

School of Mathematics

Interior Point Methods for Linear Programming: Motivation & Theory

Jacek Gondzio Email: J.Gondzio@ed.ac.uk URL: http://www.maths.ed.ac.uk/~gondzio

Outline

• IPM for LP: Motivation

- complementarity conditions
- first order optimality conditions
- central trajectory
- primal-dual framework
- Polynomial Complexity of IPM
 - Newton method
 - short step path-following method
 - polynomial complexity proof

Building Blocks of the IPM

What do we need to derive the **Interior Point Method**?

- duality theory: Lagrangian function; first order optimality conditions.
- logarithmic barriers.
- Newton method.

Primal-Dual Pair of Linear Programs

Primal

Dual

$$\begin{array}{ll} \min & c^T x\\ \text{s.t.} & Ax &= b,\\ & x \ge 0; \end{array}$$

 $\begin{array}{ll} \max & b^T y \\ \text{s.t.} & A^T y + s = c, \\ & s \ge 0. \end{array}$

Lagrangian

$$L(x,y) = c^T x - y^T (Ax - b) - s^T x.$$

Optimality Conditions

$$Ax = b,$$

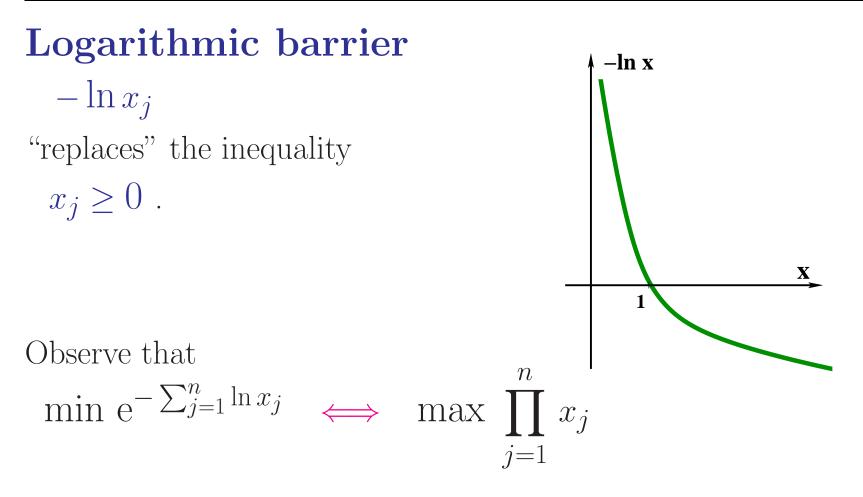
$$A^{T}y + s = c,$$

$$XSe = 0, \quad (\text{ i.e., } x_{j} \cdot s_{j} = 0 \quad \forall j),$$

$$(x, s) \ge 0,$$

 $X = diag\{x_1, \cdots, x_n\}, S = diag\{s_1, \cdots, s_n\}, e = (1, \cdots, 1) \in \mathcal{R}^n.$

Paris, January 2018



The minimization of $-\sum_{j=1}^{n} \ln x_j$ is equivalent to the maximization of the product of distances from all hyperplanes defining the positive orthant: it prevents all x_j from approaching zero.

Logarithmic barrier

Replace the **primal** LP

$$\begin{array}{ll} \min & c^T x\\ \text{s.t.} & Ax &= b,\\ & x \ge 0, \end{array}$$

with the **primal barrier program**

min
$$c^T x - \mu \sum_{j=1}^n \ln x_j$$

s.t. $Ax = b.$

Lagrangian:
$$L(x, y, \mu) = c^T x - y^T (Ax - b) - \mu \sum_{j=1}^n \ln x_j.$$

Paris, January 2018

J. Gondzio

Conditions for a stationary point of the Lagrangian

$$\begin{aligned} \nabla_x L(x,y,\mu) &= c - A^T y - \mu X^{-1} e = 0 \\ \nabla_y L(x,y,\mu) &= & Ax - b = 0, \end{aligned} \\ \text{where } X^{-1} &= diag\{x_1^{-1}, x_2^{-1}, \cdots, x_n^{-1}\}. \end{aligned}$$

Let us denote

$$s = \mu X^{-1}e$$
, i.e. $XSe = \mu e$.

