Lecture 2

Non-Atomic Routing Games Wardrop Equilibrium

Roberto Cominetti Universidad Adolfo Ibáñez

Journées SMAI MODE 2020

Lecture 2: Non-Atomic Routing Games

- Non-Atomic Routing Games
 - Wardrop equilibrium Definition
 - Wardrop equilibrium Characterizations
 - Wardrop equilibrium Existence & Uniqueness
- Inefficiency of Equilibria
 - Price-of-Anarchy
 - PoA for highly congested networks

Non-atomic Routing Games

Urban traffic flows under congestion

SANTIAGO

6.000.000 people 11.000.000 daily trips 1.750.000 car trips

Morning peak

500.000 car trips 29.000 OD pairs

2266 nodes / 7636 arcs

Non-atomic routing games

Games with many players become computationally hard. Such situations can be idealized by considering players as a continuum and to focus on the fraction of players that use each strategy.

We illustrate this with routing games on transportation networks.

We are given a graph (V, E) with

- ullet a set of $edges\ e \in E$ with continuous non-decreasing costs $c_e: \mathbb{R}_+ o \mathbb{R}_+$
- ullet a set of *OD pairs* $\kappa \in \mathcal{K}$ with corresponding routes $r \in \mathcal{R}_{\kappa} \subseteq 2^{E}$
- ullet a set of aggregate demands $d_{\kappa} \geq 0$ for each $\kappa \in \mathcal{K}$

Wardrop equilibrium

- Continuum of players / each one has a negligible impact on congestion.
- Perfectly divisible / aggregate demands $d_{\kappa} \geq 0$ for each OD pair $\kappa \in \mathcal{K}$.

Let $\mathcal F$ be the set of splittings (y,x) of the demands d_κ into route-flows $y_r \ge 0$, together with their induced edge-loads x_e :

$$d_{\kappa} = \sum_{r \in \mathcal{R}_{\kappa}} y_r \quad (\forall \kappa \in \mathcal{K}),$$

$$x_e = \sum_{r \ni e} y_r \quad (\forall e \in E).$$

Wardrop equilibrium

- Continuum of players / each one has a negligible impact on congestion.
- Perfectly divisible / aggregate demands $d_{\kappa} \geq 0$ for each OD pair $\kappa \in \mathcal{K}$.

Let $\mathcal F$ be the set of splittings (y,x) of the demands d_κ into route-flows $y_r \ge 0$, together with their induced edge-loads x_e :

$$d_{\kappa} = \sum_{r \in \mathcal{R}_{\kappa}} y_r \quad (\forall \kappa \in \mathcal{K}),$$

$$x_e = \sum_{r \ni e} y_r \quad (\forall e \in E).$$

The analog of Nash equilibria for a continuum of players is:

Definition (Wardrop, 1952**)**

A Wardrop equilibrium is a pair $(\hat{y}, \hat{x}) \in \mathcal{F}$ that uses only shortest routes:

$$(\forall \kappa \in \mathcal{K})(\forall r, r' \in \mathcal{R}_{\kappa}) \quad \hat{y}_r > 0 \Rightarrow \sum_{e \in r} c_e(\hat{x}_e) \leq \sum_{e \in r'} c_e(\hat{x}_e).$$

◆ロ → ◆部 → ◆ 差 → ◆ 差 → り へ ○ 6/29

Example: Single OD with 2 identical parallel links

At equilibrium the demand splits 50%-50%: $(\frac{d}{2}, \frac{d}{2})$.

Example (Braess Paradox):

Total demand is d = 1.

The upper and lower routes have cost $T_u = x_1 + 1$ and $T_l = 1 + x_2$. Wardrop equilibrium sends $\frac{1}{2}$ on each route with travel time $T_{eq} = 1.5$.

Example (Braess Paradox):

Total demand is d = 1.

The upper and lower routes have cost $T_u = x_1 + 1$ and $T_l = 1 + x_2$. Wardrop equilibrium sends $\frac{1}{2}$ on each route with travel time $T_{eq} = 1.5$.

A central arc (a, b) with cost 0 is added. The new Wardrop equilibrium sends all the flow along the zig-zag path o-a-b-d with travel time $T_{eq} = 2.0$.

