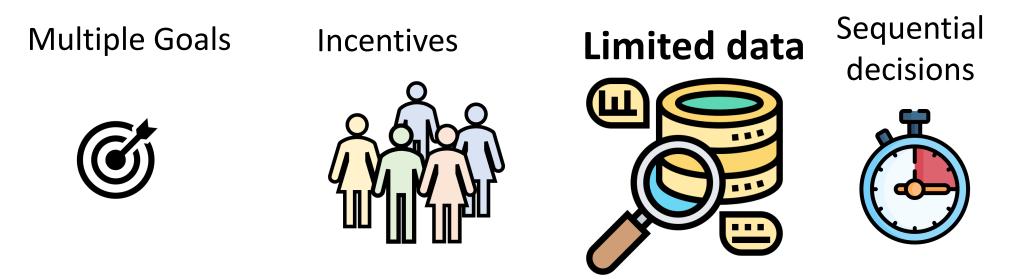
Prophet Inequalities

Jose Correa Universidad de Chile

Motivation

Online platforms, e-commerce, etc

Flexible Model:



Course Overview

1. Classic single-choice problems:

The classic prophet inequality, secretary problem, prophet secretary problem, etc

2. Data-driven prophet inequalities:

How can limited amount of data be nearly as useful as full distributional knowledge

3. Combinatorial Prophet Inequalities

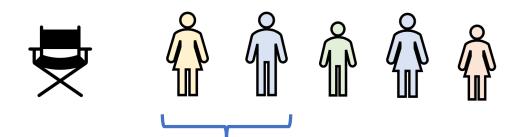
Many ideas for single choice problems, extend to combinatorial contexts such as kchoice, Matching, hyper graph matching, and beyond

4. Online Combinatorial Auctions

General Model that encompasses many online selection/allocation problems

2. Data-driven prophet inequalities

Secretary Problem



Candidates come in random order

No values, only pairwise comparisons (there is a total order)

Decide STOP/CONTINUE

We maximize $\mathbb{P}($ select the best)

Optimal algorithm [Dynkin '63][Ferguson '89]

Skip $\frac{1}{e} \approx 0.367$ fraction of candidates Then, STOP if best so far

Succeeds w.p. 1/e

Optimal guarantee and algorithm are the same if

Candidates have i.i.d. values and we maximize E(selected candidate) (v.s. E(best)) [C., Dütting, Fischer, Schewior, EC'19]

Prophet Inequality

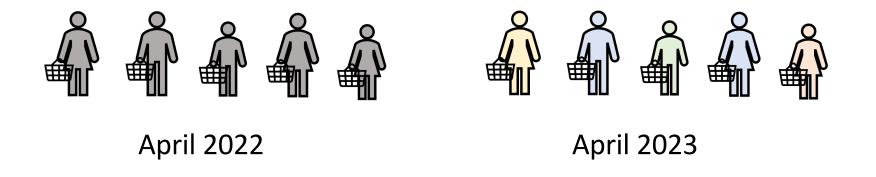


Optimal guarantee: 1/2 [Krengel & Sucheston '77]

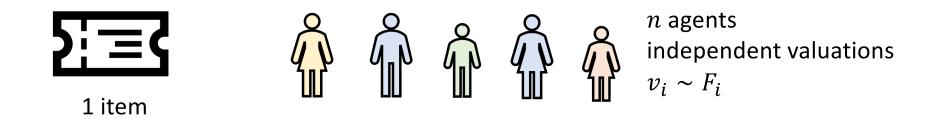
Set a threshold (a price) $T = \frac{1}{2} \mathbb{E} \left(\max_{i} v_{i} \right)$ [Kleinberg, Weinberg STOC'12] If valuations are i.i.d.

