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Outline

e IPM for LP: Motivation

— complementarity conditions

— first order optimality conditions
— central trajectory

— primal-dual framework

e Polynomial Complexity of IPM

— Newton method
— short step path-following method
— polynomial complexity proot
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J. Gondzio L3&4: IPMs for LP
Building Blocks of the IPM

What do we need to derive the Interior Point Method?

e duality theory:
Lagrangian function;
first order optimality conditions.

e logarithmic barriers.

e Newton method.
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Primal-Dual Pair of Linear Programs

Primal Dual
min ! x max  bly
st. Ax =0, st. Aly+s=rc¢
x > 0; s > 0.
Lagrangian

L(z,y) = ' o —y' (Az — b) — s’ z.
Optimality Conditions

Ax = b,

ATy+s = ¢,
XSe =0, (ie, zj-s;=0 Vj),

(x,s) > 0,

X=diag{zy, - ,xn}, S=diag{sy, - ,sn}t,e=(1,---,1)eR™
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Logarithmic barrier

—In X
—In oy
“replaces” the inequality
X
1
Observe that .
' — 21 Inz; .
min e~ &=t = max |] =;
1=1
The minimization of — ?:1 In z; is equivalent to the maximization

of the product of distances from all hyperplanes defining the positive
orthant: 1t prevents all x; from approaching zero.
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Logarithmic barrier

Replace the primal LP
T

min ¢
st. Az =0,
x > 0,

with the primal barrier program

n
min ¢z —p > Inx;

i=1
s.t. Ax =b.
n
Lagrangian:  L(z,y,p) =c' 2 —y! (Az — b) — Z Inx;.
7=1
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Conditions for a stationary point of the Lagrangian

ViLl(z,y,p) = c—Aly — pX"te = 0
VyL(z,y, 1) = Axr —b =0,
where X ! dzag{a:l , T Lot

Let us denote

S = ,uX_le, ie. XSe=pue.

The First Order Optimality Conditions are:

Ax = b,

Aly+s = ¢,
XSe = e,

(x,s) > 0.
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The pronunciation of Greek letter p [mi

g I| "
"II’-'JII.;: talkin' to me!?

Robert De Niro, Taxi Driver (1976)
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Central Trajectory

The first order optimality conditions for the barrier problem

Axr = b,
Aly+s = ¢,
XSe = pe,
(,5) >0

approximate the first order optimality conditions for the LP

Ax = b,
Aly+s = ¢,
XSe = 0,
(x,s) > 0

more and more closely as p goes to zero.
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Central Trajectory

Parameter 1 controls the distance to optimality.

clo—bly = clo—alAly = xT(c—ATy) = gls = nu.

Analytic centre (u-centre): a (unique) point

(@(p),y(p), s(p)), () >0, s(pu) >0
that satisfies FOC.

The path

{(@(p), y(p), s(p)) - > 0}
is called the primal-dual central trajectory.
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Newton Method

is used to find a stationary point of the barrier problem.

Recall how to use Newton Method to find a root of a nonlinear
equation
f(z)=0.

A tangent line
¢ — fla¥) = V(") - (2 —2F)

is a local approximation of the graph of the function f(x).
Substituting z = 0 defines a new point

P = b — (U f(h) T ().
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Newton Method

Z A

f(x)
z-f(x) = VE(X")(x-x*)
f(x*)
f(Xk+1)
)k yk+l X\k+2\

= — (V") ),
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Apply Newton Method to the FOC

The first order optimality conditions for the barrier problem form a
large system of nonlinear equations

flz,y,s) =0,
where f : R s R2MHM i 4 mapping defined as follows:
I Ar — b |
f(xayas): ATy‘|‘S—C :
XSe — e

Actually, the first two terms of it are linear; only the last one,
corresponding to the complementarity condition, is nonlinear.
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Newton Method (cont’d)

Note that
0
AT
0

Vf(z,y,s) =

nNno
o~ S

Thus, for a given point (z,y, s) we find the Newton direction
(Az, Ay, As) by solving the system of linear equations:

A0 0 Azl [ b—Ax
0AT T |- |Ay|=]c—Aly—s
S0 X | LAs] |pe—XSe |
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Interior-Point Framework

The logarithmic barrier
—Inx j

“replaces” the inequality x; > 0.

We derive the first order optimality conditions for the primal
barrier problem:

Ax = b,
Aly+s = ¢,
XSe = e,

and apply Newton method to solve this system of (nonlinear)
equations.

