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The Euclidean Steiner Problem De�nition

Given p points in Rn.
Find a tree with minimal Euclidean length that spans these points using or not extra
points, which are called Steiner points.
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The Euclidean Steiner Problem De�nition

Determine:

The number of Steiner points to be used on the minimal tree.

The arcs of the tree.

Geometrical position of the Steiner points.
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Topology of the solution

Topologies are graphs that show connections between Steiner points and terminals

Three different topologies for a graph with 4 terminals and 2 Steiner points 
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The Euclidean Steiner Problem for a Given Topology

Two different solutions for a given topology 
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To obtain the best solution:

Minimize ||a1 − x5||+ ||a2 − x5||+ ||x5 − x6||+ ||a3 − x5||+ ||a4 − x6||
subject to: x5, x6 ∈ Rn
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Some examples of solutions

Steiner Minimal Trees (SMT)
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Historical Background

The problem traces back to an ancient problem studied by Pierre de Fermat

Challenge of Fermat in the 17th century

Given three points in the plane, �nd a fourth point such that the sum of its distance to
the three given points is at minimum.
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Historical Background

The problem traces back to an ancient problem studied by Pierre de Fermat

Evangelista Torricelli's geometric solution (1640)

Three circles circumscribing the equilateral triangles constructed on the sides of and
outside the triangle ABC intersect in the point that is sought (the so called Torricelli
point).
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Historical Background

The problem traces back to an ancient problem studied by Pierre de Fermat

Bonaventura Cavalieri (1647)

The line segments from the three given points to the Torricelli point make 120◦ with
each other.
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Historical Background

The problem traces back to an ancient problem studied by Pierre de Fermat

Franz Heinen (1834)

If the triangle ABC has one angle greater than or equal to 120◦, then the minimizing
point that solves Fermat problem is the vertex of the obtuse angle.
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Generalizations of the Fermat Problem

Find a point such that the sum of p distances from the point to p given points
achieves minimal � still called Fermat Problem.

Find a shortest network interconnecting p given points on the Euclidean plane �
called Steiner Problem in the famous book:

Richard Courant and Herbert Robbins, What is Mathematics?, Oxford University
Press, 1941.
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Properties of SMTs

Angle condition

No two edges on a SMT can meet at a point with angle less than 120◦.

Node's degree

Each node has degree between 1 and 3.
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Properties of SMTs

Angle condition

No two edges on a SMT can meet at a point with angle less than 120◦.

Terminal's degree

Each terminal has degree between 1 and 3.

Steiner point's degree

Each Steiner point has degree equal to 3.

Number of Steiner Points

Given p points x i ∈ Rn, i = 1, 2, . . . , p, the maximum number of Steiner points is p − 2.
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Steiner Tree/Topology

A Steiner Tree (ST) is a tree that contains the p given terminals and possible k
additional Steiner points, such that:

No two edges meet at a point with angle less than 120◦.

Each terminal point has degree between 1 and 3.

Each Steiner point has degree equal to 3.

k ≤ p − 2.

A Full Steiner Tree (FST) is an ST with the maximum p − 2 Steiner points. Each
terminal is of degree one in an FST.

A Steiner Topology (Full Steiner Topology) is a topology that meets the degree
requirements of an ST (FST).
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Computational Complexity

The Euclidean Steiner problem (ESP)

The optimization problem
GIVEN: A set P of terminals in Euclidean plane.
FIND: A Steiner tree of shortest length spanning P.

The decision problem
GIVEN: A set P of terminals in Euclidean plane and an integer B.
DECIDE: Is there a Steiner tree T that spans P such that |T | ≤ B?

The discrete decision problem
GIVEN: A set P of terminals with integer coordinates in the Euclidean plane and
integer B.
DECIDE: Is there a Steiner tree T that spans P such that , such that all Steiner points
have integer coordinates, and the discrete length of T is less than or equal to B, where
the discrete length of each edge of T is the smallest integer not less than the length of
that edge ?

