

The Problem of Covering Solids By Spheres of Different Radii

Renan Vicente Pinto and Nelson Maculan

Universidade Federal do Rio de Janeiro COPPE - Programa de Engenharia de Sistemas e Computação

> FMJH-PGMO, Palaiseau, France January 27th, 2015

- 1 The Covering Problem
- 2 The Packing Problem
- 3 Proposed Model
- 4 Heuristic
- 5 Discretization
- 6 Graph Approach

Heuristic

iscretization

Graph Approach

The Problem

(a) Solid to be covered.

(b) Available spheres sizes.

・ロト ・回ト ・ヨト ・ヨ

Heuristic

iscretization

・ロト ・日子・ ・ ヨア・

Graph Approach

An Example

Figure : Example of a covering.

Э

Heuristic

Discretization

・ロト ・ 理 ・ ・ ヨ ・ ・

Graph Approach

The Covering Problem

The Covering Problem

Given:

- a compact set $\mathcal{T}\subset\mathbb{R}^3$,
- a finite set $R \subset \mathbb{R}_+$ of radii,
- a set N indexing the spheres and
- a function $\rho: \mathbb{N} \to \mathbb{R}$,

we have to find a set of spheres

$$\{ B(x(i),\rho(i)) \mid i \in N \}$$

of minimum cardinality and covering all the points in \mathcal{T} .

The Covering Problem A Formulation

In Liberti et al. 1 , the authors formulated the problem as follows:

$$\begin{aligned} ||x^{i} - p||^{2} &\leq u_{i}(p) \sum_{j \in U} w_{ij}r_{j}^{2} + (1 - u_{i}(p))M^{2}, \forall i \in N, \forall p \in T \\ &\sum_{j \in U} w_{ij} = 1, \quad \forall i \in N \\ &\sum_{i \in N} u_{i}(p) \geq 1, \quad \forall p \in T \\ &\int_{p \in T} u_{i}(p)dp \geq \epsilon y_{i}, \quad \forall i \in N \\ &\int_{p \in T} u_{i}(p)dp \leq \operatorname{Vol}(T) y_{i}, \quad \forall i \in N \end{aligned}$$

¹L. Liberti, N. Maculan & Y. Zhang. "Optimal configuration of gamma ray machine radiosurgery units: the sphere covering subproblem".

The Covering Problem A Formulation

Nonlinear nonconvex mixed-integer infinite programming problem:

$$\begin{aligned} ||x^{i} - p||^{2} &\leq u_{i}(p) \sum_{j \in U} w_{ij}r_{j}^{2} + (1 - u_{i}(p))M^{2}, \forall i \in N, \forall p \in T \\ &\sum_{j \in U} w_{ij} = 1, \quad \forall i \in N \\ &\sum_{i \in N} u_{i}(p) \geq 1, \quad \forall p \in T \\ &\int_{p \in T} u_{i}(p)dp \geq \epsilon y_{i}, \quad \forall i \in N \\ &\int_{p \in T} u_{i}(p)dp \leq \operatorname{Vol}(T) y_{i}, \quad \forall i \in N \end{aligned}$$

Tarihato Alberto Luz Coreba de UFRJ

<ロト <回ト < 注ト < 注ト

(日)

The Packing Problem

Characteristics of the packing problem:

- Overlappings are not allowed; and
- the spheres must be totally inside the container.

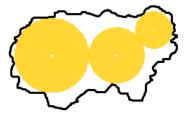


Figure : Example of a packing.

The Packing Problem

The goal is to maximize the density:

density =
$$\frac{\sum_{i} \text{volume}(\text{object}_{i})}{\text{volume}(\text{container})}$$
.

Objective function:

$$\max \ \frac{\sum_i \frac{4}{3}\pi \ r_i^3 \ y_i}{\text{volume}(\text{container})}.$$

Removing the constants:

$$max \sum_{i \in S} r_i^3 y_i.$$

э

A Formulation

For the problem of packing unequal spheres in a 3-dimensional polytope defined by

$$a_m x + b_m y + c_m z \ge d_m, \quad m = 1, \dots, M,$$

A. Sutou and Y. Dai¹ used the following variables in their model:

- (a) $x^i \in \mathbb{R}^3$ is the center of sphere *i*; and
- (b) $w_{ik} \in \{0, 1\}$ is set to 1, if sphere *i* has radius r_k .

