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General model and sampling Method

dXt = b(θ0,Xt)dt + σ(θ1,Xt)dWt .

Problem: Using data observed from a single trajectory of X to estimate parameters
θ0 ∈ Θ0 ⊂ Rd0 and θ1 ∈ Θ1 ⊂ Rd1

Continuous sampling: (Xt)t∈[0,T ]

Discrete sampling: (Xk∆n
)0≤k≤n

High frequency data in a fixed period: ∆n → 0 and n∆n = T fixed
Low frequency data in a long period: ∆n = ∆ fixed, and n∆n → ∞
High frequency data in a long period: ∆n → 0 and n∆n → ∞

The estimation of θ1 which is called volatility in mathematical

finance, is based on the fact that the quadratic variation
n∑

i=1

(Xti
− Xti−1

)2 →
∫ T

0
σ(θ1,Xs)

2ds.

For any fixed T , θ1 can be consistently estimated if ∆n → 0.

In the following, we suppose that θ1 is known and try to estimate θ0
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Maximum likelihood estimation

In Liptser & Shiryaev’01 and Kutoyants’04, Radon-Nikodym derivative of the probability measure
induced by

dXt = b(θ,Xt)dt + σ(Xt)dWt , X0 = x ∈ R

with θ ∈ Θ ⊂ Rd is given and the likelihood function is

LT (θ) = exp

(∫ T

0

b(θ,Xt)− b(θ0,Xt)

σ2(Xt)
dXt −

1

2

∫ T

0

b2(θ,Xt)− b2(θ0,Xt)

σ2(Xt)
dt

)

for any fixed θ0 ∈ Θ ⊂ Rd . The MLE θ̂T of θ is defined by

θ̂T = argmaxθ∈ΘLT (θ)

The consistency and asymptotic normality of θ̂T have been shown under some regularity

conditions of b and σ, generally in ergodic case.
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The sequential analysis approaches

The first approaches: in Novikov’72 and Liptser & Shiryaev’01 for the scalar
Ornstein-Uhlenbeck process in continuous time

dXt = θXtdt + dWt . (1)

The Maximum Likelihood Estimator (MLE) for the parameter θ defined as

θ̂T = (

∫ T

0

X 2
s ds)

−1
∫ T

0

XsdXs .

Then the Sequential Maximum Likelihood Estimator (SMLE) for the parameter θ defined as

θ̂τ∗
H
=

1

H

∫ τ∗
H

0

XsdXs ,

with the stopping time

τ∗H = inf

{
t ≥ 0 :

∫ t

0

X 2
s ds ≥ H

}
,

where H > 0 is some fixed non random arbitrary constant. One can check that θ̂τ∗
H

is

N (θ,H−1) for any H > 0.
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The sequential analysis approachs

Discrete time: Borisov & Konev’77 (non-asymptotic), Lai & Siegmund’83
(asymptotic).

Guaranteed two-step estimation method for multidimensional parameter case:
Konev & Pergamenshchikov’81(1)(2), Konev & Pergamenshchikov’88,
Galtchouk & Konev’01.

Guaranteed estimation property in the non-asymptotic setting with
dependent observations: Konev & Pergamenshchikov’97.

For the proposed sequential estimation methods, the asymptotic properties,
as H → ∞, were studied (see, e.g., in Konev & Pergamenshchikov’84’85’86,
Pergamenshchikov’85).
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Parameter estimation problems for the CIR processes

We consider the stochastic differential equation

dXt = (a− bXt)dt +
√
σXtdWt , X0 = x > 0 , (2)

where a > 0, b ∈ R and σ > 0 and (Wt)t≥0 is a standard Brownian motion.

In finance, the CIR is used to describes the evolution of interest rates and
stochastic volatility stock markets modeling.

↪→ Rfs : [Cox, Ingersoll & Ross’85], [Lamberton & Lapeyre’97], [Heston’93],
[Berdjane and Pergamenshchikov’13] and [Nguyen and
Pergamenshchikov’17], etc.