Garey, Grahan and Jonhnson (1977)

The ESP has been shown to be NP-Hard.

Arora (1998)

A polynomial time approximation scheme (PTAS) for the ESP exists.
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The Steiner Ratio

Let SMT(P) be the length of the Steiner Minimal Tree on the set of terminals P.

Let MST(P) be the length of the Minimum Spanning Tree on the set of terminals P.

Let

ρ(P) :=
SMT(P)

MST(P)
.

Clearly ρ(P) ≤ 1, for all P.

If P is the set of the three corners of an equilateral triangle,
1 2

3

1 2

3

4

then

ρ(P) =

√
3

2
≈ 0.866.
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Gilbert-Pollak Conjecture (for R2)

ρ = inf
P
ρ(P) =

√
3/2.
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Gilbert-Pollak Conjecture

For small p

Gilbert and Pollak (1968) - Proof for p = 3.

Pollak (1978) - Proof for p = 4.

Du, Yao annd Hwang(1982); Booth(1991); Freld and Widmayer (1989); Rubinstein -
Proof for p = 5.

For general p

F. R. K. Chung and R. L. Graham: A new bound for the Steiner minimal trees, Ann.
N.Y. Acad. Sci. 440, 325-346, 1985. (ρ ≥ .834).
D-.Z Du and F.K. Hwang: The Steiner ratio conjecture of Gilbert�Pollak is true.
Proc. Natl. Acad. Sci. USA 87, 9464�9466, 1990.

D-.Z Du and F.K. Hwang: A proof of the Gilbert-Pollak conjecture on the Steiner
ratio. Algorithmica, 7:121�135, 1992.

N. Innami, B. H. Kim, Y. Mashiko, K. Shiohama: The Steiner Ratio Conjecture of
Gilbert-Pollak May Still Be Open. Algorithmica, 57(4):869-872, 2010.

A.O. Ivanov · A.A. Tuzhilin: Algorithmica (2012) 62: The Steiner Ratio
Gilbert�Pollak Conjecture Is Still Open. Algorithmica, 62:630�632, 2012.
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Gilbert-Pollak Conjecture (for Rn)

The minimum Steiner ratio is achieved at the corners of the n-dimensional regular
simplex.

Smith (1992) computed the Steiner Ratio for the n-dimensional regular simplex and for
the n-dimensional regular octahedron for all n = 3, . . . , 9. The former is always larger
than the latter. Disproof of the conjecture for those n.
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Exact Algorithms (EST in the plane)

Extensive literature elucidating properties of SMTs in the plane that do not extend
to n > 2.

1961 Melzak.

1985 Winter � GeoSteiner Algorithm

2001 Warme, Winter and Zacharisen - version 3.1 of the GeoSteiner (10000 terminals
solved).
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GeoSteiner Algorithm
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Exact Algorithms (general n-space)

Gilbert and Pollak (1968)

Find all Steiner topologies on the p given terminals and k Steiner points, with
k ≤ p − 2.

For each topology optimize the coordinates of the Steiner points.

Output: the shortest tree found.
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Degenerate Steiner Topologies

A topology is called a degeneracy of another if the former can be obtained from the
latter by shrinking edges.
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Degenerate Steiner Topologies

A topology is called a degeneracy of another if the former can be obtained from the
latter by shrinking edges.

Fact: each Steiner topology is either a full Steiner topology or a degeneracy of a full
Steiner topology.

1 1 

2 72 

3 83 

4 94 

5 
105 

6 6 

7 8 

9 10 

degenerated Steiner points 

Marcia Fampa (UFRJ) PGMO, 12 Jun 2014, École Polytechnique 21 / 45



Exact Algorithms (general n-space)

Gilbert and Pollak

Find all the FULL Steiner topologies on the p given terminals and k Steiner points,
with k = p − 2.