The First Order Optimality Conditions are:

$$Ax = b,$$

$$A^{T}y + s = c,$$

$$XSe = \mu e,$$

$$(x, s) > 0.$$

The pronunciation of Greek letter μ [mi]

Robert De Niro, Taxi Driver (1976)

Paris, January 2018

Central Trajectory

The first order optimality conditions for the barrier problem

$$Ax = b,$$

$$A^{T}y + s = c,$$

$$XSe = \mu e,$$

$$(x, s) \ge 0$$

approximate the first order optimality conditions for the LP

$$Ax = b,$$

$$A^{T}y + s = c,$$

$$XSe = 0,$$

$$(x, s) \ge 0$$

more and more closely as μ goes to zero.

Central Trajectory

Parameter μ controls the distance to optimality.

$$c^T x - b^T y = c^T x - x^T A^T y = x^T (c - A^T y) = x^T s = n\mu.$$

Analytic centre (μ -centre): a (unique) point

$$(x(\mu), y(\mu), s(\mu)), \quad x(\mu) > 0, \ s(\mu) > 0$$

that satisfies FOC.

The path

$$\{(x(\mu), y(\mu), s(\mu)): \mu > 0\}$$

is called the **primal-dual central trajectory**.

Newton Method

is used to find a stationary point of the barrier problem.

Recall how to use Newton Method to find a root of a nonlinear equation

$$f(x) = 0.$$

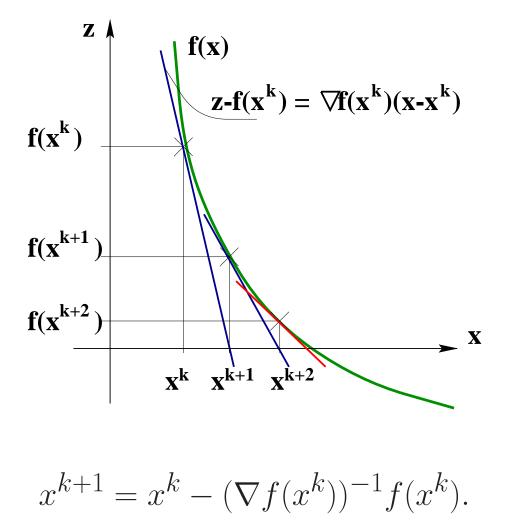
A tangent line

$$z - f(x^k) = \nabla f(x^k) \cdot (x - x^k)$$

is a local approximation of the graph of the function f(x). Substituting z = 0 defines a new point

$$x^{k+1} = x^k - (\nabla f(x^k))^{-1} f(x^k).$$

Newton Method



Apply Newton Method to the FOC

The first order optimality conditions for the barrier problem form a large system of nonlinear equations

$$f(x, y, s) = 0,$$

where $f : \mathcal{R}^{2n+m} \mapsto \mathcal{R}^{2n+m}$ is a mapping defined as follows:

$$f(x, y, s) = \begin{bmatrix} Ax - b \\ A^T y + s - c \\ XSe - \mu e \end{bmatrix}$$

Actually, the first two terms of it are **linear**; only the last one, corresponding to the complementarity condition, is **nonlinear**.

Newton Method (cont'd)

Note that

$$\nabla f(x, y, s) = \begin{bmatrix} A & 0 & 0 \\ 0 & A^T & I \\ S & 0 & X \end{bmatrix}.$$

Thus, for a given point (x, y, s) we find the Newton direction $(\Delta x, \Delta y, \Delta s)$ by solving the system of linear equations:

$$\begin{bmatrix} A & 0 & 0 \\ 0 & A^T & I \\ S & 0 & X \end{bmatrix} \cdot \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta s \end{bmatrix} = \begin{bmatrix} b - Ax \\ c - A^Ty - s \\ \mu e - XSe \end{bmatrix}.$$

Interior-Point Framework The logarithmic barrier $-\ln x_i$

"replaces" the inequality

$$x_j \ge 0.$$

We derive the **first order optimality conditions** for the primal barrier problem:

$$Ax = b,$$

$$A^Ty + s = c,$$

$$XSe = \mu e,$$

and apply **Newton method** to solve this system of (nonlinear) equations.