¹A. Sutou & Y. Dai. "Global Optimization Approach to Unequal Sphere **COPPE** Packing Problems in 3D". *Journal of Optimization Theory and Application* Vol. 114, No 3, pp. 671-694, 2002. ▲口 → ▲圖 → ▲ 臣 → ▲ 臣 → □ 臣 □

The Covering Problem The Packing Problem Proposed Model Heuristic Discretization Graph Approach

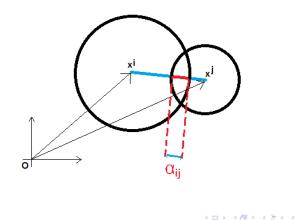
The Packing Problem A Formulation

In Sutou et al., the authors formulated the problem of packing unequal spheres in a 3-dimensional polytope as follows:

$$\begin{aligned} \max \quad & \frac{4}{3}\pi \sum_{i=1}^{K} \sum_{k=1}^{K} r_k^3 w_{ik} \\ \text{s.a} \quad ||x^i - x^j||^2 \geq \left(\sum_{k=1}^{K} r_k w_{ik} + \sum_{k=1}^{K} r_k w_{jk} \right)^2, \quad \forall i \neq j \\ |a_m x_i + b_m y_i + c_m z_i - d_m| / \sqrt{a_m^2 + b_m^2 + c_m^2} \geq \sum_{k=1}^{K} r_k w_{ik}, \quad \forall i, m \\ & a_m x_i + b_m y_i + c_m z_i - d_m \geq 0, \quad \forall i, \forall m \\ & \sum_{k=1}^{K} w_{ik} \leq 1, \quad \forall i \\ & w_{ik} \in \{0, 1\}, \quad \forall i, \forall k \end{aligned}$$

UFRJ

We propose a model based essentially on the parameters α , which represent the maximum allowed overlap between each pair of spheres.



So the constraints

$$||x^{i} - x^{j}||^{2} \ge (r_{i} + r_{j})^{2}$$

by introducing parameters $\boldsymbol{\alpha}$ become

$$||x^{i} - x^{j}||^{2} \ge (r_{i} + r_{j} - \alpha_{ij})^{2}.$$

But they should only constrain variables associated with spheres used in the packing.

Let $y_i \in \{0, 1\}$ assume value 1 if sphere *i* is packed.

We could have

$$||x^{i} - x^{j}||^{2} \ge (r_{i} + r_{j} - \alpha_{ij})^{2} y_{i} y_{j}$$

æ

Let $y_i \in \{0, 1\}$ assume value 1 if sphere *i* is packed.

We could have

$$||x^{i} - x^{j}||^{2} \ge (r_{i} + r_{j} - \alpha_{ij})^{2} y_{i} y_{j}.$$

But to avoid the multiplication of variables, we will use

$$||x^{i} - x^{j}||^{2} \ge (r_{i} + r_{j} - \alpha_{ij})^{2} (y_{i} + y_{j} - 1).$$

э

The Covering Problem Proposed Model

Proposed Model for the Covering Problem

$$\begin{array}{rl} \max & \sum_{i=1}^n c_i y_i \\ ||x^i - x^j||^2 & \geq & (r_i + r_j - \alpha_{ij})^2 \left(y_i + y_j - 1\right), \quad \forall \ 1 \leq i < j \leq n \\ & x^i \in \mathcal{T}, \quad \forall i \\ & \mathbf{y} \in \{0, 1\}^n \end{array}$$