For each topology optimize the coordinates of the Steiner points.

Output: the shortest tree found.
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Number of Topologies (Gilbert and Pollak)

If we consider p given points in Rn and k ∈ {0, 2, . . . , p − 2} Steiner points, the total
number of di�erent topologies with k Steiner points is

Cp,k+2
(p + k − 2)!

k!2k
.

When k = p − 2 (full Steiner topologies) the above relation will bi written as
t(p) := 1 · 3 · 5 · 7 . . . (2p − 5) = (2p − 5)!!.

t(2) = 1, t(4) = 3, t(6) = 105, t(8) = 10395, t(10) = 2, 027, 025, t(12) = 654, 729, 075

Three different topologies for a graph with 4 terminals and 2 Steiner points 
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Exact Algorithms (general n-space)

Smith (1992)

An implicit enumeration scheme to generate full Steiner topologies and a numerical
algorithm to solve the ESP for a given topology.
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Enumeration Tree - Smith (1992)
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Enumeration Tree - Smith (1992)

Nodes at level k of tree enumerate full Steiner topologies with k Steiner points and
k + 2 terminals, k = 1, . . . , p − 2.

Children of a given node are obtained by merging a new terminal node with each arc
in current FST.

Good: Merging operation cannot decrease minimum length of FST - allows pruning!

Bad: No easy way to account for e�ect of missing terminal nodes.

Ugly: Growth of tree is super-exponential with depth, and problems get larger at
deeper levels.
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Branch-and-Bound - Smith (1992)

Terminals: Steiner Points: 

Upper bound=11 

SMT=13 
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Problem for a Given Topology - Fampa & Anstreicher (2008)
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Case 1: 

Case 2: 

where: 

Topology T with k Steiner points,  
k+2 terminals and n edges (n=2k+1) 
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The merging operation
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Fixing variables

where: 

Let: 

z*(D+) ≤ z*(D+)=SMT(T+)  
- 
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Smith vs F&A

F&A uses conic interior-point code (MOSEK) to obtain bounds on minimum length tree
for given topology. Also use MOSEK to solve subproblems with �xed dual variables.

Choose next terminal node to add so as to minimize number of children
created/maximize sum of child bounds (strong branching). Smith enumeration argument
was extended to allow for varying order in which terminals are added.
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Numerical results - Smith vs F&A
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Numerical results - Smith vs F&A
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Conclusions

Conic formulation provides rigorous bounds.

Fixing dual variables allows for estimate of e�ect of next merge via solution of smaller
problem.

New setting for strong branching; e�ective in reducing size of the tree.

Key problem with use of Smith's enumeration scheme is approximating the e�ect of
terminals that are not present in partial Steiner trees.
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MINLP Formulations for the Euclidean Steiner Problem

Maculan, Michelon, Xavier (2000)

Given p points in Rn, let G = (V ,E) be a special graph.
De�ne

P = {1, 2, . . . , p − 1, p} as the set of indices associated with p terminals;

S = {p + 1, p + 2, . . . , 2p − 3, 2p − 2} as the set of indices associated with p − 2
Steiner points;

V = P ∪ S ;

[i , j ] an edge of G , i , j ∈ V ;

E = E1 ∪ E2, where E1 = {[i , j ]|i ∈ P, j ∈ S} and E2 = {[i , j ]|i ∈ S , j ∈ S}.
E = E1 ∪ E2.
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MINLP Formulations for the Euclidean Steiner Problem

Maculan, Michelon, Xavier (2000): an example with p = 6

6 given points;

4 Steiner points;

all possible edges;

a feasible solution;

the optimal solution;

1

2

3

4

5

6
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the optimal solution;
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MINLP Formulations for the Euclidean Steiner Problem

Maculan, Michelon, Xavier (2000): an example with p = 6

6 given points;

4 Steiner points;

all possible edges;

a feasible solution;

the optimal solution;