Actually, we fix the barrier parameter μ and make only **one** (damped) Newton step towards the solution of FOC. We do not solve the current FOC exactly. Instead, we immediately reduce the barrier parameter μ (to ensure progress towards optimality) and repeat the process.

Interior Point Algorithm

Initialize

$$k = 0 \qquad (x^0, y^0, s^0) \in \mathcal{F}^0$$

$$\mu_0 = \frac{1}{n} \cdot (x^0)^T s^0 \qquad \alpha_0 = 0.9995$$

Repeat until optimality

$$k = k + 1$$

 $\mu_k = \sigma \mu_{k-1}$, where $\sigma \in (0, 1)$
 $\Delta = (\Delta x, \Delta y, \Delta s) =$ Newton direction towards μ -centre

Ratio test:

$$\alpha_P := \max \{ \alpha > 0 : x + \alpha \Delta x \ge 0 \},$$

 $\alpha_D := \max \{ \alpha > 0 : s + \alpha \Delta s \ge 0 \}.$

Make step:

$$x^{k+1} = x^{k} + \alpha_0 \alpha_P \Delta x,$$

$$y^{k+1} = y^{k} + \alpha_0 \alpha_D \Delta y,$$

$$s^{k+1} = s^{k} + \alpha_0 \alpha_D \Delta s.$$

Notations

$$X = diag\{x_1, x_2, \cdots, x_n\} = \begin{bmatrix} x_1 & & \\ & x_2 & \\ & & \ddots & \\ & & & x_n \end{bmatrix}$$

$$e = (1, 1, \cdots, 1) \in \mathcal{R}^n, \ X^{-1} = diag\{x_1^{-1}, x_2^{-1}, \cdots, x_n^{-1}\}.$$

An equation $XSe = \mu e$, is equivalent to $x_j s_j = \mu$, $\forall j = 1, 2, \cdots, n$.

Notations(cont'd)

Primal feasible set $\mathcal{P} = \{x \in \mathcal{R}^n \mid Ax = b, x \ge 0\}.$ Primal strictly feasible set $\mathcal{P}^0 = \{x \in \mathcal{R}^n \mid Ax = b, x > 0\}.$ Dual feasible set $\mathcal{D} = \{y \in \mathcal{R}^m, s \in \mathcal{R}^n \mid A^Ty + s = c, s \ge 0\}.$ Dual strictly feasible set $\mathcal{D}^0 = \{y \in \mathcal{R}^m, s \in \mathcal{R}^n \mid A^Ty + s = c\}$

 $c, s > 0\}.$

 $\begin{aligned} &Primal-dual\ feasible\ {\rm set}\\ &\mathcal{F}\ = \{(x,y,s) \,|\, Ax = b,\ A^Ty + s = c,\ (x,s) \geq 0\}.\\ &Primal-dual\ strictly\ feasible\ {\rm set}\\ &\mathcal{F}^0 = \{(x,y,s) \,|\, Ax = b,\ A^Ty + s = c,\ (x,s) > 0\}. \end{aligned}$

Path-Following Algorithm

The analysis given in this lecture comes from the book of **Steve Wright**: *Primal-Dual Interior-Point Methods*, SIAM Philadelphia, 1997.

We analyze a **feasible** interior-point algorithm with the following properties:

- all its iterates are feasible and stay in a close neighbourhood of the central path;
- the iterates follow the central path towards optimality;
- systematic (though slow) reduction of duality gap is ensured.

This algorithm is called the **short-step path-following method**. Indeed, it makes very slow progress (short-steps) to optimality.