An example with 2 OD pairs

Demands $d_1 = d_2 = 1$

The pair κ_1 sends all its flow $d_1=1$ through the central arc whose cost is always better that the upper route. Given this, κ_2 sends a traffic 0.8 on the central route until the cost equalizes the lower route which gets a flow of 0.2. The equilibrium cost for both pairs is 1.8.

EXERCISE: Find the equilibrium when $d_1 = d_2 = 2$

Introducing the route costs and minimal times

$$T_r(x) = \sum_{e \in r} c_e(x_e)$$
 ; $\tau_{\kappa}(x) = \min_{r \in \mathcal{R}_{\kappa}} T_r(x)$.

the conditions for Wardrop equilibrium are

$$(\forall \kappa \in \mathcal{K})(\forall r \in \mathcal{R}_{\kappa}) \qquad y_r > 0 \Rightarrow T_r(x) = \tau_{\kappa}(x).$$

Theorem (Beckman-McGuire-Winsten, 1956)

For a feasible flow $(y, x) \in \mathcal{F}$ the following are equivalent:

- a) (y, x) is a Wardrop equilibrium
- b) $\sum_{r \in \mathcal{R}} T_r(x)(y'_r y_r) \ge 0$ $\forall (y', x') \in \mathcal{F}$
- c) $\sum_{e \in E} c_e(x_e)(x'_e x_e) \ge 0$ $\forall (y', x') \in \mathcal{F}$
- d) (y,x) is an optimal solution of $\min_{(y,x)\in\mathcal{F}} \sum_{e\in E} \int_0^{x_e} c_e(z) dz$.

Proposition

A feasible flow $(y, x) \in \mathcal{F}$ is a WE iff

(VI)
$$\sum_{r \in \mathcal{R}} T_r(x)(y'_r - y_r) \ge 0 \qquad \forall (y', x') \in \mathcal{F}.$$

Proposition

A feasible flow $(y, x) \in \mathcal{F}$ is a WE iff

(VI)
$$\sum_{r \in \mathcal{R}} T_r(x)(y'_r - y_r) \ge 0 \qquad \forall (y', x') \in \mathcal{F}.$$

Proof:

 (\Rightarrow) If (y,x) is WE then for all $(y',x')\in\mathcal{F}$ we have

$$\textstyle \sum_r T_r(x)\,y_r' \geq \textstyle \sum_r \tau(x)\,y_r' = \tau(x)\,d = \textstyle \sum_r \tau(x)\,y_r = \textstyle \sum_r T_r(x)\,y_r.$$

(\Leftarrow) Let $(y,x) \in \mathcal{F}$ a solution of (VI). If $y_r > 0$ we may consider the flow y' identical to y except for $y'_r = y_r - \epsilon$ and $y'_p = y_p + \epsilon$ with $p \in \mathcal{R}$ a shortest path

$$\Rightarrow 0 \le \sum_{q \in \mathcal{R}} T_q(x)(y'_q - y_q) = \epsilon T_p(x) - \epsilon T_r(x)$$

so that $T_r(x) \leq T_p(x) = \tau(x)$. Therefore $y_r > 0 \Rightarrow T_r(x) = \tau(x)$.

4 D > 4 B > 4 E > 4 E > E 990 1

Proposition

A feasible flow $(y, x) \in \mathcal{F}$ is a WE iff

Proposition

A feasible flow $(y, x) \in \mathcal{F}$ is a WE iff

$$(VI) \qquad \qquad \sum_{e \in E} c_e(x_e)(x'_e - x_e) \ge 0 \qquad \forall \ (y', x') \in \mathcal{F}.$$

Proof: The equivalent form of the (VI) follows from an exchange in the sums

$$\sum_{r \in \mathcal{R}} T_r(x)(y'_r - y_r) = \sum_{r \in \mathcal{R}} \sum_{e \in r} c_e(x_e)(y'_r - y_r)$$
$$= \sum_{e \in \mathcal{E}} \sum_{r \ni e} c_e(x_e)(y'_r - y_r)$$
$$= \sum_{e \in \mathcal{E}} c_e(x_e)(x'_e - x_e).$$

◆ロ → ◆ 部 → ◆ 章 → ◆ 章 → 章 り へ ○ 13/29

Proposition

A feasible flow $(y,x) \in \mathcal{F}$ is a WE iff it is an optimal solution of the convex minimization problem