In biology, the CIR can be used to model population dynamics and in the
epidemic analysis.

↪→ Rfs: [Bansaye & Méléard’15], [Pergamenchtchikov, Tartakovsky &
Spivak’22], etc.

Trâm Ngô Guaranteed estimation for CIR models 21 October 2025 7 / 33



Parameter estimation problems for the CIR processes

dXt = (a− bXt)dt +
√
σXtdWt , X0 = x > 0 , (3)

For θ = b, the MLE (see, e.g., in Ben Alaya & Kebaier’12) is defined as

θ̂T =
aT−XT+x∫ T

0
Xsds

.

For θ = a, the MLE is given as θ̂T =
bT+

∫ T

0
X−1
t

dXt∫ T

0
X−1
t

dt
.

For θ = (a, b), the MLE (see, e.g., in Ben Alaya & Kebaier’13) is defined as

θ̂T =


âT =

∫ T

0
Xtdt

∫ T

0
X−1
t

dXt−T (XT−x)∫ T

0
Xtdt

∫ T

0
X−1
t

dt−T 2

b̂T =
T

∫ T

0
X−1
t

dXt−(XT−x)
∫ T

0
X−1
t

dt∫ T

0
Xtdt

∫ T

0
X−1
t

dt−T 2

These papers show the asymptotic behavior of the error (θ̂T − θ) for ergodic
and non-ergodic cases.

There are still no results on a guaranteed estimation for the CIR process.
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Case θ = b

We define the sequential procedure δ∗H = (τ∗H , θ∗H) with H > 0 for the parameter b as

τ∗H = inf

{
t :

∫ t

0

Xsds ≥ H

}
and θ∗H =

aτ∗H − Xτ∗
H
+ x

H
,

First we study non asymptotic properties of this procedure, i.e. for any fixed threshold H > 0.

Theorem 1 (Ben Alaya, N. and Pergamenchtchikov’25 (1))

For any a > 0, b ∈ R and for any fixed H > 0, δ∗H possesses the following properties:

1) Pθ(τ
∗
H < ∞) = 1 ;

2) the sequential estimator θ∗H is normally distributed with parameters

Eθθ
∗
H = b and Eθ(θ

∗
H − b)2 =

σ

H
.
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Case θ = a

We define the sequential estimation procedure δ∗H = (τ∗H , θ∗H) with H > 0 for the parameter a as

τ∗H = inf

{
t :

∫ t

0

X−1
s ds ≥ H

}
and θ∗H =

bτ∗H +
∫ τ∗

H
0 X−1

s dXs

H
.

First we study non asymptotic properties of this procedure, i.e. for any fixed threshold H > 0.

Theorem 2 (Ben Alaya, N. and Pergamenchtchikov’25 (1))

For any b ≥ 0, a > 0 and for any fixed H > 0 the sequential procedure δ∗H possesses the

following properties:

1) Pθ(τ
∗
H < ∞) = 1 ;

2) the sequential estimator θ∗H is normally distributed with parameters

Eθθ
∗
H = a and Eθ(θ

∗
H − a)2 =

σ

H
.

+ When a < σ/2,
∫ t

0
X−1/2
s dWs is not defined for any fixed non random t > 0. Therefore,

the non sequential MLE can not be calculated for this case, but the sequential procedure is
well defined.
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Case θ = (a, b)

We rewrite the CIR model as

dXt = g⊤
t
θdt +

√
σXtdWt ,

where gt = (1 , −Xt)
⊤. In this section we assume, that b > 0 and a > σ/2.

