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General model and sampling Method

dX, = b(6o, X,)dt + o (61, X,)dW,.

@ Problem: Using data observed from a single trajectory of X to estimate parameters
0o € ©g C R% and #; € ©; C R%

@ Continuous sampling: (X;)¢e[o, 7]
@ Discrete sampling: (Xya, Jo<k<n

o High frequency data in a fixed period: A, — 0 and nA, = T fixed
o Low frequency data in a long period: A, = A fixed, and nA, — c©
e High frequency data in a long period: A, — 0 and nA, — oo

@ The estimation of 01 which is called volatility in mathematical
finance, is based on the fact that the quadratic variation

n T
> (X — Xy ) — / o(01, X,)?ds.
i=1 0

@ For any fixed T, 61 can be consistently estimated if A, — 0.

@ In the following, we suppose that 6; is known and try to estimate 6p
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Maximum likelihood estimation

In Liptser & Shiryaev'01 and Kutoyants'04, Radon-Nikodym derivative of the probability measure
induced by

dX, = b(0, X,)dt + o(X,)dW,, Xo=x€R

with € © C R? is given and the likelihood function is

T _ T 2 2
L7(6) = exp ( /O deﬁé /0 b(e’xﬁz( Xt:)(eo,xa dt)

for any fixed 6y € © C RY. The MLE 87 of 0 is defined by
or = argmaxgcoL7(6)

The consistency and asymptotic normality of @\7— have been shown under some regularity
conditions of b and o, generally in ergodic case.
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The sequential analysis approaches

@ The first approaches: in Novikov'72 and Liptser & Shiryaev'01 for the scalar
Ornstein-Uhlenbeck process in continuous time

dX, = 0X,dt + dW,. (1)

The Maximum Likelihood Estimator (MLE) for the parameter 6 defined as
. T T
0y = (/ xjds)—l/ X,dX, .
0 0

Then the Sequential Maximum Likelihood Estimator (SMLE) for the parameter 6 defined as

~ 1 [Th
brr = /0 X.dX,,

t
T;:inf{rZO:/xjdszH},
0

where H > 0 is some fixed non random arbitrary constant. One can check that 57; is
N(0,H1) for any H > 0.

with the stopping time
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The sequential analysis approachs

@ Discrete time: Borisov & Konev'77 (non-asymptotic), Lai & Siegmund'83
(asymptotic).

@ Guaranteed two-step estimation method for multidimensional parameter case:
Konev & Pergamenshchikov'81(1)(2), Konev & Pergamenshchikov'88,
Galtchouk & Konev'01.

@ Guaranteed estimation property in the non-asymptotic setting with
dependent observations: Konev & Pergamenshchikov'97.

@ For the proposed sequential estimation methods, the asymptotic properties,
as H — oo, were studied (see, e.g., in Konev & Pergamenshchikov'84'85'86,
Pergamenshchikov'85).
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Parameter estimation problems for the CIR processes

We consider the stochastic differential equation
dX, = (a— bX,)dt + /o X, dW,, X,=x>0, (2)
where a >0, b€ R and ¢ > 0 and (W;):>0 is a standard Brownian motion.

@ In finance, the CIR is used to describes the evolution of interest rates and
stochastic volatility stock markets modeling.

— Rfs : [Cox, Ingersoll & Ross'85], [Lamberton & Lapeyre'97], [Heston'93],
[Berdjane and Pergamenshchikov'13] and [Nguyen and
Pergamenshchikov'17], etc.

@ In biology, the CIR can be used to model population dynamics and in the
epidemic analysis.

— Rfs: [Bansaye & Méléard'15], [Pergamenchtchikov, Tartakovsky &
Spivak'22], etc.
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Parameter estimation problems for the CIR processes

dX, = (a — bX,)dt + /o X, dW,, X,=x>0, 3)

For 8 = b, the MLE (see, e.g., in Ben Alaya & Kebaier'12) is defined as
é\ _aT—Xp+x
T foT X ds °
bT+ [T X7HdX,
S Xt
e For § = (a, b), the MLE (see, e.g., in Ben Alaya & Kebaier'13) is defined as

@ For 0 = a, the MLE is given as é\T =

5 S Xedt [T X7HdX = T(Xp—x)
7 — T = ST Xde [T X-1de—T2
T 5. — T[] X7HdX,—(Xp—x) [ X7'dt
r =

T —
S Xde [T X 1de-T?

-~

These papers show the asymptotic behavior of the error (6 — ) for ergodic
and non-ergodic cases.