Optimal guarantee is ≈ 0.745 [C., Foncea, Hoeksma, Oosterwijk, Vredeveld EC 2017] Decreasing sequence of thresholds We are given distributions $F_1, ..., F_n$ Agents arrive one by one At step i: observe $v_i \sim F_i$ (indep.) and decide STOP/CONTINUE We maximize $\mathbb{E}(v_{stop})$ and compare with $\mathbb{E}(\max_i v_i)$

Optimal guarantee is 1/e [Allaart & Islas '16] i.i.d. case: ≈ 0. 5801 [Gilbert & Mosteller '66] Random order: ≈ 0.5801 [Nuti, IPCO'22]



The prophet inequality



- We are given F_1, \dots, F_n -We are given samples from F_1, \dots, F_n
- Agents arrive sequentially: we observe $v_1 \sim F_1$, $v_2 \sim F_2$, ... one by one
- We (the Decision Maker) decide stop/continue
- We maximize $\mathbb{E}(v_{ ext{stop}})$
- Compare against a prophet that can see realizations in advance and thus gets the optimal social welfare $\mathbb{E}\left(\max_{i} v_{i}\right)$

The prophet inequality

1 item

• With full distributional knowledge we know that $\mathbb{E}(v_{\text{stop}}) \ge \frac{1}{2} \mathbb{E}(\max_{i} v_{i})$

Ŷ

n agents

independent valuations $v_i \sim F_i$

- What if we are only given one sample s_1, \ldots, s_n from each F_1, \ldots, F_n ?
- First simple observation: Set $T = \max\{s_1, ..., s_n\}$, scan the v_i 's and stop with first value above T. [Azar, Kleinberg, Weinberg SODA 2014]
- \mathbb{P} (max all 2n values is on the v_i 's and the second max is on the s_i 's) $\geq \frac{1}{4}$
- Then $\mathbb{E}(v_{\text{stop}}) \ge \frac{1}{4} \mathbb{E}(\max_{i} v_{i})$ Can we do better?

The prophet inequality

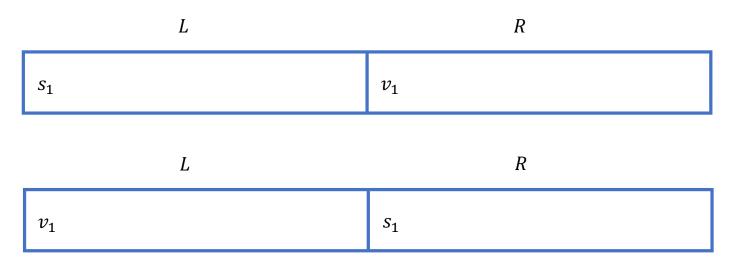
• YES! Algorithm is actually ½ competitive [Rubinstein, Wang, Weinberg ITCS 2020]

Amazing! One sample is enough to get the optimal prophet inequality.

• And this gives yet another Algorithm: Take a random threshold T distributed as the max{ $v_1, ..., v_n$ } so $F_T = \prod F_i$

Proof

- Take *n* pairs of arbitrary nonnegative numbers, say $(s_1, v_1), \dots, (s_n, v_n)$
- Call the ordered sequence $a_1 \ge a_2 \ge \cdots \ge a_{2n}$.
- Randomly shuffle each pair assigning each element to L and R w.p. $\frac{1}{2}$



Proof
$$L \qquad R$$

$$s_1 v_2 v_3 s_4 \cdots \qquad v_1 s_2 s_3 v_4 \cdots$$

- Call the ordered sequence $a_1 \ge a_2 \ge \cdots \ge a_{2n}$.
- Run ALG on the resulting instance: $T = \max$ value in L. Stop whenever a value in R surpasses T. Actually take the weaker algorithm that if $T = a_i$ then it gets a_{i-1} (except that, if $T = a_1$, it gets 0)

$$\mathbb{P}(OPT = a_i) = \mathbb{P}(\max \inf R = a_i) \approx \frac{1}{2^{i-1}} \times \frac{1}{2}$$

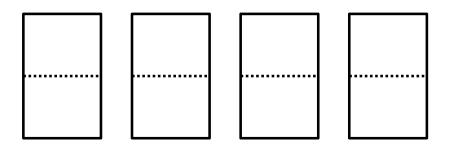
$$\mathbb{P}(ALG = a_i) = \mathbb{P}(T = a_{i+1}) \approx \frac{1}{2^i} \times \frac{1}{2} = \frac{1}{2} \mathbb{P}(OPT = a_i)$$

Prophet Secretary: The two-sided googol

- The secretary problem is also known as the game of googol.
- An adversary writes arbitrary numbers on *n* cards and shuffles them.
- The DM flips the cards one by one and has to stop with the max.