Then, in view of the results from Ben Alaya & Kebaier’13, the random matrix

Gt =

∫ t

0

X−1
s

gsg
⊤
s
ds =

 ∫ t

0
X−1
s

ds −t

−t
∫ t

0
Xsds


possesses the following asymptotic property

lim
t→∞

1

t
Gt = F =

 f1 −1

−1 f2

 Pθ − a.s. ,

where f1 = 2b/(2a− σ) and f2 = a/b. Here, F is positively definite matrix.
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We use the two-step sequential fixed accuracy estimation method developed in
Konev & Pergamenshchikov’81’85

First step : we construct the sequence of the sequential procedures(
δn = (tn, θ̂tn)

)
n≥1

. We fix a non random sequence of non-decreasing

positive numbers (κn)n≥1 for which

ρ =
∑
n≥1

1

κn

< ∞ . (4)

Now for any z > 0 we set

tz = inf

{
t ≥ 0 :

∫ t

0

X−1
s

|gs |2ds ≥ z

}
, (5)

Let tn = tκn
and define the sequential MLE as

θ̂tn = G−1
tn

∫ tn

0

X−1
s

gsdXs (6)
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Second step : we construct a sequential aggregation estimation procedure

which is defined as weighted sum of the estimators (6). First we set

bn =
1

|G−1
tn

|κn

1{λmin(Gtn
)>0}

where |G |2 = trGG⊤, and we define the stopping time as

υ∗
H
= inf

{
k ≥ 1 :

k∑
n=1

b2
n
≥ H

}
, (7)

for a positive non random threshold H > 0. We define the sequential
estimator as

θ∗
H
=

 υ∗
H∑

n=1

b2
n

−1
υ∗
H∑

n=1

b2
n
θ̂tn . (8)
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So, we obtain aggregated two-step sequential procedure

δ∗
H
=

(
τ∗
H
, θ∗

H

)
and τ∗

H
= tυ∗

H
. (9)

Theorem 3 (Ben Alaya, N. and Pergamenchtchikov’25 (1))

For any b > 0 and a > σ/2 and for any H > 0 the procedure (9) has the following
properties

τ∗
H
< +∞ Pθ − a.s.

and
Eθ |θ∗H − θ|2 ≤ ρ

σ

H
,

where the coefficient ρ is defined in (4).
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Minimax inequality

From now, we take the parameter set

Θ ⊆ {(a, b) : a > σ/2 , b > 0} =]σ/2 , +∞[×]0,+∞[.

Let now θ0 ∈ Θ and γ > 0 such that {|θ − θ0| ≤ γ} ⊆ Θ. We denote by

HT (θ0, γ) the local class of sequential procedures δT = (τ , θ̂τ ) such that

sup
|θ−θ0|<γ

Eθτ ≤ T .

Inspired by the ideas from Corollary 2 in Efroimovich’80, we prove the following
proposition.

Proposition (Ben Alaya, N. and Pergamenchtchikov’25 (1))

Assume that, LAN holds for θ0 from Θ ⊂ Rk with the function
φT = (I (θ0)T )−1/2 and I (θ0) is the Fisher information matrix. Then, for any
γ > 0 for which {|θ − θ0| ≤ γ} ⊆ Θ,

lim
T→∞

inf
δ∈HT (θ0,γ)

sup
|θ−θ0|<γ

Eθ |φT
−1 (θ̂τ − θ)|2 ≥ k .
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Now we need to compare the defined sequential procedure δ∗
H
= (τ∗

H
, θ∗

H
) with

other sequential procedure. To this end we set

ΞH =

{
δ = (τ, θ̂τ ) : sup

θ∈Θ

Eθτ

Eθτ
∗
H

≤ 1

}
.

Now we obtain a lower bound for this class.