@ There are still no results on a guaranteed estimation for the CIR process.
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© Sequential estimation for CIR processes
@ Scalar sequential procedures



Case 0 = b

We define the sequential procedure &}, = (77, , 0},) with H > 0 for the parameter b as

. t L AT Xy A x
7, = inf t:/ X,ds > H and 0), = ———"——,
0 H

First we study non asymptotic properties of this procedure, i.e. for any fixed threshold H > 0.

Theorem 1 (Ben Alaya, N. and Pergamenchtchikov'25 (1))

For any and for any fixed H > 0, J}; possesses the following properties:
@ Py(rf <o) =1;

@ the sequential estimator 0}, is normally distributed with parameters

Egff, = b and Ey(0], — b)> = % .
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Case 0 = a

We define the sequential estimation procedure &}, = (7};, 0};) with H > 0 for the parameter a as

t brty + [TF XX
T;:inf{t:/ x;ldszH} and 9;:%.
0

First we study non asymptotic properties of this procedure, i.e. for any fixed threshold H > 0.

Theorem 2 (Ben Alaya, N. and Pergamenchtchikov'25 (1))

For any | b >0, a > 0|and for any fixed H > 0 the sequential procedure ;, possesses the

following properties:
Q Py(r); < o0) =1;

@ the sequential estimator 0}, is normally distributed with parameters

Egff, =a and Eg(0} —a)’ = % .

+ When a < ¢/2, j; XS*1/2dWs is not defined for any fixed non random t > 0. Therefore,
the non sequential MLE can not be calculated for this case, but the sequential procedure is
well defined.
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Case 6 = (a, b)

We rewrite the CIR model as
dX, = g/ 0dt + /o X, dW,,

where g, = (1, —Xt)T. In this section we assume, that b > 0 and a > ¢/2.
Then, in view of the results from Ben Alaya & Kebaier'13, the random matrix

ty—1
t ) . fO Xs ds —t
Gt:/ X, 'g.g, ds = ,
0 —t Jy Xods
possesses the following asymptotic property
i -1

1
lim -G, =F = P, — as
t—oo t -1 f2

where f; =2b/(2a — o) and f, = a/b. Here, F is positively definite matrix.
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We use the two-step sequential fixed accuracy estimation method developed in
Konev & Pergamenshchikov'81'85

o | First step [ we construct the sequence of the sequential procedures

(5,, = (t,,,ét )) . We fix a non random sequence of non-decreasing
"/ n>1

positive numbers (x,),> for which

,0=Z%<oo. (4)

n>1 "

Now for any z > 0 we set
t
tz:inf{tEO:/ X! gs|2d522} ) (5)
0

Let t, =t,. and define the sequential MLE as

Kn

tn
6, = G;l / X 'g.dX, (6)
0
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@ | Second step [ we construct a sequential aggregation estimation procedure
which is defined as weighted sum of the estimators (6). First we set

1

b =—1
n |Gt:1"%n {)‘min(th)>0}

where |G|2 =tr GG, and we define the stopping time as

k
U;_inf{k21:2b32/4}, )

n=1
for a positive non random threshold H > 0. We define the sequential

estimator as )

v\
07, = Z;bi ;"i"tn' (8)
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So, we obtain aggregated two-step sequential procedure

65 =(r,,0;) and 7/, =t,

(9)

*
H

Theorem 3 (Ben Alaya, N. and Pergamenchtchikov'25 (1))

For any b > 0 and a > /2 and for any H > 0 the procedure (9) has the following
properties

7/, <400 Py—as.

and o
* 2
E9 |9H - 0| < pﬁ )

where the coefficient p is defined in (4).
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Minimax inequality
From now, we take the parameter set
© C{(a,b) : a>0/2, b> 0} =]o/2, +00[%]0, +00].

Let now 0, € © and v > 0 such that {|0 — 6, <~} C ©. We denote by
H+(6,,7) the local class of sequential procedures 6 = (7, 6.) such that

sup Ey7 < T
[0—0,] <~

Inspired by the ideas from Corollary 2 in Efroimovich’'80, we prove the following
proposition.

Proposition (Ben Alaya, N. and Pergamenchtchikov'25 (1))

Assume that, LAN holds for 6, from © C R with the function
o1 = (1(0,) T)"*/2 and I(6,) is the Fisher information matrix. Then, for any
~ > 0 for which {|0 — 6, <~} C O,

lim inf sup E 4,9_15—022/(.
Jm inh e Egler 0~ 0)

— = = — S Res
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Now we need to compare the defined sequential procedure &}, = (7}, 0},) with
other sequential procedure. To this end we set

~ E
== {6_(7',97) :sup 97—* < 1} .

sco EoTh

Now we obtain a lower bound for this class.