Actually, we fix the barrier parameter p and make only one (damped)
Newton step towards the solution of FOC. We do not solve the cur-
rent FOC exactly. Instead, we immediately reduce the barrier pa-
rameter p (to ensure progress towards optimality) and repeat the
process.
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Interior Point Algorithm

Initialize
k=0 (20,4, V) € FU
[y = % (20 ap = 0.9995
Repeat until optimality
k=Fk—+1
py = o1, where o € (0,1)

A = (Az, Ay, As) = Newton direction towards p-centre

Ratio test:
ap = max {a>0: x+ oAz > 0},
ap = max {a>0: s+ alAs > 0}.
Make step:
h = ok 4+ agapAr,
Y= y¥ + apapAy,
g+l

— sF 4 apapAs.
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Notations

L1

X = diag{x,x9, - ,xp} = L2

e=(1,1,---,1)e R", X! = diag{z, ,x21,~-~,x51.

An equation XSe = pe,
1S equivalent to ris; =, Vj=1,2-.n
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Notations(cont’d)

Primal feasible set P ={x € R"| Az =b, x > 0}.
Primal strictly feasible set PV = {x € R"| Az =b, > 0},

Dual feasible set D={y € R™, s € R"| Aly+s=¢, s> 0}.
Dual strictly feasible set DV = {y € R™, s € R"|Aly + s =
c, s>0}.

Primal-dual feasible set

F ={(z,y,8)| Az =b, Aly+s=c, (x,5) > 0}.
Primal-dual strictly feasible set
FV={(z,y,s)| Az =b, Aly+s=c, (z,s) >0}
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Path-Following Algorithm

The analysis given in this lecture comes from the book of
Steve Wright: Primal-Dual Interior-Point Methods,
SIAM Philadelphia, 1997.

We analyze a feasible interior-point algorithm with the following
properties:

e all its iterates are feasible and stay in a close neighbourhood
of the central path;

e the iterates follow the central path towards optimality:

e systematic (though slow) reduction of duality gap is ensured.

This algorithm is called
the short-step path-following method.
Indeed, it makes very slow progress (short-steps) to optimality.
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Central Path Neighbourhood

Assume a primal-dual strictly feasible solution (z,y,s) € F U lying
in a neighbourhood of the central path is given; namely (x,, s)
satisfies:

Az = b,
Aly+s = ¢,
XSe =~ pue.

We define a §-neighbourhood of the central path No(#), a set of
primal-dual strictly feasible solutions (z,y,s) € F U that satisfy:

|X'Se — pel| < 0p,

where 6 € (0,1) and the barrier p satisfies:

s = N L.

Hence No(0) = {(x,y,s) € F" | || X Se — pel| < O}
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Central Path Neighbourhood

N 2(9 ) neighbourhoodof the central path
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Progress towards optimality

Assume a primal-dual strictly feasible solution (x,y,s) € No(f) for
some 6 € (0,1) is given.

Interior point algorithm tries to move from this point to another
one that also belongs to a #-neighbourhood of the central path but
corresponds to a smaller . The required reduction of p is small:

,ukH — a,uk, where oc=1-p05/vn,
for some 5 € (0, 1).

This is a short-step method:
[t makes short steps to optimality.
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Progress towards optimality

Given a new p-centre, interior point algorithm computes Newton
direction:

A0 0| [Az] T 0 I
0AT T | - | Ay | = 0 ,
S 0 X | As | opue — X Se |

and makes step in this direction.

Magic numbers (will be explained later):
=01 and B =0.1.

6 controls the proximity to the central path;
3 controls the progress to optimality:.
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How to prove the O(,/n) complexity result

We will prove the following:
e full step in Newton direction is feasible;

e the new iterate
(a:k+1, yk+1’ 8k+1) _ <xk’ yk7 Sk)Jr(Aajk, Ayk, Ask)
belongs to the f-neighbourhood of the new pu-centre
(with pf ! = o pF);

e duality gap is reduced 1 — 3/4/n times.
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O(y/n) complexity result

Note that since at one iteration duality gap is reduced 1 — 5/y/n
times, after y/n iterations the reduction achieves:

(1—B/y/mViae .

After C' - \/n iterations, the reduction is e~CF. For sufficiently
large constant C' the reduction can thus be arbitrarily large (i.e. the
duality gap can become arbitrarily small).

Hence this algorithm has complexity O(y/n).