The two-sided game of Googol

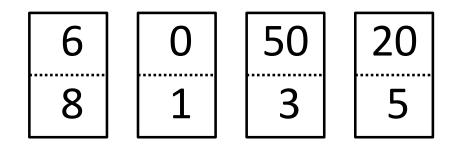
n cards with two sides



The two-sided game of Googol

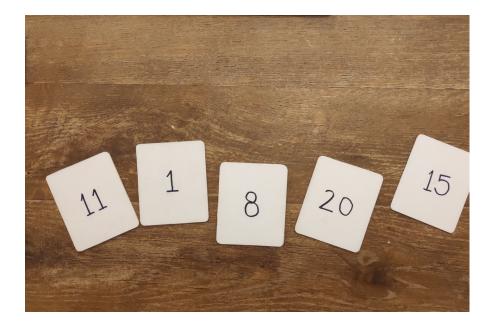
n cards with two sides

Adversary writes numbers on each side (2*n* in total)

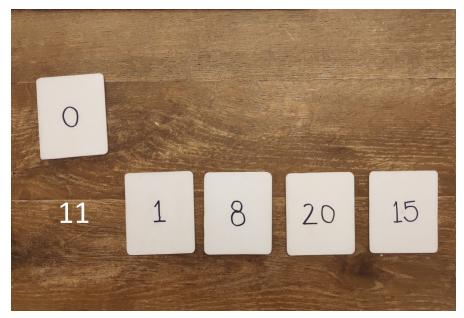


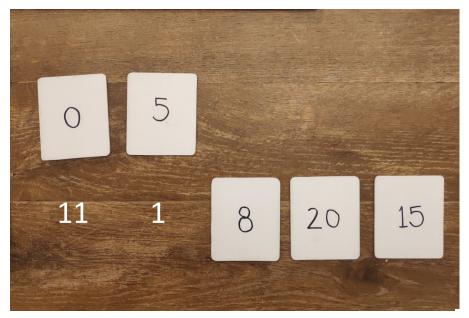
Playing the two-sided game of Googol Random side revealed

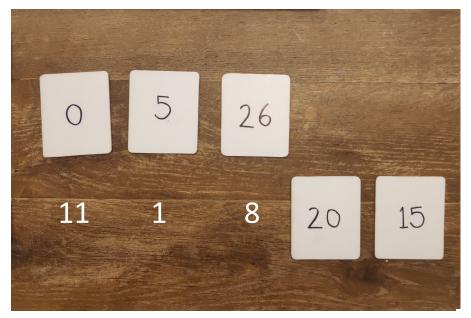
Playing the two-sided game of Googol Random side revealed

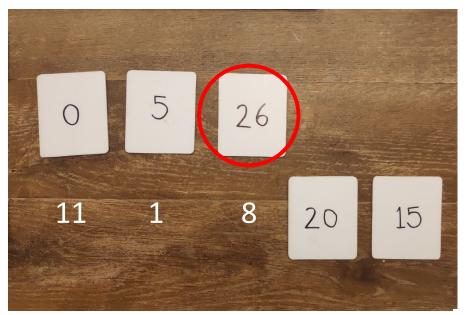


Playing the two-sided game of Googol Random side revealed









Objective: Maximize expectation of accepted value Benchmark: Expectation of largest hidden value

Main results

Theorem. There is a stopping rule ALG^* for the two-sided game of Googol such that

 $\mathbb{E}(ALG^*) \geq 0.635 \cdot \mathbb{E}(OPT)$ [C., Cristi, Epstein, Soto SODA 2020]

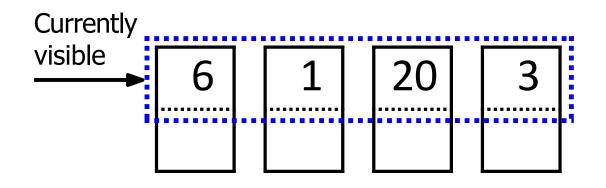
Interesting since it took quite some effort to beat 1 - 1/e for PS.