Theorem 4 (Ben Alaya, N. and Pergamenchtchikov’25 (1))

Let θ0 from Θ ⊂ Rk such that {|θ − θ0| < γ} ⊂ Θ for all sufficiently small γ > 0.
Assume that, LAN holds in θ0 with the normalizing function φT = (I (θ0)T )−1/2

and I (θ0) is the Fisher information matrix. Then,

lim
H→∞

inf
δ∈ΞH

sup
θ∈Θ

Eθ |υH(θ)1/2(θ̂τ − θ)|2 ≥ k ,

where υH(θ) = I (θ)Eθτ
∗
H
.
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Optimality of SMLE θ∗
H
for θ = a, k = 1

Theorem 5 (Ben Alaya, N. and Pergamenchtchikov’25 (1))

For any b > 0 , any compact set Θ ⊂]σ/2,+∞[ and for any r > 0

lim
H→∞

sup
θ∈Θ

Eθ

∣∣∣∣τ∗HH − I−1
0

(θ)

∣∣∣∣r = 0 ,

where I0(θ) = 2b/(2a− σ).

In this case:

υH(θ) = σ−1(2θ − σ)−1 2b Eθτ
∗
H
≈ σ−1H as H → ∞.

limH→∞ sup
θ∈Θ

υH(θ)Eθ

(
θ∗
H
− θ

)2
= 1.
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Optimality of SMLE θ∗
H
for θ = b, k = 1

Theorem 7 (Ben Alaya, N. and Pergamenchtchikov’25 (1))

For any a > σ/2 , any compact set Θ ⊂]0,+∞[ and any r > 0

lim
H→∞

sup
θ∈Θ

Eθ

∣∣∣∣τ∗HH − 1

I0(θ)

∣∣∣∣r = 0 ,

where I0(θ) = a/θ.

In this case:

υH(θ) = σ−1θ−1aEθτ
∗
H
≈ σ−1H as H → ∞.

limH→∞ sup
θ∈Θ

υH(θ)Eθ

(
θ∗
H
− θ

)2
= 1.
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Optimality of SMLE θ∗
H
for θ = (a, b), k = 2

We chose the sequence (κn)n≥1 as follows

κn =

{
H , for n ≤ n∗

H
;

κ∗
n
, for n > n∗

H
,

where n∗
H
= LHH and LH ≥ 1 is slowly increasing function, i.e.

lim
H→∞

LH = +∞ and lim
H→∞

LH
Hδ

= 0 for any δ > 0 .

Moreover, (κ∗
n
)n≥1 is a sequence of positive increasing numbers such, that for

some µ > 1 and 0 < ϱ < 1,

lim sup
n→∞

n−µ κ∗
n
< ∞ and lim sup

n→∞
n−ϱ

n∑
k=1

1√
κ∗
k

< ∞ .

For example, we can take n∗
H
= H lnH and κ∗

n
= nµ for some µ > 1.
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Optimality of SMLE θ∗
H
for θ = (a, b), k = 2

Theorem 9 (Ben Alaya, N. and Pergamenchtchikov’25 (1))

For any compact set Θ ⊂]σ/2,+∞[×]0,+∞[ for the duration time in the
sequential procedure (9) we have for any r > 0

lim
H→∞

sup
θ∈Θ

Eθ

∣∣∣∣τ∗HH − 1

trF

∣∣∣∣r = 0 ,

where the matrix F is defined above by limt→∞
1
tGt = F .

Let F̃ = F/tr(F ). In this case υH(θ) = σ−1F Eθτ
∗
H
≈ σ−1HF̃ as H → ∞.

limH→∞ sup
θ∈Θ

Eθ |υH(θ)1/2
(
θ∗
H
− θ

)
|2 ≤ 2.
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Truncated sequential approaches

Truncated versions of developed sequential estimators were proposed in [Konev &
Pergamenshchikov(92), Konev & Pergamenshchikov(97)], [Ben Alaya, N. and
Pergamenchtchikov’25 (2)].

The proposed truncated sequential procedures use essentially fewer observations
than classical non-sequential estimators based on the fixed non-random duration
of observations.

