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Lecture 2: Non-Atomic Routing Games

@ Non-Atomic Routing Games
o Wardrop equilibrium — Definition
@ Wardrop equilibrium — Characterizations
@ Wardrop equilibrium — Existence & Uniqueness

© Inefficiency of Equilibria
@ Price-of-Anarchy
@ PoA for highly congested networks
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Non-Atomic Routing Games

Urban traffic flows under congestion
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Non-atomic routing games
Games with many players become computationally hard. Such situations can be

idealized by considering players as a continuum and to focus on the fraction of
players that use each strategy.

We illustrate this with routing games on transportation networks.

We are given a graph (V, E) with
@ a set of edges e € E with continuous non-decreasing costs c. : Ry — R
@ a set of OD pairs k € KC with corresponding routes r € R,. C 2F
@ a set of aggregate demands d,, > 0 for each k € K
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Wardrop equilibrium

e Continuum of players / each one has a negligible impact on congestion.
o Perfectly divisible / aggregate demands d,, > 0 for each OD pair k € K.

Let F be the set of splittings (y, x) of the demands d,; into route-flows y, > 0,
together with their induced edge-loads x. :

d. = ZreRﬁ yr (Ve €K),
Xezzraey’ (Vee E)
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Wardrop equilibrium

e Continuum of players / each one has a negligible impact on congestion.
o Perfectly divisible / aggregate demands d,, > 0 for each OD pair k € K.

Let F be the set of splittings (y, x) of the demands d,; into route-flows y, > 0,
together with their induced edge-loads x. :

de =2 er, ¥r (VK EK),

Xe = Y 15eVr (Ve € E).
The analog of Nash equilibria for a continuum of players is:
Definition (Wardrop, 1952)

A Wardrop equilibrium is a pair (,%X) € F that uses only shortest routes:

(Ve €KYV r'€R.) 7r>0=> co(fe) <D celke)-

ecr ecr’
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Example: Single OD with 2 identical parallel links

)
oD
c(x)

At equilibrium the demand splits 50%-50% : (2, 9).
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Example (BRAESS PARADOX):

Total demand is d = 1.

A

X1 1

d:>®< :@: d

1 X2

hOs

The upper and lower routes have cost T, =x; +1and T) =1+ x.
Wardrop equilibrium sends % on each route with travel time T, = 1.5.
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Example (BRAESS PARADOX):

Total demand is d = 1.

A

X1 | 1
d :>@< 0 :@: d
1 ¥ X2

hOs

The upper and lower routes have cost T, =x; +1and T) =1+ x.
Wardrop equilibrium sends % on each route with travel time T, = 1.5.

A central arc (a, b) with cost 0 is added. The new Wardrop equilibrium sends
all the flow along the zig-zag path o-a-b-d with travel time T, = 2.0.
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An example with 2 OD pairs

Demands di = dr =1

The pair 1 sends all its flow d; = 1 through the central arc whose cost is always
better that the upper route. Given this, k; sends a traffic 0.8 on the central route
until the cost equalizes the lower route which gets a flow of 0.2. The equilibrium

cost for both pairs is 1.8.

EXERCISE: Find the equilibrium when dy = d, =2
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Wardrop equilibrium — Characterizations
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Wardrop equilibrium ~ Characterizations
Wardrop equilibrium — Characterizations

Introducing the route costs and minimal times

TX) = YeerCelxe) 1 7u(x) = min Ty(x).

reRy

the conditions for Wardrop equilibrium are

(Vi € K)(Vre Ry) Ve > 0= T(x) = 1:(x).

Theorem (Beckman-McGuire-Winsten, 1956)

For a feasible flow (y,x) € F the following are equivalent:
a) (y,x) is a Wardrop equilibrium
b) Xrer TH(,—y) 20 V(Y. X)eF
€) DeepCelxe)(Xe =x) 20 V(Y. X)eF

d . x) is an optimal solution of min C
) (v, x) i pti uti yxle]:z/ .