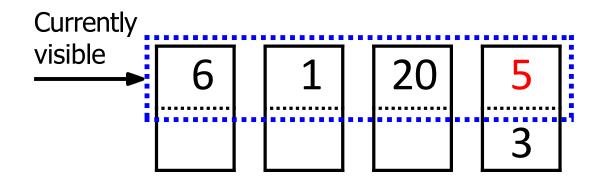
Alternative version: Max probab. of taking the maximum hidden value. Theorem. There is a stopping rule ALG^* for the two-sided game of Googol such that

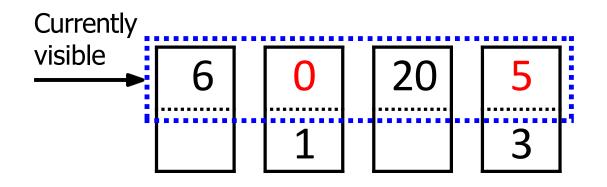
 $\mathbb{P}(ALG^* \text{ wins}) \geq 0.5001$

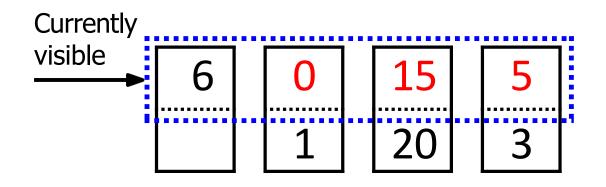
And this is almost tight

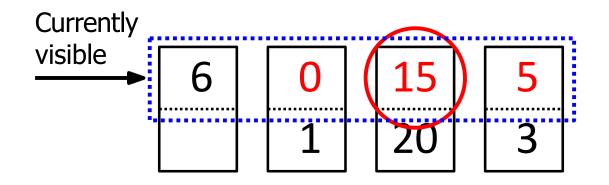
[Nuti, Vondrak SODA 2023]

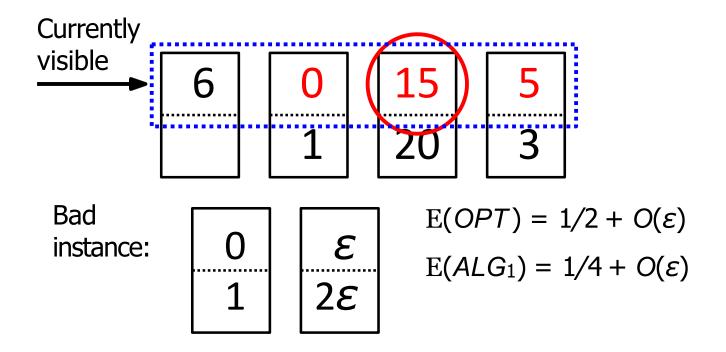


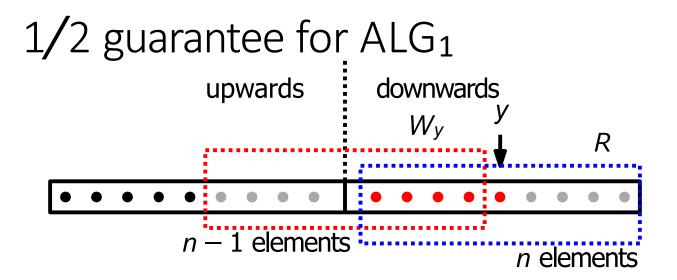








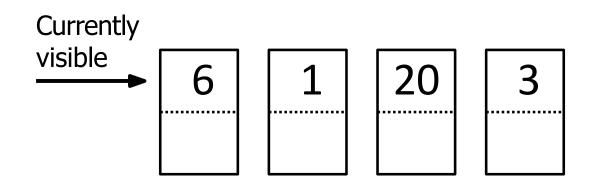


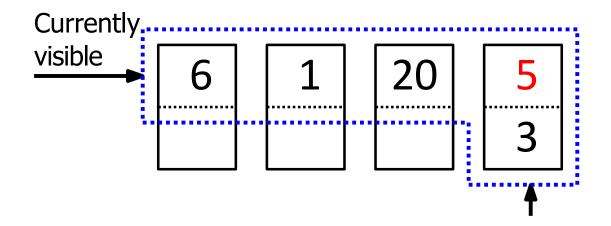


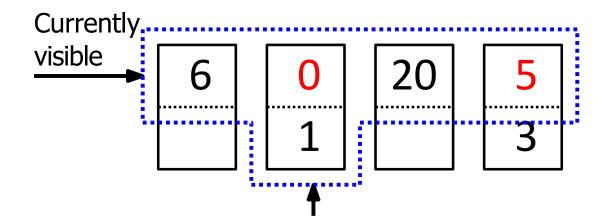
 $\mathbb{P}(OPT = y | R = S \cup \{y\}) \le 2 \cdot \mathbb{P}(ALG_1 = y | y \in R, W_y = S)$