We still obtain the guaranteed and optimal properties of estimations.
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Case θ = b

We define the truncated sequential procedure δ̃H,T = (τ̃H,T , θ̃H,T ) , in which the alternative

stopping time τ̃H,T and the corresponding sequential estimator θ̃H,T are defined as

τ̃H,T = τH ∧ T and θ̃H,T = θ∗
H
1{τH≤T}. (10)

For any compact Θ ⊂]0,+∞[, we denote a∗ = a
bmax

. We choose the value for the parameter H

to minimize the estimation accuracy :

H∗
T = a∗T − (2mUma

2
∗/σ)

1
2m+1 T

2+m
2m+1 (1 + o(1)) as T → ∞ ; (11)

We define the optimal truncated procedure(
τ∗T , θ

∗
T

)
, τ∗T = τ̃H∗

T
,T and θ∗T = θ̃H∗

T
,T . (12)

Theorem 10 (Ben Alaya, N. and Pergamenchtchikov’25 (2))
For any integer m > 1

sup
θ∈Θ

Eθ

(
θ∗T − θ

)2 ≤
σ

a∗T
+O

(
1

T
3m

2m+1

)
as T → ∞ . (13)
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Case θ = a

We define the truncated sequential procedure

τ̃H,T = τH ∧ T and θ̃H,T = θ∗
H
1{τH≤T}. (14)

For any compact Θ ⊂ (σ/2,+∞), we denote µa,θ =
∫
R+

min(x−1, r) qθ,b(z)dz for r > 1 and

µa,∗ = infθ∈Θ µa,θ. We choose the value for the parameter H to minimize the estimation
accuracy :

H∗
T = µa,∗T − r

2m
2m+1 (2mVmµ

2
a,∗/σ)

1
2m+1 T

2+m
2m+1 (1 + o(1)) as T → ∞ ; (15)

We define the optimal truncated procedure(
τ∗T , θ

∗
T

)
, τ∗T = τ̃H∗

T
,T and θ∗T = θ̃H∗

T
,T . (16)

Theorem 11 (Ben Alaya, N. and Pergamenchtchikov’25 (2))
For any integer m > 1

sup
θ∈Θ

Eθ

(
θ∗T − θ

)2 ≤
σ

µa,∗T
+ o

(
1

T

)
as T → ∞ . (17)
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Case θ = (a, b)

We define the truncated sequential procedure

τ̃H,T = τH ∧ T and θ̃H,T = θ∗
H
1{τH≤T}. (18)

Setting

u∗ = max
θ∈Θ

(
|F−1| trF

)2
, (19)

we chose the sequence (κn)n≥1 as

κn =

{
H , for n ≤ n∗H ;

κ∗
n , for n > n∗H ,

(20)

where n∗H = 2u∗H, and (κ∗
n )n≥1 is an increasing sequence such that for all n it is bounded from

below as κ∗
n ≥ n and for some constants ϖ > 1 and 0 < δ∗ < 1/2,

limn→∞ n−ϖ κ∗
n < ∞ and limn→∞ n−δ∗

n∑
k=1

1√
κ∗
k

< ∞ . (21)

For example, we can take κ∗
n = nϖ and δ∗ = (2−ϖ)/2 for some 1 < ϖ < 2.
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Case θ = (a, b)

For any compact set Θ ⊂ (σ/2,+∞) × (0,+∞), assume that for some
0 < δ < 1/2 the parameter r is such that

r → ∞ and r = O(T δ) as T → ∞ . (22)

Then, for any m > (1− 2δ)−1 , we choose

H∗
T
= µ̄∗T + o(T ) as T → ∞ ; (23)

where µ̄∗ = min(a,b)∈Θ trF . We define the truncated procedure

(
τ∗
T
, θ∗

T

)
, τ∗

T
= τ̃H∗

T
,T and θ∗

T
= θ̃H∗

T
,T . (24)

Theorem 12 (Ben Alaya, N. and Pergamenchtchikov’25 (2))

sup
θ∈Θ

Eθ

(
θ∗
T
− θ

)2 ≤ 2u∗σ

µ̄∗T
+ o

(
1

T

)
, (25)
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Optimality of SMLE θ∗
T
for θ = b, k = 1