(P)
$$\min_{(y,x)\in\mathcal{F}} \Phi(y,x) = \sum_{e\in E} \int_0^{x_e} c_e(z) dz.$$

Proposition

A feasible flow $(y,x) \in \mathcal{F}$ is a WE iff it is an optimal solution of the convex minimization problem

(P)
$$\min_{(y,x)\in\mathcal{F}} \Phi(y,x) = \sum_{e\in E} \int_0^{x_e} c_e(z) dz.$$

Proof: Since $c_e(\cdot)$ is non-decreasing the function $\Phi(y,x)$ is convex, so that $(y,x)\in\mathcal{F}$ is a minimum iff for all $(y',x')\in\mathcal{F}$ we have

$$0 \leq \langle \nabla \Phi(y,x), (y',x') - (y,x) \rangle = \sum_{e \in E} c_e(x_e)(x'_e - x_e).$$

REMARK. Φ is a continuous analog of Rosenthal's potential for discrete routing games. In the continuous case equilibria *coincide* with the minima of the potential.

Wardrop equilibrium – Existence & Uniqueness

Wardrop equilibrium – Existence and uniqueness

Theorem

A non-atomic routing game has a Wardop equilibrium. Moreover, if (y, x) and (y', x') are two equilibria then $c_e(x_e) = c_e(x'_e)$. In particular, if $c_e(\cdot)$ is strictly increasing then x is unique.

Wardrop equilibrium – Existence and uniqueness

Theorem

A non-atomic routing game has a Wardop equilibrium. Moreover, if (y, x) and (y', x') are two equilibria then $c_e(x_e) = c_e(x'_e)$. In particular, if $c_e(\cdot)$ is strictly increasing then x is unique.

Proof: Φ is continuous \Rightarrow its minimum on \mathcal{F} is attained \Rightarrow existence of WE.

If (y, x) and (y', x') are two equilibria, using (VI) we get

$$\frac{\sum_{e \in E} c_e(x_e)(x_e' - x_e) \ge 0}{\sum_{e \in E} c_e(x_e')(x_e - x_e') \ge 0}$$

$$\frac{\sum_{e \in E} c_e(x_e')(x_e' - x_e') \ge 0}{\sum_{e \in E} (c_e(x_e) - c_e(x_e'))(x_e' - x_e) \ge 0}$$

Since $c_e(\cdot)$ is non-decreasing each term in the sum is negative so that $(c_e(x_e) - c_e(x_e'))(x_e' - x_e) = 0$ for all $e \in E$, hence $c_e(x_e) = c_e(x_e')$.

◆□▶◆□▶◆≧▶◆≧▶ ≧ り�� 16/3

Variational Characterization

Wardrop equilibria are the optimal solutions of the convex program

(P)
$$\min_{(y,x)\in\mathcal{F}} \sum_{e\in E} \int_0^{x_e} c_e(z) dz.$$

- (P) is large scale $\approx 220 \times 10^6$ variables for Santiago
- Objective function different from the social cost

$$SC(x) = \sum_{e \in E} x_e \, c_e(x_e)$$

Dual Characterization (Fukushima, 1984)

Change of variables: $x_e \leftrightarrow t_e$

(D)
$$\min_{t} \underbrace{\sum_{e \in E} \int_{0}^{t_{e}} c_{e}^{-1}(z) dz - \sum_{\kappa \in \mathcal{K}} d_{\kappa} \tau_{\kappa}(t) }_{\Phi(t) \text{ strictly convex}}$$

$$au_{\kappa}(t) = \min_{r \in \mathcal{R}_{\kappa}} \sum_{e \in r} t_e$$
 ODs minimum travel times concave, polyhedral

Non-smooth but efficiently computable (Bellman, Dijkstra,...)

$$au_i^\kappa = \min_{e \in E_i^+} \{t_e + au_{j_e}^\kappa\}$$

Inefficiency of Equilibria – Price-of-Anarchy

Quantifying Inefficiency: Price-of-Anarchy

For non-atomic routing games

Social cost = Total travel time =
$$\sum_{e \in E} x_e c_e(x_e)$$

$$\mathsf{PoA} = \frac{\mathsf{Social}\ \mathsf{Cost}\ \mathsf{of}\ \mathsf{Equilibrium}}{\mathsf{Minimum}\ \mathsf{Social}\ \mathsf{Cost}} \geq 1$$

Theorem (Roughgarden-Tardos, 2002; Roughgarden, 2003)

- PoA $\leq \frac{4}{3}$ for non-atomic routing games with affine costs.
- PoA $\leq \frac{\sqrt[k]{k+1}}{\sqrt[k]{k+1}-k/(k+1)} \sim O(\frac{k}{\log k})$ for polynomials of degree k.