This should be understood as follows:

“after the number of iterations proportional to v/n
the algorithm solves the problem”.
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Worst-Case Complexity Result
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Technical Results
Lemma 1

Newton direction (Ax, Ay, As) defined by the equation system

A0 0] Az T 0 I
0 AT T || Ay | = 0 , (1)
S 0 X | As | opue — X Se |
satisfies:
Azl As = 0.
Proof:

From the first two equations in (1) we get

AAz =0 and As=—ATAy.
Hence

Azt As = Azl - (—ATAy) = Ayl - (AAzZ) = 0.
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Technical Results (cont’d)

Lemma 2

Let (Az, Ay, As) be the Newton direction that solves the system
(1). The new iterate

(z,9,5) = (z,y,s) + (Az, Ay, As)

satisfies
T

where
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Proof: From the third equation in (1) we get
SAx + XAs=—-XSe+ opue.
By summing the n components of this equation we obtain
el (SAz+XAs) = s'Az+alAs = —e! X Set+ouele
= —2ls+nop=—2's-(1-0).
s 715 = (z + Ax)l (s + As)
=zl s+ (s Ax + 2 As) + (Az)T As

—2ls+(c—1Dals+0=0czls,

which is equivalent to: _
Nt = onfi.
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Reminder: Norms of the vector x € R"™.

T = (Enj x?)l/2
1=1

Tlloo = max |z
je{l.n}
n

|zl = 22 2]
7=1

For any x € R™:

Tloo < Ll 1
1T < N ||T]oo
Tlloo < €T
|| < Vn|lrl|eo
X < Tl
zllp < Vnellz

Paris. January 2018
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Reminder: Triangle Inequality

For any vectors p, g and r and for any norm ||.||

lp—qll < lp—rl +|r —ql|.

The relation between algebraic and geometric means.
For any scalars a and b such that ab > 0:

1
VIabl < 5 -a+1]
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Technical Result (algebra)

Lemma 3 Let u and v be any two vectors in R"™ such that ul v > 0.
Then
|UVel <27 lu+ |,

where U=diag{uy,--- ,un}, V=diag{vy, - ,vn}.

Proof: Let us partition all products u;v; into positive and negative
ones:

P={jluju; =0} and M ={j|uju; <0}:

OguTv:Zujvj +Z ujvj:Z|ujvj| — Z ujvg).

J€P jEM J€P jEM
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Proof (cont’d)

We can now write
UVell = (.l 2 1. 2\1/2
\UVell = ([ujv;)iepll® + vl iem)

- 2 2N1/2

ujvliepl? + uvilieml DY

i 2N1/2

2| [ujv]iepl )Y

Jﬂﬁ%+%ﬂﬁﬂh

3/22 uj+vj

N R

VAN

VAN

1€P
n
< 2_3/2 Z(u] + Uj)Q
=1
= 2_3/2Hu +v||?,  as requested.
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IPM Technical Results (cont’d)

Lemma 4
If (z,y,s) € No(f) for some 6 € (0,1), then

(I—=0)p<mzjs; <(1+0)u Vj.

In other words,
min z;s; > (1 — 0)u,
je{l.n} S = ( H
max x:S; < (1+6)u.
je{l.n} I ( H

Paris. January 2018
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Proof:

Since ||z||oo < |||, from the definition of Ng(8),
No(0) = {(w,y,s) € F'| || X Se — pel|| < 6},
we conclude
| X Se — pelloo < [| X Se — pel| < Op.

Hence
sy —pl <O V5,
which is equivalent to
—Ou < x;8; —p < Ou V.

Thus
(I—=0)p<xzjs; <(1+0)u Vj.
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IPM Technical Results (cont’d)

Lemma 5
If (z,y,s) € No(f) for some 6 € (0,1), then

| X Se — opell” < 6212+ (1 — o) i’n.

Proof:
Note first that

eT(XSe — ue) = vls — pele = npu —np = 0.
Therefore
| X Se — apel”
= (X Se—pe) + (1—0)pel|
— || XSe—pe|*+2(1—0o)pel (XSe—pe)+(1—0o)?pele
< 6%u* + (1—0)*1n.

Paris. January 2018
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IPM Technical Results (cont’d)

Lemma 6
If (z,y,s) € No(f) for some 6 € (0,1), then
0? +n(l—o)?
AXASe| < .
Jaxase) < o

Proof: 3rd equation in the Newton system gives
SAx + XAs=—-XSe+ opue.

Having multiplied it with (X .8)~1/2, we obtain
X V22N g4 X V25— oA 5= <XS>_1/2<—XS€—|—O'/L€>.

Paris. January 2018 37
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Proof (cont’d)

Define u=X"1/252Az and v=X125"1/2As and observe that

(by Lemma 1) ul'v = AzT'As = 0. Now apply Lemma 3:
IAXASe| = (X ~Y2812AX)(X1/257112A8)e|

< 973/2 X 12812 A5 1+ X125 1/2A5)?
= 273/2| X125 1/2(— X Se + ope)||2

_ 2—3/2 f: <_37j5j+alu)2
o TS
=1 J°7

< 9-3/2| XSe—ope|”

— mm]- CL‘ij

0% +n(1—o)?
32(1—) M

<

(by Lemmas 4 and 5).