Theorem 13 (Ben Alaya, N. and Pergamenchtchikov’25 (2))

For any compact set Θ ⊂]0,+∞[ the stopping time τ∗T defined in the procedure (12) for any
r > 0 satisfies the following asymptotic property

lim
T→∞

sup
θ∈Θ

Eθ

∣∣∣∣ τ∗TT −
θ

bmax

∣∣∣∣r = 0 . (26)

For some family of sequential procedures
(
τ∗T , θ

∗
T

)
T>0

such that for any parameter θ ∈ Θ the

expectation Eθ τ
∗
T → +∞ as T → ∞ we use the following class

Ξ∗
T =

{
(τ, θ̂τ ) : sup

θ∈Θ

Eθτ

Eθτ
∗
T

≤ 1

}
. (27)

Theorem 14 (Ben Alaya, N. and Pergamenchtchikov’25 (2))

For any compact set Θ ⊂]0,+∞[,

lim
T→∞

inf
(τ,θ̂τ )∈Ξ∗

T
supθ∈Θ Eθ (θ̂τ − θ)2

supθ∈Θ Eθ (θ
∗
T − θ)2

= 1 . (28)
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Optimality of SMLE θ∗
T
for θ = a, k = 1

Theorem 15 (Ben Alaya, N. and Pergamenchtchikov’25 (2))

For any fixed b > 0 any compact set Θ ⊂]σ/2,+∞[ the stopping time τ∗T defined in the
procedure (16) for any r > 0 satisfies the following asymptotic property

lim
T→∞

sup
θ∈Θ

Eθ

∣∣∣∣ τ∗TT −
2θ − σ

2amax − σ

∣∣∣∣r = 0 . (29)

Theorem 16 (Ben Alaya, N. and Pergamenchtchikov’25 (2))

For any b > 0 and any compact set Θ ⊂]σ/2,+∞[,

lim
T→∞

inf
(τ,θ̂τ )∈Ξ∗

T
supθ∈Θ Eθ (θ̂τ − θ)2

supθ∈Θ Eθ (θ
∗
T − θ)2

= 1 . (30)
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Optimality of SMLE θ∗
T
for θ = (a, b), k = 2

Theorem 17 (Ben Alaya, N. and Pergamenchtchikov’25 (2))

For any compact set Θ ⊂ (σ/2,+∞) × (0,+∞) and for any r > 0,

lim
H→∞

sup
θ∈Θ

Eθ

∣∣∣∣τ∗TT − µ̄∗
trF

∣∣∣∣r = 0 . (31)

Theorem 18 (Ben Alaya, N. and Pergamenchtchikov’25 (2))

For any compact set Θ ⊂ (σ/2 , +∞)× (0 , +∞) the sequential procedure (24) is
asymptotically optimal in the minimax sense, i.e.

lim
T→∞

inf(τ,θ̂τ )∈Ξ∗
T

sup
θ∈Θ

Eθ

∣∣ F̃ 1/2 (θ̂τ − θ)
∣∣2

sup
θ∈Θ

Eθ

∣∣ F̃ 1/2 (θ∗
T
− θ)

∣∣2 = 1 . (32)
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What’s new

The (truncated) sequential estimation procedures are constructed for CIR
processes and non asymptotic mean square accuracy are obtained.

It should be emphasized, that in the estimation problem for the parameter a,
the sequential estimator is well defined and possess the fixed accuracy
estimation property in the cases when the classical maximum likelihood
estimator is not defined for CIR model.

Based on the LAN property, the minimax estimation theory for the sequential
estimation procedures in the continuous time was developed.

For the first time, the minimax properties for the sequential procedures in the
continuous time are obtained in the class of all possible sequential procedures
with the same mean observation duration.
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THANK YOU!
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