The Covering Problem Proposed Model

Proposed Model for the Covering Problem

$$\begin{array}{rl} \max & \sum_{i=1}^{n} \boldsymbol{c}_{i} \, y_{i} \\ ||x^{i} - x^{j}||^{2} & \geq & (r_{i} + r_{j} - \boldsymbol{\alpha}_{ij})^{2} \left(y_{i} + y_{j} - 1\right), \quad \forall \, 1 \leq i < j \leq n \\ & x^{i} \in \mathcal{T}, \quad \forall i \\ & \mathbf{y} \in \{0, 1\}^{n} \end{array}$$

ed Model Heuris

uristic Discretizati

Graph Approach

Proposed Model

Parameters Existence Theorem

There are

$$\{\alpha_{ij} \geq \mathbf{0}\}_{1 \leq i < j \leq n}$$

and

$$\{c_i \ge 0\}_{1 \le i \le n}$$

for which an optimal solution of the **proposed model** is also an optimal solution of the **covering problem**.

Small remark

Let r < R.

(a) Two spheres of radius r.

(b) One sphere of radius r and one sphere of radius R.

Figure : Two optimal solutions.

э

・ロト ・ 日 ・ ・ 日 ・ ・

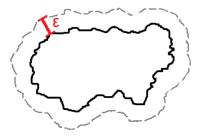
э

・ロト ・日子・ ・ ヨア・

э

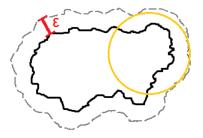
・ロト ・日子・ ・ ヨア・

To avoid a large volume of the spheres on the outside of the target volume, we define the security region.



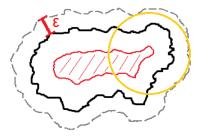
(日)、

To avoid a large volume of the spheres on the outside of the target volume, we define the security region.



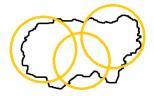
(日)、

To avoid a large volume of the spheres on the outside of the target volume, we define the security region.



(日)

- COV: percentage of *T*'s volume covered by the spheres;
- OVERLAP: percentage of *T*'s volume covered by more than one sphere;
- MISCOV: percentage of the total volume of the spheres outside *T*.



・ロン ・ 一 と ・ ヨ と ・

- COV: percentage of *T*'s volume covered by the spheres;
- OVERLAP: percentage of *T*'s volume covered by more than one sphere;
- MISCOV: percentage of the total volume of the spheres outside *T*.

・ロッ ・ 一 ・ ・ ・ ・

- COV: percentage of T's volume covered by the spheres;
- OVERLAP: percentage of *T*'s volume covered by more than one sphere;
- MISCOV: percentage of the total volume of the spheres outside *T*.

< □ > < 同 > < 回 > .

- COV: percentage of *T*'s volume covered by the spheres;
- OVERLAP: percentage of *T*'s volume covered by more than one sphere;
- MISCOV: percentage of the total volume of the spheres outside *T*.

(日)

Data used in the tests:

- a parallelepiped with dimensions 14mm x 12mm x 10mm;
- $\epsilon = 1$ for the security region; and
- spheres of radius 4mm and 2mm.

ヘロア ヘロア ヘビア ヘ

For the parameters, we used

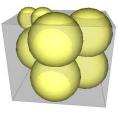
$$c_i = r_i^3$$

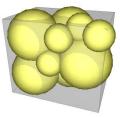
and

$$\alpha_{ij} = 0.5 \cdot \min\{r_i, r_j\}.$$

Couenne

	Couenne	
Algorithm	sB&B	
<i>z</i> *	352	
<i>S</i>	9	
t _e	20h	
tt	9d	
cov	cov 68.12%	
miscov	iscov 7.66%	
overlap	9.03%	

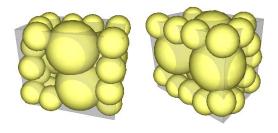




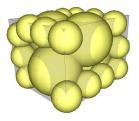
ヘロン ヘロン ヘビン ヘビン æ Bonmin

- 24 spheres of radius 2mm;
- Parameters c_i modified.

	Bonmin	
Algorithm	B&B	
<i>z</i> *	448	
<i>S</i>	28	
t_t	390s	
COV	84.08%	
miscov 9.66%		
overlap	10.22%	



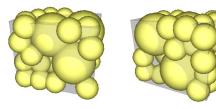
・ロト ・日子・ ・ ヨア・

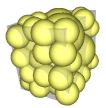


э

-	30	spheres	of	radius	2mm
---	----	---------	----	--------	-----

	Xpress-SLP
Algorithm	SLP
<i>z</i> *	496
5	34
t_t	4s
COV	87.67%
miscov	10.58%
overlap	15.87%





Heuristic

Heuristic

Hypothesis

Spheres of larger radius are more interesting in the solution.