Proof: For simplicity we consider the case of a single OD.
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Wardrop equilibrium — Characterization 1

Proposition

A feasible flow (y, x) € F is a WE iff

(V1) Yoer T, —y) 20 V(Y. X) e F.
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Wardrop equilibrium ~ Characterizations
Wardrop equilibrium — Characterization 1

Proposition
A feasible flow (y, x) € F is a WE iff

(V1) Yoer T, —y) 20 V(Y. X) e F.

Proof:
(=) If (v, x) is WE then for all (y/,x') € F we have

2Ty 2 2, 7 () y, =70 d =22, 7(x) yr = 22, THX) yr-

(<) Let (y,x) € F a solution of (VI). If y, > 0 we may consider the flow y/
identical to y except for y, =y, — € and y, = y, + € with p € R a shortest path

= 0< 3 er Ta() (g — vq) = €Tp(x) — €Ti()

so that T,(x) < Tp(x) = 7(x). Therefore y, > 0= T,(x) = 7(x). O
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Wardrop equilibrium — Characterization 2

Proposition

A feasible flow (y, x) € F is a WE iff

(V) Seecle)(—x) 20 V(/,X)€F.
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Wardrop equilibrium — Characterization 2

Proposition
A feasible flow (y, x) € F is a WE iff

(V) Seecle)(—x) 20 V(/,X)€F.

Proof: The equivalent form of the (V1) follows from an exchange in the sums

Z Tr(X)()/r —y) = Z Z Ce(Xe)()/r - )

= Z Z ce(xe) (v, — vr)
= Z Ce(xe) (X — Xe)-
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Wardrop equilibrium — Characterization 3

Proposition

A feasible flow (y, x) € F is a WE iff it is an optimal solution of the convex
minimization problem

(P) min_ 0010 =3 [ e2)e
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Wardrop equilibrium — Characterization 3

Proposition

A feasible flow (y, x) € F is a WE iff it is an optimal solution of the convex
minimization problem

(P) min_ ®(y,x) = Z/Oxece(z)dz.

(v, x)eF

Proof: Since c.(+) is non-decreasing the function ®(y, x) is convex, so that
(y,x) € F is a minimum iff for all (y/,x') € F we have

0< <v¢(yv X)? (}/7)/) - (}/7 X)> = Z Ce(Xe)()(e - Xe)' O

ecE

REMARK. & is a continuous analog of Rosenthal's potential for discrete routing
games. In the continuous case equilibria coincide with the minima of the potential.
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Wardrop equilibrium — Existence & Uniqueness
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Wardrop equilibrium — Existence and uniqueness

Theorem

A non-atomic routing game has a Wardop equilibrium. Moreover, if (y, x) and
(y/,X') are two equilibria then ce(xe) = ce(X.). In particular, if c.(-) is strictly
increasing then x is unique.
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Wardrop equilibrium — Existence and uniqueness

Theorem

A non-atomic routing game has a Wardop equilibrium. Moreover, if (y, x) and
(y/,X') are two equilibria then ce(xe) = ce(X.). In particular, if c.(-) is strictly
increasing then x is unique.

Proof: ¢ is continuous = its minimum on F is attained = existence of WE.
If (y,x) and (y/, X) are two equilibria, using (VI) we get

ZeGECe(Xe)()( Xe)

2eck Ce(Xe) (Xe — Xe)

> ecel(Celxe) = ce(xe))(xe — Xxe) =

Since co(+) is non-decreasing each term in the sum is negative so that
(ce(xe) — ce(XL)) (X, — xe) = 0 for all e € E, hence ce(xe) = ce(XL). O

IV IV

0
0
0
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Variational Characterization

Wardrop equilibria are the optimal solutions of the convex program

(P i, 3 [ e

o (P) is large scale a2 220 x 10° variables for Santiago

@ Objective function different from the social cost

X) = Z Xe Ce(Xe)

ecE

(Roberto Cominetti — UAI) Nonatomic Routing Games 17 /29



(NERWNEIN IRVl \Vardrop equilibrium — Existence & Uniqueness

Dual Characterization (Fukushima, 1984)