Theorem 4 (Ben Alaya, N. and Pergamenchtchikov'25 (1))

Let 6, from © C R¥ such that {|§ — 6,| < v} C © for all sufficiently small v > 0.
Assume that, LAN holds in 6, with the normalizing function ¢+ = (/(6,) T)~'/2
and /(6,) is the Fisher information matrix. Then,

lim inf sup E, |7,7H(6)1/2(§T —0))? >k,
H—oc0 6€= gco

where v,(0) = I(0)Ey7};.
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Optimality of SMLE (9,*4 for0=2a, k=1

Theorem 5 (Ben Alaya, N. and Pergamenchtchikov'25 (1))

For any , any compact set | © Clo/2,+o00[ | and for any r > 0

r

lim supE, TWH = 1071(9)

= O’
H—00 gc@

where [,(0) = 2b/(2a — o).

In this case:

o vy(0) =07 1(20 — )1 2bEyT}, ~ 0 H as H — <.

. . 2
o limy, , sup, o vy (0)Ey (07, —0)" =1.
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Optimality of SMLE (9,*4 for0=b, k=1

Theorem 7 (Ben Alaya, N. and Pergamenchtchikov'25 (1))

For any , any compact set |© C]0, +oo[ | and any r > 0

r

=0,

T 1

lim sup E, H o h®
0

H—o0 gc@

where ,(8) = a/6.

In this case:

o vy(0) =oc 10 taE,r), ~ 0 'H as H — oc.

. . 2
o limy, , sup, o vy (0)Ey (07, —0)" =1.
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Optimality of SMLE 6}, for 6 = (a, b), k =2

We chose the sequence (%), as follows

{ H, for n<nj;
K, =

* *
Ky for n>nj,

where ny, = L,;H and L, > 1 is slowly increasing function, i.e.

Ly
,JinOOLH_—&—oo and Hlinoom—o forany 0 >0.

Moreover, (k*),~ is a sequence of positive increasing numbers such, that for
n =
some 4t >1and 0 < p < 1,

limsup n"# Kk* < oo and limsup n™® E

n *
n—o0 n—00 van

For example, we can take ny, = HIn H and x* = n* for some p > 1.
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Optimality of SMLE 6}, for 6 = (a, b), k =2

Theorem 9 (Ben Alaya, N. and Pergamenchtchikov'25 (1))

For any compact set © CJo/2, +00[%]0, +o0[ for the duration time in the
sequential procedure (9) we have for any r > 0

T 1

lim sup E, o F
r

H—o00 gco

where the matrix F is defined above by lim, ,  1G, = F.

o Let F = F/tr(F). In this case vy(0) = 0 FEym}, ~ 0 *HF as H — <.

o limy_, o sup,ce Egluy ()2 (67, —0) P <2
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Truncated sequential approaches

Truncated versions of developed sequential estimators were proposed in [Konev &
Pergamenshchikov(92), Konev & Pergamenshchikov(97)], [Ben Alaya, N. and
Pergamenchtchikov'25 (2)].

The proposed truncated sequential procedures use essentially fewer observations
than classical non-sequential estimators based on the fixed non-random duration

of observations.

We still obtain the guaranteed and optimal properties of estimations.
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Case 0 = b

We define the truncated sequential procedure SH’T = (Tw, 1> GNH,T), in which the alternative

stopping time T  and the corresponding sequential estimator gH,T are defined as

Tu71 =T AT and gHy-,— =0, 1,<7)- (10)

For any compact © C]0, +oo|, we denote a, = B 2 We choose the value for the parameter H

max

to minimize the estimation accuracy :

24+m
H:=a,T — (2mU,a% /o)1 Tl (14 0(1)) as T — oo; (11)

We define the optimal truncated procedure

(7?’70;’) ’ lek' = 7‘::""7'77— and 91;— = GH;‘_,T ’ (12)

Theorem 10 (Ben Alaya, N. and Pergamenchtchikov'25 (2))

For any integer m > 1

1
sup Eg (6% —0)°< —— 40— | as T—oo. (13)
0o a, T Zm+1
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Case 0 = a

We define the truncated sequential procedure
?H,T =TH AT and GH,T = 9:, l{THST}' (14)

For any compact © C (¢/2,+00), we denote 1, g = f]R min(x~1,r) ag p(z)dz for r > 1 and
+

Hax = infgco p, 9. We choose the value for the parameter H to minimize the estimation
accuracy :

2m_ 1 __ 24m
Hi = p, T —v20i1 2mV,p2 /o) T2mil(1+0(1)) as T — oo; (15)

We define the optimal truncated procedure

(T.?,GT;) s | Tr = ?H;,T and 07 = HH;‘_,T . (16)

Theorem 11 (Ben Alaya, N. and Pergamenchtchikov'25 (2))