J. Gondzio

Central Path Neighbourhood

Assume a primal-dual strictly feasible solution $(x, y, s) \in \mathcal{F}^0$ lying in a neighbourhood of the central path is given; namely (x, y, s)satisfies:

$$Ax = b,$$

$$A^Ty + s = c,$$

$$XSe \approx \mu e.$$

We define a θ -neighbourhood of the central path $N_2(\theta)$, a set of primal-dual strictly feasible solutions $(x, y, s) \in \mathcal{F}^0$ that satisfy:

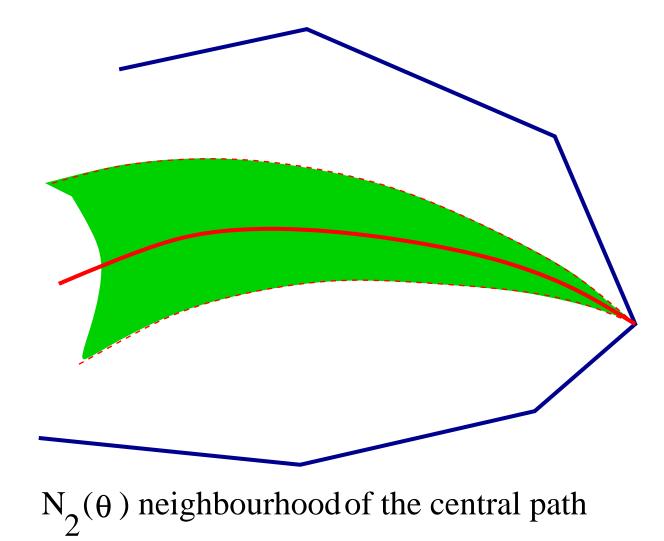
$$\|XSe - \mu e\| \le \theta \mu,$$

where $\theta \in (0, 1)$ and the barrier μ satisfies:

$$x^T s = n\mu.$$

Hence $N_2(\theta) = \{(x, y, s) \in \mathcal{F}^0 \mid ||XSe - \mu e|| \le \theta \mu\}.$

Central Path Neighbourhood



Progress towards optimality

Assume a primal-dual strictly feasible solution $(x, y, s) \in N_2(\theta)$ for some $\theta \in (0, 1)$ is given.

Interior point algorithm tries to move from this point to another one that also belongs to a θ -neighbourhood of the central path but corresponds to a smaller μ . The required reduction of μ is small:

$$\mu^{k+1} = \sigma \mu^k, \quad \text{where} \quad \sigma = 1 - \beta / \sqrt{n},$$
 for some $\beta \in (0, 1).$

This is a **short-step** method: It makes short steps to optimality.

Progress towards optimality

Given a new μ -centre, interior point algorithm computes Newton direction:

$$\begin{bmatrix} A & 0 & 0 \\ 0 & A^T & I \\ S & 0 & X \end{bmatrix} \cdot \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta s \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \sigma \mu e - X S e \end{bmatrix},$$

and makes step in this direction.

Magic numbers (will be explained later):

$$\theta = 0.1$$
 and $\beta = 0.1$.

 θ controls the proximity to the central path; β controls the progress to optimality.

How to prove the $\mathcal{O}(\sqrt{n})$ complexity result

We will prove the following:

- full step in Newton direction is feasible;
- the new iterate

$$\begin{split} &(x^{k+1},y^{k+1},s^{k+1})\!=\!(x^k,y^k,s^k)\!+\!(\Delta x^k,\Delta y^k,\Delta s^k)\\ &\text{belongs to the θ-neighbourhood of the new μ-centre}\\ &(\text{with $\mu^{k+1}=\sigma\mu^k$}); \end{split}$$

• duality gap is reduced $1 - \beta / \sqrt{n}$ times.

$\mathcal{O}(\sqrt{n})$ complexity result

Note that since at one iteration duality gap is reduced $1 - \beta/\sqrt{n}$ times, after \sqrt{n} iterations the reduction achieves:

$$(1 - \beta / \sqrt{n})^{\sqrt{n}} \approx e^{-\beta}.$$

After $C \cdot \sqrt{n}$ iterations, the reduction is $e^{-C\beta}$. For sufficiently large constant C the reduction can thus be arbitrarily large (i.e. the duality gap can become arbitrarily small).

Hence this algorithm has complexity $\mathcal{O}(\sqrt{n})$.

This should be understood as follows:

"after the number of iterations proportional to \sqrt{n} the algorithm solves the problem".