Paris. January 2018
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Magic Numbers

We have previously set two parameters for the short-step path-
following method:

0 € [0.05,0.1] and [ € [0.05, 0.1].
Now it’s time to justify this particular choice.

Both 6 and 8 have to be small to make sure that a full step in the
Newton direction does not take the new iterate outside the neigh-

bourhood No(6).

6 controls the proximity to the central path;
[ controls the progress to optimality:.
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Magic numbers choice lemma
Lemma 7 If 0 € [0.05, 0.1) and 8 € [0.05, 0.1], then

H? 1—0)?
+n(l—o) < oh
23/2(1 — 0)
Proof:
Recall that
oc=1-p5/v/n.
Hence
n(l—o)* = f°
and for any 8 € [0.05, 0.1] (for any n > 1)
o > 0.9.

Substituting 6 € [0.05, 0.1] and g € [0.05, 0.1], we obtain

p2+n(1—0)? 0.1240.12
ll=0)” 0174017 1 09.01<00.
23121 —0)  232.09
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Magic Numbers
Set 6 =0.07 and 8 = 0.07
0.07 is a Super Number.

The name is Bond, James Bond.
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Full Newton step in Ny(9)

Lemma 8 Suppose (z,y,s) € No(f) and (Ax, Ay, As) is the
Newton direction computed from the system (1). Then the new
Herate (Z,7,5) = (2,9, 5) + (Az, Ay, As)
satisfies (Z,y,5) € No(0), i.e. || X Se — ne|| < 0.
Proof: From Lemma 2, the new iterate (Z, ¥, 5) satisfies

:ETE =Ny = nou,

so we have to prove that || X Se — fie|]| < 0.
For a given component j € {1..n}, we have
T;jS;— [ = <£C] + ACIS])(S] + AS]) — [
=15 + (5;Ax; + 1,;As;) + AxjAs;—[i
=xjsj+ (—x;8; +op) + AxjAs; — op
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Proof (cont’d)

Thus, from Lemmas 6 and 7, we get
|XSe — fie]| = [|AXASe]
02 4+n(l—0)?

obu
0.

| VAN VAN

23/2(1—0) a

Paris. January 2018
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A property of log function

Lemma 9 For all 6 > —1:
In(1+4) <o.

Proof:
Consider the function

£(6) =8 —In(1 +6)

and 1ts derivative . 5
/
£l =1-—

116 144

f (o)
Hence f(.) has a minimum at 6 =0. We find that f(0 = 0
>0

, 1

/

Obviously f/(5) < 0ford e (—1 O) nd

Consequently, for any § € (—1, 00), f (0)
0 —1In(1+49) >0

> 0 for 6 € (0, 00).
) = 0.

.C.
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O(yv/n) Complexity Result

Theorem 10
0,0 .0

Given € > 0, suppose that a feasible starting point (z°,y",s”) €
No(0.1) satisfies

(zN'sY = np, where u < 1/€,

for some positive constant k. Then there exists an index K with
K = O(y/n In(1/¢)) such that

b <e VE> K.
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O(yv/n) Complexity Result
1

Proof: From Lemma 2, ,uk+ = J,uk . Having taken logarithms of
both sides of this equality we obtain

In Mk+1
By repeatedly applying this formula and using p' < 1 /e we get
Inpf =klno+Inp’ < kIn(l — B/v/n) + kln(1/e).

From Lemma 9 we have In(1—3/+y/n)<—6/y/n. Thus

In uF < k(=B/v/n)+ xIn(1/e).
To satisty ,uk < €, we need:

k(—B/v/n)+ rIn(1/€) < Ine.
This inequality holds for any & > K, where

= 1n0+1n,uk.
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Polynomial Complexity Result

Main ingredients of the polynomial complexity result for the short-
step path-following algorithm:

Stay close to the central path:

all iterates stay in the No(6) neighbourhood of the central path.

Make (slow) progress towards optimality:
reduce systematically duality gap

where

for some g € (0,1).
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Reading about 1PMs

S. Wright
Primal-Dual Interior-Point Methods, STAM Philadelphia, 1997.

Gondzio

Interior point methods 25 years later.
FEuropean J. of Operational Research 218 (2012) 587-601.
http://www.maths.ed.ac.uk/“gondzio/reports/ipmXXV.html

Gondzio and Grothey

Direct solution of linear systems of size 10” arising in optimiza-
tion with interior point methods, in: Parallel Processing and Ap-
plied Mathematics PPAM 2005, R. Wyrzykowski, J. Dongarra,
N. Meyer and J. Wasniewski (eds.), Lecture Notes in Computer
Science, 3911, Springer-Verlag, Berlin, 2006, pp 513-525.

OOPS: Object-Oriented Parallel Solver
http://www.maths.ed.ac.uk/ “gondzio/parallel/solver.html
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