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Introduction



Problem introduction

We consider the following problem

d
L(u®,0z) uf == D + ZA](UE)OXJUE =0 in Qr,
j=1
B ufxdzo = Ege on wr, (1)
Uie<o =0, y I
:
wr, z' |
where '
= Q= (—00, T] x R x Ry and ;
wr = (—oco, T] x R, with T >0, {7, z - i
*
= we denote z = (t,y,x4) € Qr, and L
Z' = (t,y) € wr, :

Xd
= the unknown u® is a (regular) function from Qr to RY, N > 2,
= forallj=1,...,d —1, Ajis a regular map from R" into Mp(R),

= B belongs to My, n(R) for some 1 < M < N and is of maximal rank. i
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The dependency in € of the system
comes from the boundary term ¢ g°,
where g° is given by, for 2/ € wr,

ge(z/)ZG(z’7z;¢7z;w>, fr, 2 . ¥ 7

where G belongs to H*°(wr x T?), zero wr, Z'
for negative times t, and ¢, are in
R\ {0}. d
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High frequency regime: geometric optics

— We are interested here in the qualitative properties of the solution u° to (1)
when the wavelength ¢ in (1) is small, that is, in the high frequency regime.

— Following the analysis of Lax and Hunter-Majda-Rosales, we look for an exact
solution to (1) under the form of a formal series, i.e. a WKB expansion reading

€U1<z,¥)+62U2(z,¥)+53U3<2,M)+~', (2

€
where ® contains the phases of the solution. This is the framework of

as

geometric optics.

— In the weakly non-linear framework, in the high frequency asymptotic (i.e.
when € — 0), the leading profile U is proven to satisfy a quasi-linear system.

— The exact solution to (1) is then to be approximated by a truncated sum of the
expansion (2).



Difficulties of the problem




Brief state of the art i

= Same boundary value problem, but with only one phase on the boundary:

— Mark Williams. “Singular pseudodifferential operators, symmetrizers,
and oscillatory multidimensional shocks”. In: J. Funct. Anal. 191.1
(2002), pp. 132-209,

— Jean-Francois Coulombel, Olivier Gues, and Mark Williams.
“Resonant leading order geometric optics expansions for quasilinear
hyperbolic fixed and free boundary problems”. In: Comm. Partial
Differential Equations 36.10 (2011), pp. 1797-1859,

— Matthew Hernandez. “Resonant leading term geometric optics
expansions with boundary layers for quasilinear hyperbolic boundary
problems”. In: Comm. Partial Differential Equations 40.3 (2015),
pp. 387-437.



Brief state of the art ii

= Multiple phases for a semilinear problem:

— Jean-Luc Joly, Guy Métivier, and Jeffrey Rauch. “Coherent nonlinear
waves and the Wiener algebra”. In: Ann. Inst. Fourier (Grenoble)
44.1 (1994), pp. 167-196,

— Mark Williams. “Nonlinear geometric optics for hyperbolic boundary
problems”. In: Comm. Partial Differential Equations 21.11-12
(1996), pp. 1829-1895.

= Multiple phases for the quasilinear Cauchy problem:

— Jean-Luc Joly, Guy Métivier, and Jeffrey Rauch. “Coherent and
focusing multidimensional nonlinear geometric optics”. In: Ann. Sci.
Ecole Norm. Sup. (4) 28.1 (1995), pp. 51-113.



Main difficulties

= Boundary value problems.

= Multiple phases on the boundary.

— By nonlinearity, it creates a countable infinite set of frequencies inside
the domain, making more complex the functional framework.