Worst-Case Complexity Result

Technical Results Lemma 1

Newton direction $(\Delta x, \Delta y, \Delta s)$ defined by the equation system

$$\begin{bmatrix} A & 0 & 0 \\ 0 & A^T & I \\ S & 0 & X \end{bmatrix} \cdot \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta s \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \sigma \mu e - X S e \end{bmatrix}, \quad (1)$$

satisfies:

$$\Delta x^T \Delta s = 0.$$

Proof:

From the first two equations in (1) we get

$$A\Delta x = 0$$
 and $\Delta s = -A^T \Delta y$.

Hence

$$\Delta x^T \Delta s = \Delta x^T \cdot (-A^T \Delta y) = -\Delta y^T \cdot (A \Delta x) = 0.$$

Technical Results (cont'd)

Lemma 2

Let $(\Delta x, \Delta y, \Delta s)$ be the Newton direction that solves the system (1). The new iterate

$$(\bar{x}, \bar{y}, \bar{s}) = (x, y, s) + (\Delta x, \Delta y, \Delta s)$$

satisfies

$$\bar{x}^T\bar{s}=n\bar{\mu},$$

where

 $\bar{\mu} = \sigma \mu.$

J. Gondzio

Proof: From the third equation in (1) we get $S\Delta x + X\Delta s = -XSe + \sigma\mu e.$

By summing the n components of this equation we obtain

$$e^{T}(S\Delta x + X\Delta s) = s^{T}\Delta x + x^{T}\Delta s = -e^{T}XSe + \sigma\mu e^{T}e$$
$$= -x^{T}s + n\sigma\mu = -x^{T}s \cdot (1 - \sigma).$$

Thus

$$\bar{x}^T \bar{s} = (x + \Delta x)^T (s + \Delta s)$$

= $x^T s + (s^T \Delta x + x^T \Delta s) + (\Delta x)^T \Delta s$
= $x^T s + (\sigma - 1) x^T s + 0 = \sigma x^T s$,

which is equivalent to:

$$n\bar{\mu} = \sigma n\mu.$$

Reminder: Norms of the vector $x \in \mathbb{R}^n$.

$$\|x\| = (\sum_{j=1}^{n} x_j^2)^{1/2}$$
$$\|x\|_{\infty} = \max_{\substack{j \in \{1..n\}\\n}} |x_j|$$
$$\|x\|_1 = \sum_{\substack{j=1\\j=1}}^{n} |x_j|$$

For any $x \in \mathcal{R}^n$:

$$\begin{aligned} \|x\|_{\infty} &\leq \|x\|_{1} \\ \|x\|_{1} &\leq n \cdot \|x\|_{\infty} \\ \|x\|_{\infty} &\leq \|x\| \\ \|x\| &\leq \sqrt{n} \cdot \|x\|_{\infty} \\ \|x\| &\leq \|x\|_{1} \\ \|x\|_{1} &\leq \sqrt{n} \cdot \|x\| \end{aligned}$$

Reminder: Triangle Inequality

For any vectors p, q and r and for any norm $\|.\|$

$$||p - q|| \le ||p - r|| + ||r - q||.$$

The relation between *algebraic* and *geometric* means. For any scalars a and b such that $ab \ge 0$:

$$\sqrt{|ab|} \le \frac{1}{2} \cdot |a+b|.$$

W

Technical Result (algebra)

Lemma 3 Let u and v be any two vectors in \mathcal{R}^n such that $u^T v \ge 0$. Then

$$||UVe|| \le 2^{-3/2} ||u+v||^2,$$

here $U = diag\{u_1, \cdots, u_n\}, V = diag\{v_1, \cdots, v_n\}.$

Proof: Let us partition all products $u_j v_j$ into positive and negative ones:

$$\mathcal{P} = \{j \mid u_j v_j \ge 0\} \quad \text{and} \quad \mathcal{M} = \{j \mid u_j v_j < 0\}:$$
$$0 \le u^T v = \sum_{j \in \mathcal{P}} u_j v_j + \sum_{j \in \mathcal{M}} u_j v_j = \sum_{j \in \mathcal{P}} |u_j v_j| - \sum_{j \in \mathcal{M}} |u_j v_j|.$$

Proof (cont'd)