Bounds attained for simple 2-link networks with fine-tuned demands.

PoA and PoS in non-atomic routing games

Note that

Total travel time
$$=\sum_{e\in E}x_e\,c_e(x_e)=\sum_{r\in \mathcal{R}}y_rT_r(x)=\sum_{\kappa\in \mathcal{K}}d_\kappa\, au_\kappa(x).$$

All Wardrop equilibria have the same value of $c_e(x_e)$

- \Rightarrow the same value of $T_r(x)$
- \Rightarrow the same minimal times $\tau_{\kappa}(x)$
- ⇒ social cost is constant on the set of Wardrop equilibria
- \Rightarrow PoS=PoA.

PoA and PoS in non-atomic routing games

Note that

Total travel time
$$=\sum_{e\in E}x_e\,c_e(x_e)=\sum_{r\in\mathcal{R}}y_rT_r(x)=\sum_{\kappa\in\mathcal{K}}d_\kappa\, au_\kappa(x).$$

All Wardrop equilibria have the same value of $c_e(x_e)$

- \Rightarrow the same value of $T_r(x)$
- \Rightarrow the same minimal times $\tau_{\kappa}(x)$
- ⇒ social cost is constant on the set of Wardrop equilibria
- \Rightarrow PoS=PoA.

Example. In the Braess paradox, when the central arc is unavailable Wardrop equilibrium splits half and half between with a travel time of 1.5. This coincides with the social optimum that minimizes $x_1(x_1+1)+x_2(x_2+1) \Rightarrow PoA=PoS=1$.

If we allow the central arc, the new equilibrium sends all the flow on the zig-zag path with travel time 2. The social optimum does not change and the price of anarchy increases to $PoA=PoS=\frac{4}{3}$.

Example: Pigou network

Let $c:[0,\infty)\to [0,\infty)$ be continuous and increasing and fix d>0.

- Wardrop equilibrium is x = d with social cost dc(d)
- Minimum cost is $\min_{x \in [0,d]} x c(x) + (d-x)c(d)$

Hence, PoA on this simple graph can be as large as

$$\alpha(c) = \sup_{d>0} \sup_{x \in [0,d]} \frac{d c(d)}{x c(x) + (d-x)c(d)} \ge 1.$$

This value allows to bound the PoA on any graph.

◆ロ → ◆ 部 → ◆ 差 → を を か へ や 22/2!

PoA in non-atomic routing games

Theorem (Correa-Schulz-Stier, 2004)

In a non-atomic routing game on a graph (N, A) with arc costs $c_e(\cdot)$ we have

$$PoA = PoS \le \alpha \triangleq \max_{e \in E} \alpha(c_e).$$

Proof: Let (y, x) be a WE and (\bar{y}, \bar{x}) a minimizer of C(y, x). Taking $d = x_e$ and $x = \bar{x}_e$ in the expression for the supremum $\alpha(c_a)$ we get the inequality

$$x_c c_e(x_e) \leq \alpha [\bar{x}_e c_e(\bar{x}_e) + (x_e - \bar{x}_e)c_e(x_e)]$$

which added together and in view of VI yield

$$C(y,x) \le \alpha \left[C(\bar{y},\bar{x}) + \sum_{e \in E} c_e(x_e)(x_e - \bar{x}_e) \right] \le \alpha C_{min}.$$

◆ロ → ◆園 → ◆ 重 → ◆ 重 ・ か ९ ○

PoA in non-atomic routing games

Note that $\alpha(s)$ can be expressed as $\alpha(s) = 1/[1 - \beta(s)]$ where

$$\beta(s) = \sup_{d>0} \sup_{x \in [0,d]} \frac{x[c(d) - c(x)]}{d c(d)} = \sup \frac{A_1}{A_2}.$$

If $c(\cdot)$ is affine we have $A_1 \leq \frac{1}{4}A_2$ so that $\beta(c) \leq \frac{1}{4}$. Taking $x = \frac{1}{2}d \to \infty$ we attain asymptotically $\beta(c) = \frac{1}{4}$, and therefore $\alpha(c) = \frac{4}{3}$.