Heuristic based on solving the following problem:

$$||x^i - x^j||^2 \ge (r_i + r_j - \alpha_{ij})^2, \quad \forall \ 1 \le i < j \le n$$

 $x^i \in T, \quad \forall i$

It considers a fixed set of spheres.

Idea:

- Start with a single sphere or only a few of them, all of the larger radius;
- If the solver returned a solution for this problem, use it as an initial solution for the next one, which has one more sphere available. For this sphere, its initial position will be generated randomically;
- If the solver claims the problem is infeasible, reduce the last added sphere's radius.

Proposed Model

Heuristic

Discretization

・ロト ・聞ト ・ヨト ・ヨト

Graph Approach

Results from Ipopt

Algorithm	Ipopt Interior Points		
	514		VOLD
<i>S</i>	29		
t _e	17s		
cov	91.40%		\sim
miscov	9.91%		N.
overlap	16.13%	AQ.	T

Let x be a real variable assuming values in the interval [a, b]:

$$a \le x \le b$$
 .

Discretization:

$$x = w_1 \lambda_1 + \cdots + w_L \lambda_L ,$$

where

- L is the quantity of points used in the discretization of the interval [a, b];
- $a < w_1 < \cdots < w_l < b$;
- $\lambda_i \in \{0, 1\}, \quad \forall i \in \{1, ..., L\}$; e
- $\sum_{i=1}^{L} \lambda_i = 1$.

In our model, we can apply this technique to the variables which represent the center of the spheres:

$$a_k^i \leq x_k^i \leq b_k^i$$
 .

Using the discretization we have just explained, we have:

$$x_k^i = w_{k,1}^i \lambda_{k,1}^i + \dots + w_{k,L_k^i}^i \lambda_{k,L_k^i}^i$$

where

$$\begin{split} &\sum_{i=1}^{L_k^i} \lambda_i = 1 \\ &\lambda_i \in \{0,1\}, \quad \forall i \in \{1,\dots,L_k^i\} \end{split}$$

э

(日) (同) (日) (日)

It will be used in the calculation of the term $||x^{i} - x^{j}||^{2}$, present in the constraints of the model:

$$||x^{i} - x^{j}||^{2} = \sum_{k=1}^{3} (x_{k}^{i} - x_{k}^{j})^{2} = (x_{k}^{i})^{2} + 2x_{k}^{i}x_{k}^{j} + (x_{k}^{j})^{2}$$

æ

It will be used in the calculation of the term $||x^{i} - x^{j}||^{2}$, present in the constraints of the model:

$$||x^{i} - x^{j}||^{2} = \sum_{k=1}^{3} (x_{k}^{i} - x_{k}^{j})^{2} = (x_{k}^{i})^{2} + 2x_{k}^{i}x_{k}^{j} + (x_{k}^{j})^{2}$$

æ

It will be used in the calculation of the term $||x^{i} - x^{j}||^{2}$, present in the constraints of the model:

$$||x^{i} - x^{j}||^{2} = \sum_{k=1}^{3} (x_{k}^{i} - x_{k}^{j})^{2} = (x_{k}^{i})^{2} + 2 x_{k}^{i} x_{k}^{j} + (x_{k}^{j})^{2}$$

The term in focus is rewritten as:

$$(x_k^i)^2 = (w_{k,1}^i)^2 \lambda_{k,1}^i + \dots + (w_{k,L_k^i}^i)^2 \lambda_{k,L_k^i}^i$$

It will be used in the calculation of the term $||x^{i} - x^{j}||^{2}$, present in the constraints of the model:

$$||x^{i} - x^{j}||^{2} = \sum_{k=1}^{3} (x_{k}^{i} - x_{k}^{j})^{2} = (x_{k}^{i})^{2} + 2 x_{k}^{i} x_{k}^{j} + (x_{k}^{j})^{2}$$