We can now write

$$\begin{aligned} \|UVe\| &= (\|[u_jv_j]_{j\in\mathcal{P}}\|^2 + \|[u_jv_j]_{j\in\mathcal{M}}\|^2)^{1/2} \\ &\leq (\|[u_jv_j]_{j\in\mathcal{P}}\|_1^2 + \|[u_jv_j]_{j\in\mathcal{M}}\|_1^2)^{1/2} \\ &\leq (2\|[u_jv_j]_{j\in\mathcal{P}}\|_1^2)^{1/2} \\ &\leq \sqrt{2}\|[\frac{1}{4}(u_j+v_j)^2]_{j\in\mathcal{P}}\|_1 \\ &= 2^{-3/2}\sum_{j\in\mathcal{P}} (u_j+v_j)^2 \\ &\leq 2^{-3/2}\sum_{j=1}^n (u_j+v_j)^2 \\ &= 2^{-3/2}\|u+v\|^2, \quad \text{as requested.} \end{aligned}$$

IPM Technical Results (cont'd)

Lemma 4 If $(x, y, s) \in N_2(\theta)$ for some $\theta \in (0, 1)$, then $(1 - \theta)\mu \leq x_j s_j \leq (1 + \theta)\mu \quad \forall j.$

In other words,

$$\min_{\substack{j \in \{1..n\}}} x_j s_j \ge (1-\theta)\mu,$$
$$\max_{\substack{j \in \{1..n\}}} x_j s_j \le (1+\theta)\mu.$$

Proof:

Since $||x||_{\infty} \leq ||x||$, from the definition of $N_2(\theta)$,

$$N_2(\theta) = \{ (x, y, s) \in \mathcal{F}^0 \mid ||XSe - \mu e|| \le \theta \mu \},\$$

we conclude

$$\|XSe - \mu e\|_{\infty} \le \|XSe - \mu e\| \le \theta \mu.$$

Hence

$$|x_j s_j - \mu| \le \theta \mu \quad \forall j,$$

which is equivalent to

$$-\theta\mu \leq x_j s_j - \mu \leq \theta\mu \quad \forall j.$$

Thus

$$(1-\theta)\mu \leq x_j s_j \leq (1+\theta)\mu \quad \forall j.$$

IPM Technical Results (cont'd) Lemma 5

If $(x, y, s) \in N_2(\theta)$ for some $\theta \in (0, 1)$, then

$$||XSe - \sigma \mu e||^2 \le \theta^2 \mu^2 + (1 - \sigma)^2 \mu^2 n.$$

Proof:

Note first that

$$e^{T}(XSe - \mu e) = x^{T}s - \mu e^{T}e = n\mu - n\mu = 0.$$

Therefore

$$\begin{split} \|XSe - \sigma \mu e\|^2 \\ &= \|(XSe - \mu e) + (1 - \sigma) \mu e\|^2 \\ &= \|XSe - \mu e\|^2 + 2(1 - \sigma) \mu e^T (XSe - \mu e) + (1 - \sigma)^2 \mu^2 e^T e \\ &\leq \theta^2 \mu^2 + (1 - \sigma)^2 \mu^2 n. \end{split}$$

IPM Technical Results (cont'd)

Lemma 6
If
$$(x, y, s) \in N_2(\theta)$$
 for some $\theta \in (0, 1)$, then
$$\|\Delta X \Delta S e\| \leq \frac{\theta^2 + n(1-\sigma)^2}{2^{3/2}(1-\theta)}\mu.$$

Proof: 3rd equation in the Newton system gives $S\Delta x + X\Delta s = -XSe + \sigma \mu e.$

Having multiplied it with $(XS)^{-1/2}$, we obtain $X^{-1/2}S^{1/2}\Delta x + X^{1/2}S^{-1/2}\Delta s = (XS)^{-1/2}(-XSe + \sigma\mu e).$