·ロト · 個 ト · 草 ト · 草 · り · り · ・ (Roberto Cominetti - UAI) Nonatomic Routing Games 24 / 29

PoA with polynomial costs

Proposition

For polynomials $c(x) = a_0 + a_1 x + \dots + a_k x^k$ with $a_i \ge 0$ and $a_k > 0$ we have $\alpha(c) = \alpha_k \triangleq \left[1 - k(k+1)^{-(k+1)/k}\right]^{-1} \sim \frac{k}{\ln k}.$

	k	1	2	3	4	5	6
ĺ	α_{k}	1.3333	1.6258	1.8956	2.1505	2.3944	2.6297

PoA with polynomial costs

Proposition

For polynomials $c(x) = a_0 + a_1x + \cdots + a_kx^k$ with $a_i \ge 0$ and $a_k > 0$ we have

$$\alpha(c) = \alpha_k \triangleq \left[1 - k(k+1)^{-(k+1)/k}\right]^{-1} \sim \frac{k}{\ln k}.$$

	k	1	2	3	4	5	6
(α_{k}	1.3333	1.6258	1.8956	2.1505	2.3944	2.6297

Proof: Note that $\beta(c) = \sup_{d>0} \sup_{x \in [0,d]} \frac{x}{d} [1 - \frac{c(x)}{c(d)}]$. From $a_i \geq 0$ we have that $c(x)/x^k$ is decreasing so that $c(x)/x^k \geq c(d)/d^k$ and then

$$\beta(c) \leq \sup_{d>0} \sup_{x \in [0,d]} \frac{x}{d} [1 - (\frac{x}{d})^k] = \sup_{z \in [0,1]} z(1 - z^k)$$

which is attained at $z^* = (k+1)^{-1/k}$. Hence $\beta(c) \le k(k+1)^{-(k+1)/k}$ and therefore $\alpha(c) \le \alpha_k$. This bound is tight: take $x = z^*d$ with $d \to \infty$.

<ロ > → □ > → □ > → □ > → □ ● → ○ ○ ○ ○

Empirical observation (Youn et al. 2008, O'Hare et al. 2016,...)

In practice PoA is usually close to 1 both under high and low traffic, with fluctuations in the intermediate regime.

Is it always true?

- ullet Is it always the case that PoA=1 when the demand is small, and it goes back to one as the demand grows to ∞ ?
- Is it at least true for single OD networks?
- Is it at least true for parallel networks?
- Is it true for convex and smooth costs?

No, no, no, no...

PoA may oscillate and remain bounded away from 1 even for simple networks with smooth strongly convex costs:

(Roberto Cominetti – UAI)

Definition (Karamata, 1930)

A function $c:[0,\infty)\to (0,\infty)$ is called regularly varying if for all x>0 the limit $\lim_{t\to\infty}\frac{c(tx)}{c(t)}$ is finite and nonzero

Definition (Karamata, 1930)

A function $c:[0,\infty) \to (0,\infty)$ is called regularly varying if for all x>0 the limit $\lim_{t\to\infty}\frac{c(tx)}{c(t)}$ is finite and nonzero \Rightarrow The limit is of the form x^β

Definition (Karamata, 1930)

A function $c:[0,\infty) \to (0,\infty)$ is called regularly varying if for all x>0 the limit $\lim_{t\to\infty}\frac{c(tx)}{c(t)}$ is finite and nonzero \Rightarrow The limit is of the form x^β

- This class relevant in probability, large deviations, number theory.
- Examples: polynomials, logarithmic/poly-log functions,...

Definition (Karamata, 1930)

A function $c:[0,\infty)\to (0,\infty)$ is called regularly varying if for all x>0 the limit $\lim_{t\to\infty}\frac{c(tx)}{c(t)}$ is finite and nonzero \Rightarrow The limit is of the form x^β

- This class relevant in probability, large deviations, number theory.
- Examples: polynomials, logarithmic/poly-log functions,...

Theorem (Colini-C-Mertikopoulos-Scarsini, 2016, 2017)

- ullet Regularly varying costs: PoA ightarrow 1 in the high congestion regime.
- ullet Polynomial costs: PoA ightarrow 1 plus sharp convergence rates.