The term in focus is rewritten as:

$$(x_k^i)^2 = (w_{k,1}^i)^2 \lambda_{k,1}^i + \dots + (w_{k,L_k^i}^i)^2 \lambda_{k,L_k^i}^i$$

It will be used in the calculation of the term $||x^{i} - x^{j}||^{2}$, present in the constraints of the model:

$$||x^{i} - x^{j}||^{2} = \sum_{k=1}^{3} (x_{k}^{i} - x_{k}^{j})^{2} = (x_{k}^{i})^{2} + 2 \frac{x_{k}^{i} x_{k}^{j}}{x_{k}^{j}} + (x_{k}^{j})^{2}$$

The term in focus is rewritten as:

$$(x_k^i)^2 = (w_{k,1}^i)^2 \lambda_{k,1}^i + \dots + (w_{k,L_k^i}^i)^2 \lambda_{k,L_k^i}^i$$

$$x_{k}^{i}x_{k}^{j} = \sum_{p=1}^{L_{k}^{i}}\sum_{q=1}^{L_{k}^{j}} w_{k,p}^{i}w_{k,q}^{i}\lambda_{k,p}^{i}\lambda_{k,q}^{i}$$

It will be used in the calculation of the term $||x^{i} - x^{j}||^{2}$, present in the constraints of the model:

$$||x^{i} - x^{j}||^{2} = \sum_{k=1}^{3} (x_{k}^{i} - x_{k}^{j})^{2} = (x_{k}^{i})^{2} + 2 \frac{x_{k}^{i} x_{k}^{j}}{x_{k}^{j}} + (x_{k}^{j})^{2}$$

The term in focus is rewritten as:

$$(x_k^i)^2 = (w_{k,1}^i)^2 \lambda_{k,1}^i + \dots + (w_{k,L_k^i}^i)^2 \lambda_{k,L_k^i}^i$$

$$x_{k}^{i}x_{k}^{j} = \sum_{p=1}^{L_{k}^{i}}\sum_{q=1}^{L_{k}^{j}} w_{k,p}^{i}w_{k,q}^{i}\lambda_{k,p}^{i}\lambda_{k,q}^{j}$$

We can linearize the term $\lambda_{k,p}^i \lambda_{k,q}^i$ replacing it with the variables

$$\mathsf{z}_{k,p,q}^{i,j} = \lambda_{k,p}^i \lambda_{k,q}^i$$

and adding the following constraints to the model:

$$\begin{array}{ll} z_{k,p,q}^{i,j} &\leq \lambda_{k,p}^{i} \\ z_{k,p,q}^{i,j} &\leq \lambda_{k,q}^{i} \\ z_{k,p,q}^{i,j} &\geq \lambda_{k,p}^{i} + \lambda_{k,q}^{i} - 1 \\ z_{k,p,q}^{i,j} &\geq 0 \end{array}$$

el Heuri

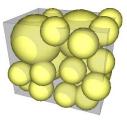
ristic D

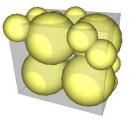
Discretization

Graph Approach

Results

	Xpress
δ	0.2
<i>z</i> *	376
S	19
t _e	36h
COV	76.81%
miscov	7.27%
overlap	5.01%





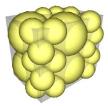
Comparison

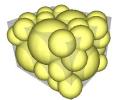
	COUENNE	BONMIN	Xpress	Xpress	Ipopt
	sB&B	B-BB	SLP	$\delta = 0.2$	Heur
<i>z</i> *	352	448	496	376	514
S	9	28	34	19	29
t	20 h	390 s	4 s	36h	17 s
COV	68.12	84.08	87.67	76.81	91.40
miscov	7.66	9.66	10.58	7.27	9.91
overlap	9.03	10.22	15.87	5.01	16.13

Table : Comparing the best solution found by the tested methods.