J. Gondzio

Proof (cont'd) Define $u = X^{-1/2}S^{1/2}\Delta x$ and $v = X^{1/2}S^{-1/2}\Delta s$ and observe that (by Lemma 1) $u^T v = \Delta x^T \Delta s = 0$. Now apply Lemma 3: $\|\Delta X \Delta S e\| = \|(X^{-1/2} S^{1/2} \Delta X) (X^{1/2} S^{-1/2} \Delta S) e\|$ $< 2^{-3/2} \|X^{-1/2}S^{1/2}\Delta x + X^{1/2}S^{-1/2}\Delta s\|^2$ $= 2^{-3/2} \|X^{-1/2}S^{-1/2}(-XSe + \sigma\mu e)\|^2$ $= 2^{-3/2} \sum_{j=1}^{n} \frac{(-x_j s_j + \sigma \mu)^2}{x_j s_j}$ $\leq 2^{-3/2} \frac{\|XSe - \sigma\mu e\|^2}{\min_i x_i s_i}$ $\leq \frac{\theta^2 + n(1-\sigma)^2}{2^{3/2}(1-\theta)}\mu \qquad \text{(by Lemmas 4 and 5)}.$

Magic Numbers

We have previously set two parameters for the short-step path-following method:

 $\theta \in [0.05, 0.1]$ and $\beta \in [0.05, 0.1]$.

Now it's time to justify this particular choice.

Both θ and β have to be small to make sure that a full step in the Newton direction does not take the new iterate outside the neighbourhood $N_2(\theta)$.

 θ controls the proximity to the central path; β controls the progress to optimality.

Magic numbers choice lemma

Lemma 7 If $\theta \in [0.05, 0.1]$ and $\beta \in [0.05, 0.1]$, then

$$\frac{\theta^2 + n(1-\sigma)^2}{2^{3/2}(1-\theta)} \le \sigma\theta.$$

Proof:

Recall that

$$\sigma = 1 - \beta / \sqrt{n}.$$

Hence

$$n(1-\sigma)^2 = \beta^2$$

and for any $\beta \in [0.05, 0.1]$ (for any $n \ge 1$) $\sigma \ge 0.9$. Substituting $\theta \in [0.05, 0.1]$ and $\beta \in [0.05, 0.1]$, we obtain $\frac{\theta^2 + n(1-\sigma)^2}{2^{3/2}(1-\theta)} = \frac{0.1^2 + 0.1^2}{2^{3/2} \cdot 0.9} \le 0.02 \le 0.9 \cdot 0.1 \le \sigma \theta.$

J. Gondzio

L3&4: IPMs for LP

Magic Numbers

Set $\theta = 0.07$ and $\beta = 0.07$

0.07 is a **Super Number**.

The name is Bond, James Bond.

Paris, January 2018

Full Newton step in $N_2(\theta)$

Lemma 8 Suppose $(x, y, s) \in N_2(\theta)$ and $(\Delta x, \Delta y, \Delta s)$ is the Newton direction computed from the system (1). Then the new iterate $(\bar{x}, \bar{y}, \bar{z}) = (x, y, s) + (\Delta x, \Delta y, \Delta s)$

 $(\bar{x}, \bar{y}, \bar{s}) = (x, y, s) + (\Delta x, \Delta y, \Delta s)$

satisfies $(\bar{x}, \bar{y}, \bar{s}) \in N_2(\theta)$, i.e. $\|\bar{X}\bar{S}e - \bar{\mu}e\| \leq \theta\bar{\mu}$.

Proof: From Lemma 2, the new iterate $(\bar{x}, \bar{y}, \bar{s})$ satisfies $\bar{x}^T \bar{s} = n \bar{\mu} = n \sigma \mu$,

so we have to prove that $\|\bar{X}\bar{S}e - \bar{\mu}e\| \leq \theta\bar{\mu}$. For a given component $j \in \{1..n\}$, we have

$$\bar{x}_j \bar{s}_j - \bar{\mu} = (x_j + \Delta x_j)(s_j + \Delta s_j) - \bar{\mu} = x_j s_j + (s_j \Delta x_j + x_j \Delta s_j) + \Delta x_j \Delta s_j - \bar{\mu} = x_j s_j + (-x_j s_j + \sigma \mu) + \Delta x_j \Delta s_j - \sigma \mu = \Delta x_j \Delta s_j.$$

J. Gondzio

Proof (cont'd)