Change of variables: x. < te

(D) Min Z/Olgl(z) dz— 3" dea(2)

ecE rREK

(1)

strictly convex
Tx(t) = min Z te = ODs minimum travel times
ecr concave, polyhedral
Non-smooth but efficiently computable (Bellman, Dijkstra,...)
7 = min{te + 71/}

eEE,-Jr
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Inefficiency of Equilibria Price-of-Anarchy

Inefficiency of Equilibria — Price-of-Anarchy
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Quantifying Inefficiency: Price-of-Anarchy

For non-atomic routing games

Social cost = Total travel time = er Ce(Xe)
ecE

PoA — Social Cost of Equilibrium

Minimum Social Cost

Theorem (Roughgarden-Tardos, 2002; Roughgarden, 2003)
o PoA < % for non-atomic routing games with affine costs.

® PoA < =l % ~ O( Iogk) for polynomials of degree k.

Bounds attained for simple 2-link networks with fine-tuned demands.
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Inefficiency of Equilibria Price-of-Anarchy

PoA and PoS in non-atomic routing games

Note that

Total travel time = er Ce(xe) = Z_)/rTr(X) = Z dys T (X)-

ecE rerR KREK

All Wardrop equilibria have the same value of ce(xe)
= the same value of T,(x)
= the same minimal times 7,,(x)

= social cost is constant on the set of Wardrop equilibria
= PoS=PoA.
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PoA and PoS in non-atomic routing games

Note that

Total travel time = er Ce(xe) = Z_)/rTr(X) = Z dys T (X)-

ecE rerR KREK

All Wardrop equilibria have the same value of ce(xe)

= the same value of T,(x)

= the same minimal times 7,,(x)

= social cost is constant on the set of Wardrop equilibria
= PoS=PoA.

Example. In the Braess paradox, when the central arc is unavailable Wardrop
equilibrium splits half and half between with a travel time of 1.5. This coincides
with the social optimum that minimizes x1(x; + 1) + x2(x2 + 1) = PoA=PoS=1.

If we allow the central arc, the new equilibrium sends all the flow on the zig-zag
path with travel time 2. The social optimum does not change and the price of
anarchy increases to PoA:PoS:%.
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Inefficiency of Equilibria Price-of-Anarchy

Example: Pigou network

Let ¢: [0,00) — [0,00) be continuous and increasing and fix d > 0.
c(d)

g =

c(x)

e Wardrop equilibrium is x = d with social cost d c(d)

@ Minimum cost is min,¢po,q X(x) + (d—x)c(d)

Hence, PoA on this simple graph can be as large as

= Su Su dC(d)
) = Sub b )+ (d— ) -

This value allows to bound the PoA on any graph.
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Inefficiency of Equilibria Price-of-Anarchy

PoA in non-atomic routing games

Theorem (Correa-Schulz-Stier, 2004)

In a non-atomic routing game on a graph (N, A) with arc costs ce(-) we have

PoA = PoS < a £ maxa(ce).
ecE

Proof: Let (y, x) be a WE and (¥, x) a minimizer of ((y, x). Taking d = x. and
X = X in the expression for the supremum «a(c,) we get the inequality

Xe Ce(Xe) < afXe Ce(Xe) + (Xe — Xe)Ce(Xe)]
which added together and in view of VI yield

Ay, x) < a[A7,%) + X ece CelXe)(Xe — Xe)| < @ Cin.
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Inefficiency of Equilibria Price-of-Anarchy

PoA in non-atomic routing games

Note that «(s) can be expressed as a(s) = 1/[1 — 3(s)] where

x[e(d) — c(x)] A
B(s) =sup sup ————= =sup —.
) d>0 x€[0,d] dc(d) Az
r_/x\*
X
~ Ar
2
1 A2
X d