Parameters

		lpopt	
	Sol 1	Sol 2	Sol 3
<i>z</i> *	514	960	1408
S	29	22	36
t	17s	10s	112s
COV	91.40	97.25	100
miscov	9.91	13.45	35.26
overlap	16.13	60.21	80.65
β	0.5	1	1
ϵ	1	1	2





ł

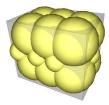
Heuristic

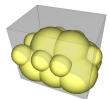
Discretization

Graph Approach

Parameters

	Sol 1	Sol 2	Sol 3
<i>z</i> *	514	960	1408
S	29	22	36
t	17s	10s	112s
COV	91.40	97.25	100
miscov	9.91	13.45	35.26
overlap	16.13	60.21	80.65
β	0.5	1	1
ϵ	1	1	2



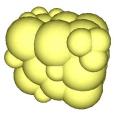


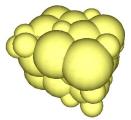
Heuristic

Discretization

Parameters

Sol 1		Sol 3
514	960	1408
29	22	36
17s	10s	112s
91.40	97.25	100
9.91	13.45	35.26
16.13	60.21	80.65
0.5	1	1
1	1	2
	514 29 17s 91.40 9.91 16.13 0.5	514 960 29 22 17s 10s 91.40 97.25 9.91 13.45 16.13 60.21 0.5 1





<ロト <回ト < 注ト < 注ト

Let G = (V, E) be the following graph:

•
$$V = \{ (r, p) \mid r \in R, p \in P \};$$

• There is an arc $e \in E$ connecting vertices $i = (r_i, p_i)$ and $j = (r_i, p_i)$ if there is a feasible solution containing a sphere of radius r_i centered at point p_i and a sphere of radius r_i centered at point p_i .

Let G = (V, E) be the following graph:

•
$$V = \{ (r, p) \mid r \in R, p \in P \};$$

• There is an arc $e \in E$ connecting vertices $i = (r_i, p_i)$ and $j = (r_i, p_i)$ if there is a feasible solution containing a sphere of radius r_i centered at point p_i and a sphere of radius r_i centered at point p_i .

We aim to find the maximum clique in this graph.

Graph Approach

Maximum-weight clique model:

$$egin{array}{ll} \max & \sum_{i=1}^{|V|} c_i \, y_i \ s.t. & y_i+y_j \leq 1 \,, \quad orall (i,j)
otin E \ {f y} \in \{0,1\}^{|V|} \end{array}$$

R	es	ш	ts	
`	CS	u	LS .	

	$\delta = 1$	$\delta = 0.2$	$\delta = 2$	$\delta = 1$
	Discret	Discret	Graph	Graph
<i>z</i> *	128	376	432	480
S	9	19	54	60
t	10h	36h	2s	4s
COV	27.87	76.81	82.75	82.45
miscov	2.85	7.27	10.13	6.83
overlap	1.18	5.01	5.91	21.87

 $\label{eq:Table: Comparing the solutions obtained in the linearized model and in the graph approach.$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

æ

Working with the complement of the graph:

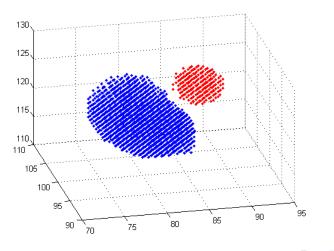
 Branch and Cut cuts: violated cliques

 $y_1 + y_2 + y_3 + \ldots \leq 1$

 Branch and Bound branching: violated cliques

Future Work

• More realistic data



(비) (레) (분) (분) (분) 문

- [1] L. Liberti, N. Maculan & Y. Zhang. "Optimal configuration of gamma ray machine radiosurgery units: the sphere covering subproblem". *Optimization Letters*: Vol. 3, pp. 109-121, 2009.
- [2] A. Sutou & Y. Dai. "Global Optimization Approach to Unequal Sphere Packing Problems in 3D". Journal of Optimization Theory and Applications: Vol. 114, No 3, pp. 671-694, 2002.
- [3] R. Quirino & A. F. Macambira & L. Cabral & R. Pinto.
 "The Discrete Ellipsoid Covering problem: a Discrete Geometric Programming Approach". Discrete Applied Mathematics, 2012.

(日)、