For any integer m > 1

2 o 1
sup Eg (0% — 6)° < +o(—> as T — oo. (17)
0co (7 =) Ko T
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Case 6 = (a, b)

We define the truncated sequential procedure

;H,T =TH AT and gH,T = 9:, 1{THST}' (18)
Setting
= F1trF)?, 19
u, = max (|[F | tr F) (19)
we chose the sequence (x,),>1 as
H, for n<nj;
=1 ' (20)
Kr, for n>nj,

where n}; = 2u,H, and (x}),>1 is an increasing sequence such that for all n it is bounded from
below as k% > n and for some constants @ > 1 and 0 < §* < 1/2,

— ok —
lim, oo n™“ Ky < oo and lim

n—oo N 21
Z \ﬁ (21)

For example, we can take k7 = n® and §* = (2 — @)/2 for some 1 < w < 2.
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Case 6 = (a, b)

For any compact set © C (0/2,400) x (0,+00), assume that for some
0 < § < 1/2 the parameter r is such that

r—oo and r=0(T% as T — oo. (22)
Then, for any m > (1 —26)~1 , we choose
Hy =p, T+o(T) as T — oo; (23)

where fi, = min(, ,)cq tr F. We define the truncated procedure

(75.07), |73 =Fpr and 07 =04 1. (24)

Theorem 12 (Ben Alaya, N. and Pergamenchtchikov'25 (2))

2 2u.o 1
sup E, (0% —0)” < —= +o(—>, 25
BBl =0 < rol7 =

Tram Ngdé Guaranteed estimation for CIR models 21 October 2025 25/33



Plan

© Truncated sequential estimation for CIR processes

@ Optimality properties of these sequential procedures



Optimality of SMLE 6% for 6 = b, k =1

Theorem 13 (Ben Alaya, N. and Pergamenchtchikov'25 (2))

- 1
For any compact set © C]0, +oo| the stopping time 73 defined in the procedure (12) for any
r > 0 satisfies the following asymptotic property

lim sup Ey

o
G
T—0 gco T

=0.

max

b
For some family of sequential procedures (TT, 0% )

(26)

expectation Ey 77 — 400 as T — oo we use the following class

T>0
_T{(TH):sup

E9T
_<1p.
oco EoTT
For any compact set © C]0, +oo[

Theorem 14 (Ben Alaya, N. and Pergamenchtchikov'25 (2))

such that for any parameter 6 € © the

(27)
g 2
~in f(7—9 Je=x SUPoco E, (6, — 0)
lim = (28)
T—o0 supycg Eg (63 —6)?
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Optimality of SMLE (9*T for0 =a, k=1

Theorem 15 (Ben Alaya, N. and Pergamenchtchikov'25 (2))

For any fixed b > 0 any compact set © C]o /2, +0oo[ the stopping time 75 defined in the
procedure (16) for any r > 0 satisfies the following asymptotic property

r

T 20 —
lim supEp|-L — ——7 | =0. (29)

T—o0gco T 2am2x — O

Theorem 16 (Ben Alaya, N. and Pergamenchtchikov'25 (2))

For any b > 0 and any compact set © Clo /2, +0o0],

inf(r,é:)ez’; Supyco Eo (07 — 0)?

li =1. 30
T supyce Eo (05 —0)? (30)
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Optimality of SMLE 67 for 0 = (a, b), k =2

Theorem 17 (Ben Alaya, N. and Pergamenchtchikov'25 (2))
For any compact set © C (0/2,+00) x (0,+400) and for any r > 0,

I Bl g (31)

T trF

lim sup E,
H—00 gco

Theorem 18 (Ben Alaya, N. and Pergamenchtchikov'25 (2))

For any compact set © C (0/2, +00) x (0, +00) the sequential procedure (24) is
asymptotically optimal in the minimax sense, i.e.

_ R F1/2(p _ o2
o |nf(T79T)eEfr sup,.g Eg | F*2 (6, —0)] _q (32)
T—o0 SUPypco E, | F1/2 (0%';' - 9)|2
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What's new

@ The (truncated) sequential estimation procedures are constructed for CIR
processes and non asymptotic mean square accuracy are obtained.

@ It should be emphasized, that in the estimation problem for the parameter a,
the sequential estimator is well defined and possess the fixed accuracy
estimation property in the cases when the classical maximum likelihood
estimator is not defined for CIR model.

@ Based on the LAN property, the minimax estimation theory for the sequential
estimation procedures in the continuous time was developed.

@ For the first time, the minimax properties for the sequential procedures in the
continuous time are obtained in the class of all possible sequential procedures
with the same mean observation duration.
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