Taking x = %d% o0 we

If (-) is affine we have A; < 1A, so that B(c) < 1.
1 — 4
=z =3

attain asymptotically 8(c) , and therefore a(c
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Inefficiency of Equilibria Price-of-Anarchy

PoA with polynomial costs

For polynomials c(x) = ag + aix + - - - + ax¥ with a; > 0 and ax > 0 we have
1
k

Proposition
a(c) = a2 [1 — k(k 1)K e

k 1 2 3 4 5 6
oy | 1.3333 [ 1.6258 | 1.8956 | 2.1505 | 2.3944 | 2.6297
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Inefficiency of Equilibria Price-of-Anarchy

PoA with polynomial costs

For polynomials c(x) = ag + aix + - - - + ax¥ with a; > 0 and ax > 0 we have
1
k

Proposition
a(c) = a2 [1 — k(k 1)K e

k 1 2 3 4 5 6
oy | 1.3333 [ 1.6258 | 1.8956 | 2.1505 | 2.3944 | 2.6297

Proof: Note that 3(c) = sup,-.o SUP«cpo,q 5[1 — %] From a; > 0 we have that

X
d
z€[0,1]

c(x)/x* is decreasing so that ¢(x)/x* > c(d)/d* and then
)] = sup (1 -2

B(c) < sup e FlE

which is attained at z* = (k+1)"*/k. Hence f(c) < k(k + 1)~ (-*1/k and
therefore a(c) < ayk. This bound is tight: take x = z*d with d — oo.
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NSRS AWl PoA for highly congested networks

Empirical observation (Youn et al. 2008, O’Hare et al. 2016,...)

In practice PoA is usually close to 1 both under high and low traffic,
with fluctuations in the intermediate regime.
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NSRS AWl PoA for highly congested networks

Is it always true?

@ |s it always the case that PoOA=1 when the demand is small, and it goes back
to one as the demand grows to oo 7

@ Is it at least true for single OD networks ?
@ Is it at least true for parallel networks ?

@ Is it true for convex and smooth costs ?
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NSRS AWl PoA for highly congested networks

No, no, no, no...

PoA may oscillate and remain bounded away from 1 even for simple networks with
smooth strongly convex costs:

Price of anarchy as a function of traffic inflow
T T

10151 - i 1
a(x) = [1+ 1 sin(log x)] X i i
< 10100 P
= £ Aob
1005 . Lo FAN 1
c3(x) = [1+ 1 cos(log x)] 2 1000 i
e o1 T i0 700

Inflow (m)
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...but eventually yes !

Definition (Karamata, 1930)

A function c: [0, 00) — (0, 00) is called regularly varying if for all x > 0 the limit

. tx) - g .
lim Cg(g) is finite and nonzero
t— o0
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Definition (Karamata, 1930)

A function c: [0,00) — (0, 00) is called regularly varying if for all x > 0 the limit

<t s finite and nonzero = The limit is of the form x?

Jim "

(Roberto Cominetti — UAI) Nonatomic Routing Games 29/29



Inefficiency of Equilibria PoA for highly congested networks

...but eventually yes !

Definition (Karamata, 1930)

A function c: [0,00) — (0, 00) is called regularly varying if for all x > 0 the limit

<t s finite and nonzero = The limit is of the form x?

Jim "

@ This class relevant in probability, large deviations, number theory.

e Examples: polynomials, logarithmic/poly-log functions,...
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...but eventually yes !

Definition (Karamata, 1930)

A function c: [0,00) — (0, 00) is called regularly varying if for all x > 0 the limit

tlim C((tg) is finite and nonzero = The limit is of the form x?
—00

@ This class relevant in probability, large deviations, number theory.

e Examples: polynomials, logarithmic/poly-log functions,...

Theorem (Colini-C-Mertikopoulos-Scarsini, 2016, 2017)
@ Regularly varying costs: PoA — 1 in the high congestion regime.
@ Polynomial costs: PoA — 1 plus sharp convergence rates.
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