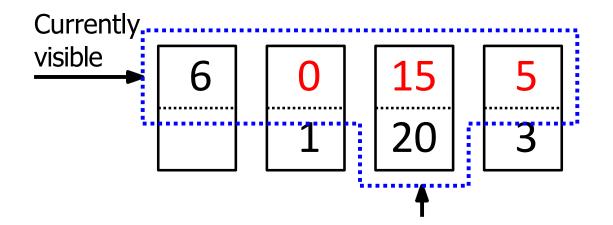
Indicator function

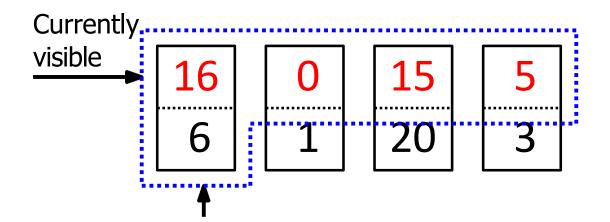
• 1 if $y > \max S$ 0 otherwise w.p. 1/2, max S lands facing upwards (left)

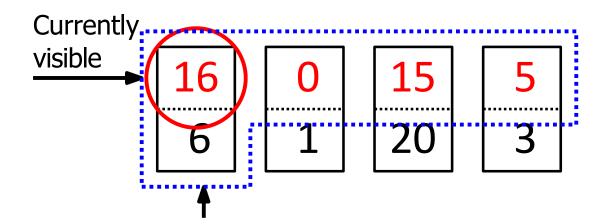






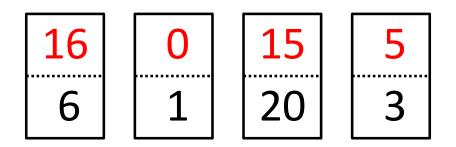






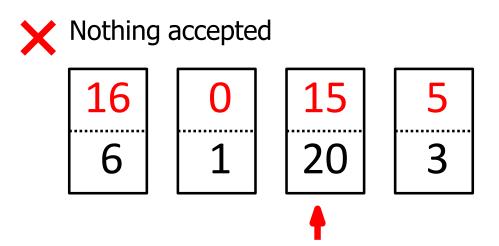
Basic algorithm 3: Full window

Stop in first value larger than all values seen so far

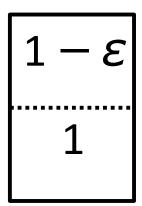


Basic algorithm 3: Full window

Stop in first value larger than all values seen so far



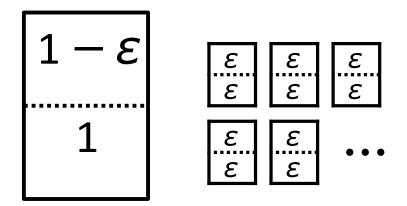
Bad instance for ALG₂ and ALG₃



 $E(OPT) = 1 - O(\varepsilon)$

If ALG sets other side of card as threshold, then $E(ALG) \le 1/2 + O(\varepsilon)$

Bad instance for ALG₂ and ALG₃

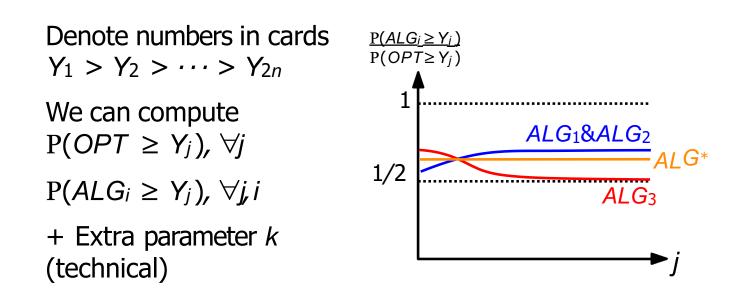


 $E(OPT) = 1 - O(\varepsilon)$

If ALG sets other side of card as threshold, then $E(ALG) \le 1/2 + O(\varepsilon)$