Thus, from Lemmas 6 and 7, we get

$$\begin{aligned} \|\bar{X}\bar{S}e - \bar{\mu}e\| &= \|\Delta X\Delta Se\| \\ &\leq \frac{\theta^2 + n(1-\sigma)^2}{2^{3/2}(1-\theta)}\mu \\ &\leq \sigma\theta\mu \\ &= \theta\bar{\mu}. \end{aligned}$$

A property of log function

Lemma 9 For all $\delta > -1$:

 $\ln(1+\delta) \le \delta.$

Proof:

Consider the function

$$f(\delta) = \delta - \ln(1 + \delta)$$

and its derivative

$$f'(\delta) = 1 - \frac{1}{1+\delta} = \frac{\delta}{1+\delta}.$$

Obviously $f'(\delta) < 0$ for $\delta \in (-1,0)$ and $f'(\delta) > 0$ for $\delta \in (0,\infty)$. Hence f(.) has a *minimum* at $\delta = 0$. We find that $f(\delta = 0) = 0$. Consequently, for any $\delta \in (-1,\infty)$, $f(\delta) \ge 0$, i.e.

$$\delta - \ln(1 + \delta) \ge 0.$$

$\mathcal{O}(\sqrt{n})$ Complexity Result

Theorem 10

Given $\epsilon > 0$, suppose that a feasible starting point $(x^0, y^0, s^0) \in N_2(0.1)$ satisfies

$$(x^0)^T s^0 = n\mu^0$$
, where $\mu^0 \le 1/\epsilon^{\kappa}$,

for some positive constant κ . Then there exists an index K with $K = \mathcal{O}(\sqrt{n} \ln(1/\epsilon))$ such that

$$\mu^k \le \epsilon, \quad \forall k \ge K.$$

$\mathcal{O}(\sqrt{n})$ Complexity Result

Proof: From Lemma 2, $\mu^{k+1} = \sigma \mu^k$. Having taken logarithms of both sides of this equality we obtain

$$\ln \mu^{k+1} = \ln \sigma + \ln \mu^k.$$

By repeatedly applying this formula and using $\mu^0 \leq 1/\epsilon^{\kappa}$, we get $\ln \mu^k = k \ln \sigma + \ln \mu^0 \leq k \ln(1 - \beta/\sqrt{n}) + \kappa \ln(1/\epsilon)$.

From Lemma 9 we have $\ln(1-\beta/\sqrt{n}) \leq -\beta/\sqrt{n}$. Thus $\ln \mu^k \leq k(-\beta/\sqrt{n}) + \kappa \ln(1/\epsilon)$.

To satisfy $\mu^k \leq \epsilon$, we need:

$$k(-\beta/\sqrt{n}) + \kappa \ln(1/\epsilon) \le \ln \epsilon.$$

This inequality holds for any $k \ge K$, where

$$K = \frac{\kappa + 1}{\beta} \cdot \sqrt{n} \cdot \ln(1/\epsilon).$$

Polynomial Complexity Result

Main ingredients of the polynomial complexity result for the shortstep path-following algorithm:

Stay close to the central path:

all iterates stay in the $N_2(\theta)$ neighbourhood of the central path.

Make (slow) progress towards optimality: reduce systematically duality gap

$$\mu^{k+1} = \sigma \mu^k,$$

where

$$\sigma = 1 - \beta / \sqrt{n},$$

for some $\beta \in (0, 1)$.

Reading about IPMs

S. Wright

Primal-Dual Interior-Point Methods, SIAM Philadelphia, 1997.

Gondzio

Interior point methods 25 years later, *European J. of Operational Research* 218 (2012) 587-601. http://www.maths.ed.ac.uk/~gondzio/reports/ipmXXV.html

Gondzio and Grothey

Direct solution of linear systems of size 10⁹ arising in optimization with interior point methods, in: *Parallel Processing and Applied Mathematics PPAM 2005*, R. Wyrzykowski, J. Dongarra, N. Meyer and J. Wasniewski (eds.), *Lecture Notes in Computer Science*, 3911, Springer-Verlag, Berlin, 2006, pp 513–525.

OOPS: Object-Oriented Parallel Solver

http://www.maths.ed.ac.uk/~gondzio/parallel/solver.html