1st work: strongly stable systems
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Set of frequencies inside the domain
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if a1 + a2 is also characteristic, there is resonance.
If az := a1 + a2 is outgoing, a new frequency is created.
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Functional framework : almost-periodic functions

We need a functional framework allowing to consider functions of the form

Z Ua(z) €%°/%.

acF

We introduce new fast variables 6 = (01,60,) = (2’ - p/e, 2" -4 /e) € T? and
Xd := x4/€ € Ry so that, if a = ((, &) = (nlnp + ngw,f),

UQ(Z) e/’zu/s — Ua(z) ef"1 01 einz 0> ei.g Xd

We use the framework of almost-periodic functions in the sense of Bohr.
Roughly, these are series of the form

s e f
E Ua(z) emo1 gin 2e'£><d
«@

with uniform convergence and norm for (x4, x4) and of Sobolev type for (Z’, ).



Ansatz and main result

We look for an approximate solution of (1) under the form of a formal series
us*(z) = v(z,2' - ¢/e, 2 - /e, xq/€), where v is given by

v(z,0,x4) == Zik Uk(z,0, xa),
k=1

with U; an almost periodic function in the sense of Bohr.

Theorem (K. 2021)

Under the uniform Kreiss-Lopatinskii condition and with assumptions on the
set of resonances, for s > 0 large enough, there exists a time T > 0 and a
leading profile U, solution to the problem (3) given below, that governs the
evolution of the leading profile.



WKB cascade

For u®?" to formally satisfy the system (1), a WKB study and a decoupling of
the cascade obtained shows that the leading profile U; has to satisfy the
following system

EU = U (3a)
E[L(0,8.) Uy + M(U, Ul)] -0 (3b)
B Ui|xy—0,x4=0 = G (3¢c)

Ule<o = 0. (3d)

with E a projector.

Existence of a solution to (3) is obtained using energy estimates without loss of
derivative. Two terms have to be treated.



Transport part

If Up reads as
§ : 1 in1 01 _ina6p _i
ZQXd U M /2ze/§Xd,

then the transport part E[L(O7 0z) Ul} reads as a sum of transport terms

E|:L(O7 82) Ul} — Z (8t + Vo - vx) U;(Z) ein191 ein29zef§Xd’

@

which are easy to treat in energy estimates.

Remark. The sign of the xy-component of v,, determines if the frequency « is
incoming or outgoing.
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Quadratic part

As for the quadratic term E[M(Ul, Ul)], we have

E[M(Ul, Ul)] _ Z Tosa L (ULln ni (,9—‘—/7; w) U(l,/ ei(n1+ni)91 ei(nz+né)926i(§+£/)xd.

a,a’
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= This term is quadratic.
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Quadratic part

As for the quadratic term E[M(Ul, Ul)], we have

E[M(Ul, Ul)] _ Z Tosa L (ULln ni 99_‘_,7; w) U(l,/ ei(n1+ni)91 ei(nz+né)926i(§+£/)xd.

Remarks.
= This term is quadratic.
= The coefficient (n{ @+ nb w) acts as a derivative in 0.

= Only the terms for which the frequency o+ o’ is characteristic remain, this
is resonance.
— If @ and o are collinear, there is always resonance, this is called self-
interaction, and generates terms of Burgers type (udgu).

— If not, this is a real resonance, and generates terms of convolution type,
that are more difficult to handle.

= The main additional difficulty compared to [Joly-Métivier-Rauch 1995] is
the lack of symmetry in the resonance terms.
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Proof of stability ?

= To prove stability, one solution consists in studying the difference
N
@ ()
€ k k
T e Ukl.,—= |,
Seru(,20)

but we do not know if the exact solution u® exists on a time interval
independent of e.

= One could also use a large number of correctors Uy of the expansion

usPP ~ Zsk Ui(z,0, xa)-

k>1

This leads to questions about the functional framework.

12



2nd work: instability of the expansion




Weakly stable problems

Weakening the assumption on the boundary allows amplification to happen on
the boundary.

Considering a perturbation H of small amplitude O(¢") (M > 3) of a periodic
forcing boundary term G of amplitude O(¢?),

! !
eg(Z)=£G (Z,jz€g0> +eMH (z',z 51/})7

with a particular configuration of boundary frequencies ¢ and 1, we prove (K.
2022), on a study model, that an instability may be created.
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Thank you for your attention !
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