Combined algorithm

• ALG^* : run ALG_1 w.p. α , run ALG_2 w.p. β and run ALG_3 w.p. $1 - \alpha - \beta$ $\frac{P(ALG \ge x)}{P(OPT \ge x)} \ge c, \forall x \ge 0 \Rightarrow \frac{E(ALG)}{E(OPT)} \ge c$



Two-sided googol

Prophet-secretary. *n* independent realizations of known distributions $F_1, ..., F_n$ arrive sequentially in random order. Decide when to stop in order to maximize expected value.

Data-driven version: Distributions are unknown. Access only to one independent sample of each on beforehand.

If adversary draws numbers from distributions F_1, \dots, F_n (two of each), we obtain prophet-secretary with samples

Two-sided googol

• Implies a factor 0.635 for prophet secretary

→ Improves upon previous $1 - \frac{1}{e} + \frac{1}{400} \approx 0.634$ which took effort

- \rightarrow Different sampling idea
- \rightarrow Best known for PS is 0.669

[Azar, Chiplunkar, Kaplan EC 2018]

[Kaplan, Naori, Raz SODA 2020]

[C., Saona, Ziliotto, SODA 2019]

Many open questions

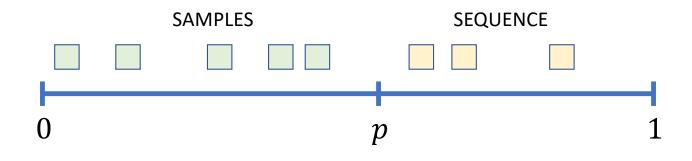
- \rightarrow What is the best algorithm?
- \rightarrow What happens in two-sided googol if we can choose the order of observation?
- \rightarrow What about k-sided? Can we obtain the best possible algorithm for PS this way?

Independent sampling model

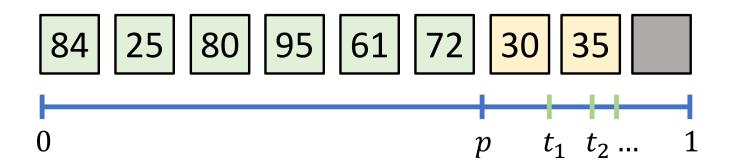
- Set of N **unknown** values is fixed, a probability $p \in [0,1)$ is given
- Each value is in SAMPLES with probability p, independently. Otherwise, in the SEQUENCE.
- We observe the SAMPLES and then, one by one, the values in the SEQUENCE, in uniform random order.

Uniform[0,1] arrivals

- Values arrive at an independent Uniform[0,1] time
- ${\ensuremath{\, \bullet }}$ We start playing at time p



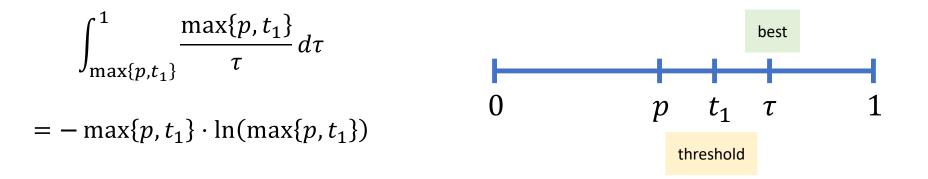
Maximize $\mathbb{P}($ select the best)



W.I.o.g. we can look at ordinal algorithms [Moran, Snir, Manber '85] For an ordinal algorithm: the probability that a best-so-far is the best depends only in its **overall rank** and **how many elements are left**.

A **time-thresholds** algorithm achieves the best-possible guarantee.