1 1 

2 72 

3 83 

4 94 

5 
105 

6 6 

7 8 

9 10 

degenerated Steiner points 
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MINLP Formulations for the Euclidean Steiner Problem

Maculan, Michelon, Xavier (2000)

(P): Minimize
∑

[i,j]∈E ||x i − x j ||yij
subject to∑

j∈S
yij = 1, i ∈ P, (1)

∑
i∈P

yij +
∑

k<j,k∈S
ykj +

∑
k>j,k∈S

yjk = 3, j ∈ S, (2)

∑
k<j,k∈S

ykj = 1, j ∈ S − {p + 1}, (3)

x i ∈ Rn, i ∈ S , (4)

yij ∈ {0, 1}, [i , j] ∈ E , (5)

where ||x i − x j || =
√∑n

l=1(x
i
l − x j

l )
2 is the Euclidean distance between x i

and x j
.
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MINLP Formulations for the Euclidean Steiner Problem

Fampa and Maculan (2004)

Given ai terminals in Rn, i = 1, . . . , p.

Steiner vertices x i , i = p + 1, . . . , 2p − 2, are in the convex hull of the p terminals.

Let M = maximum{||ai − aj || for 1 6 i 6 j 6 p}.
Thus, we have ||ai − x j || 6 M, [i , j ] ∈ E1.

And ||x i − x j || 6 M, [i , j ] ∈ E2.

We considerer that (ai )k > 0, for i = 1, . . . , p and k = 1, . . . , n.

We also have (x i )k > 0, for i = p + 1, . . . , 2p − 2 and k = 1, . . . , n.

Marcia Fampa (UFRJ) PGMO, 12 Jun 2014, École Polytechnique 40 / 45



MINLP Formulations for the Euclidean Steiner Problem

Fampa and Maculan (2004)

(P) : Minimize
∑

[i,j]∈E

dij subject to (6)

dij > ||ai − x j || −M(1− yij ), [i , j] ∈ E1, (7)

dij > ||x i − x j || −M(1− yij ), [i , j] ∈ E2, (8)

dij > 0, [i , j] ∈ E (9)∑
j∈S

yij = 1, i ∈ P, (10)

∑
i∈P

yij +
∑

k<j,k∈S
ykj +

∑
k>j,k∈S

yjk = 3, j ∈ S, (11)

∑
i<j,i∈S

ykj = 1, j ∈ S − {p + 1}, (12)

x i ∈ Rn, i ∈ S , (13)

yij ∈ {0, 1}, [i , j] ∈ E , (14)

dij ∈ R. (15)

We consider ||x i − x j || ≈
√∑n

l=1(x
i
l − x j

l )
2 + λ2.
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MINLP Formulations for the Euclidean Steiner Problem

Fampa and Maculan (2004): One Solution for an Octahedron

0.0

0.2

0.4

x

0.0
0.2

0.4

y

0.0

0.2

0.4

z

Number of Points (Green): 6

Number of Steiner Points (Red): 4

Objective Function: 1.4341

Execution Time: 53.53 s
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MINLP Formulations for the Euclidean Steiner Problem

Fampa and Maculan (2004): One Solution for an Icosahedron

- 0.5

0.0

0.5

x

- 0.5

0.0

0.5

y
- 0.5

0.0

0.5

z

Number of Points (Green): 12

Number of Steiner Points (Red): 10

Objective Function: 5.0351

Execution Time: 1 day.
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MINLP Formulations for the Euclidean Steiner Problem

Fampa and Maculan (2004): One Solution for a Dodecahedron

- 0.5 0.0 0.5

x

- 0.5

0.0

0.5

y

- 0.5

0.0

0.5

z

Number of Points (Green): 20

Number of Steiner Points (Red): 18

Objective Function: 6.7796

Execution Time: 10 s (*)
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Thank you!

fampa@cos.ufrj.br
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