-B (Zhu, Byrd, Nocedal) and a coarse
line search)
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Spectral Partition Bound (Hoffman, Lee, Willaims)

Let N = {N1, N2, ..., Nn} denote a partition of N . Let C ′ = 0 except
for C ′[Nk , Nk ] = C [Nk , Nk ].

z ≤
s∑

l=1

ln λl(C
′)

Based on “Fischer’s Inequality”

For N = {{1}, {2}, . . . , {n}} we have “the diagonal bound”

For N = {N , ∅, ∅, . . . , ∅} we have the ordinary spectral bound

As we partition N , the optimal value with respect to C ′ cannot
decrease, but the bound can decrease
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ILP Bound (Lee, Williams)

Observation: Why calculate eigenvalue based bounds for small blocks
of a partition? Just solve the small blocks exactly.
xk(i) = 1 ⇐⇒ pick k elements from block Ni

gs(N ) := max
p
∑

i=1

|Ni |∑

k=1

fk(Ni)xk(i)

s.t.

|Ni |∑

k=1

xk(i) ≤ 1, for i = 1, 2, . . . , p;

p
∑

i=1

|Ni|∑

k=1

kxk(i) = s

xk(i) ∈ {0, 1}, for i = 1, 2, . . . , p,

k = 1, 2, . . . , |Ni |.
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ILP Bound, cont’d

Refines the spectral partition bound.

Calculate via dynamic programming
(assuming |Ni | is bounded):

Boundary conditions:
vt(j) := −∞ when

∑j
i=1 |Ni | < t ≤ s;

v0(0) := 0.

vt(j) = max
0≤k≤min{|Nj|,t}

{fk(Nj) + vt−k(j − 1)} .

Then vs(p) = gs(N )

Can even calculate via Edmonds’ min-weight matching algorithm
when |Ni | ≤ 2.
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Masked Spectral Bound (Anstreicher, Lee)

A mask is a (symmetric) X � 0 having diag(X) = e. The associated
masked spectral bound is

ξC ,s(X) :=
∑s

l=1 ln (λl (C ◦ X))

Special combinatorial cases:

Spectral bound X := E

Diagonal bound X := I

Spectral partition bound X := Diagi(Ei)
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Validity

Based on

det A =
∏

l λl(A)

“Oppenheim’s Inequality”

det A ≤ det A ◦ B/
∏n

j=1 Bjj ,

where A � 0 and B � 0

the eigenvalue inequalities λl(A) ≥ λl(A
′), where A � 0, and A′ is

a principal submatrix of A
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