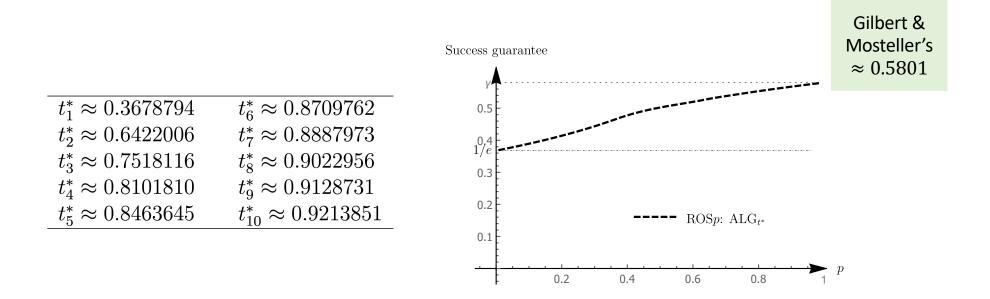
Example: single time-threshold



Concave, maximized at $t_1 = 1/e$ for all p

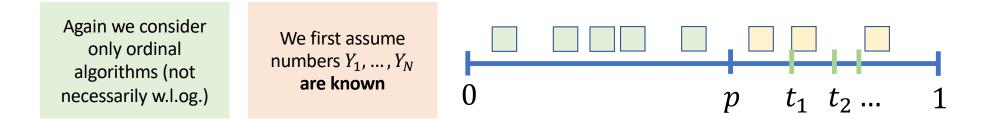
If we have a time threshold for each rank,

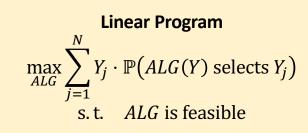
$$\sum_{i=1}^{\infty} p^{i-1} \cdot \left(1 - \max\{p, t_i\} - \int_{\max\{p, t_i\}}^{1} \sum_{j=1}^{i} \frac{\tau - \max\{p, t_i\}}{\tau^j} d\tau \right)$$
Turns out to be separable and concave!



[C., Cristi, Feuilloley, Oosterwijk, Tsiagonias-Dimitradis SODA 2021]

Maximize $\mathbb{E}(v_{\text{stop}})$

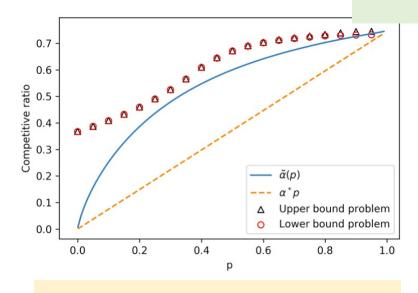




Limit Problem

$$\sup_{\substack{t=(t_i)_{i\in\mathbb{N}}}} Y_1 - \sum_{k\geq 1} (Y_k - Y_{k+1}) (1 - F_k(t))$$
s.t. $p \le t_i \le t_{i+1} \le 1 \quad \forall i \ge 1$
Where $F_k(t) = \mathbb{P}(ALG_t(Y) \ge Y_i)$

Best for i.i.d. ≈ 0.745



 $O\left(\frac{N}{\varepsilon}\right)$ samples are sufficient to get almost optimal guarantee of $0.745 - \varepsilon$ Improves upon previous bound of $O\left(\frac{N}{\varepsilon^6}\right)$ [Rubinstein, Wang, Weinberg, ITCS'20]

$$\sup_{\substack{t=(t_i)_{i\in\mathbb{N}} \\ y_1 \ge Y_2 \ge \cdots}} \frac{Y_1 - \sum_{k\ge 1} (Y_k - Y_{k+1}) (1 - F_k(t))}{\mathbb{E}(OPT(Y))}$$

s.t. $p \le t_i \le t_{i+1} \le 1 \quad \forall i \ge 1$
Where $F_k(t) = \mathbb{P}(ALG_t(Y) \ge Y_j)$

$$\sup_{t=(t_i)_{i\in\mathbb{N}}} \inf_{k\geq 1} \frac{F_k(t)}{1-p^k}$$

s.t.
$$p \le t_i \le t_{i+1} \le 1 \quad \forall i \ge 1$$

Where $F_k(t) = \mathbb{P}(ALG_t(Y) \ge Y_j)$

[C., Cristi, Epstein Soto MOR 2023]

Summary

- 1/2 PI w. one sample per distribution [Rubinstein, Wang, Weinberg ITCS 2020]
- Two-sided googol (prophet secretary with single sample)
 - 0.635 for expectation [Correa, Cristi, Epstein, Soto SODA 2020]
 - 0.5001 for probability of selecting the best [Nuti, Vondrak SODA 2023]
- Best i.i.d. PI with any number of samples [Correa, Cristi, Epstein, Soto MOR 2023]