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Causal Triangulations

A causal triangulation of a disk: a central vertex x and a sequence of cycles
S0 ≡ {x}, S1, . . . , Sm.

For each k = 0, 1, . . . ,m− 1, the annulus Ak is triangulated.

x

v1
v2

v3

A vertex v1 in S1 distinguished.

Zm(g) :=
∑

C∈Cm

g|C|

Z(g) :=

∞∑
m=0

Zm(g)
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Dense loop model

Sk+1

Sk

The set Ldem obtained by replacing elementary triangles with the ones
above.

Now set

Zde
m (g, α) :=

∑
L∈Lde

m

g|L|αs(L), Zde(g, α) =

∞∑
m=0

Zde
m (g, α)

where s(L) is the # of intersections, α ∈ [0, 1] and Zde
0 (g, α) = 1.
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Dense loop model
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Dilute loop model

Sk+1

Sk

Sk+1

Sk

The set Ldim obtained by replacing elementary triangles with the ones
above.

Zdi
m(g, α) :=

∑
L∈Ldi

m

g|L|αs(L), Zdi(g, α) :=

∞∑
m=0

Zdi
m(g, α) .

Compatibility condition: sk(L) ≡ sk′(L) (mod 2), ∀k, k′.
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Dilute loop model
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Lemma (3.1, 3.2):
1 The number of possible dense, resp. dilute, loop configurations on a

triangulated annulus Ak only depends on the boundary lengths lk and lk+1,
not the details of the triangulation.

2 Given arbitrary (resp. even size) subsets of its spacelike edges, a
triangulation of Ak admits one dense (resp. 2 dilute) loop configuration.

Skvk

Sk+1vk+1

1 2 3 4

1 2 3

Skvk

Sk+1vk+1

1 2 3 4

1 2 3

Skvk

Sk+1vk+1

1 2 3 4

1 2 3
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Tree correspondences

x

v1

x0

v2

v3 ←→

x0

x

v1

v2

v3

Bijective correspondence, ψ : Cm(N)→ Tm(N).

Vk(T ) := {v ∈ T | dT (x0, v) = k + 1} = {vk,i | i = 1, . . . , |Vk(T )|} .

V (T ) :=

m⋃
k=1

Vk(T )
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Loop models on trees

T̃m := {(T, δ) | T ∈ Tm, δ : V (T ) → {0, 1}}, |δ| :=
∑

v∈V (T )

δ(v)

T̃ ev
m (N) :=

{
(T, δ) ∈ T̃m |T ∈ Tm(N), δk ∈ 2N0, k = 1, . . . ,m

}
Proposition (3.5, 3.6): For every m ∈ N0 and N ∈ N

(i) there is a bijective correspondence

ψ̃ : Lde
m (N)→ T̃m(N)

(ii) there is a 2m to 1 correspondence

ψ̂ : Ldi
m(N)→ T̃ ev

m (N)

such that if (T, δ) = ψ̂(L) then T = ψ(C).
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←→

←→
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Partition functions

Wm(g, α) :=
∑

(T,δ)∈T̃m

g|T |−1α|δ|, W ev
m (g, α) :=

∑
(T,δ)∈T̃ ev

m

g|T |−1α|δ|

Dense : Zde(g, α) =W (g, α2),

Dilute : Zdi(g, α) =
∞∑

m=0

Zdi
m(g, α) =

∞∑
m=0

2mW ev
m (g, α).

The 2m factor is important!
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Critical behavior: labelled trees

Dense case: Critical behavior fully determined via the correspondence.

W (g, α) =W (g(1 + α)) =
1−

√
1− 4g(1 + α)

2g(1 + α)

Dilute case: Not so trivial.

W ev
m (g, α) =

∑
T∈Tm

g|T |−1
m∏
i=1

1
2

[
(1 + α)ni + (1− α)ni

]
.

The best we get from here is an inequality:

W ev
(
g(1 + α), 0, k2

)
≤W ev(g, α, k) ≤W ev

(
g(1 + α), 0, k

1+α

)
.
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Transfer matrix formalism - Pure CDT

Encode the degrees of freedom along the space-like boundaries by
vectors in l2(N),

Transfer matrix T, an operator on l2(N) :

Tr,s(g) :=

(
r + s− 1

r

)
g

r+s
2 .

Zm(g) =
〈
v(g)

∣∣(T(g))m−1∣∣v(g)〉 , vn(g) := g
n
2 ∈ l2(N) .

T(g) is not symmetric but admits a factorization T(g) = DK(g) where

Dr,s :=
δr,s
r
, Kr,s(g) :=

(r + s− 1)!

(r − 1)!(s− 1)!
g

r+s
2 .
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Transfer matrix

Proposition (5.1): The operator K(g) is trace-class for g ∈ D, it is
positive definite for g ∈ (0, 14), and the function h 7→ K(h2) is analytic on
{h ∈ C | |h| < 1

2}.

‖K(g)‖1 = tr |K(g)| = ‖K(|g|)‖1 =
|g|

(1− 4|g|)
3
2

tr
(
T(g)

)
=

∞∑
s=1

Ts,s(g) =
1−
√
1− 4g

2
√
1− 4g

, g ∈ (0,
1

4
) .

Proposition (5.3): The largest eigenvalue λ1(g) of D 1
2 K(g)D 1

2 satisfies

λ1(g)↗ 1 as g ↗ 1
4 .
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Transfer matrix: loops

Dense: Just scale g → g(1 + α2), the rest works out the same.

Dilute: Tdi(g, α) = 2DKdi(g, α) where

Kdi
r,s(g, α) =

1

2

(r + s− 1)!

(r − 1)!(s− 1)!

[
(1+α)r + (1−α)r

] 1
2
[
(1+α)s + (1−α)s

] 1
2 g

r+s
2 .

Similar to the pure case:

Zdi(g, α) = 1 +

∞∑
m=1

〈
v(g, α)

∣∣(Tdi(g, α)
)m−1∣∣v(g, α)〉.,

vn(g, α) :=
[
(1 + α)n + (1− α)n

] 1
2 g

n
2 , n ∈ N.
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Transfer matrix: dilute

Kdi(g, α) and D 1
2 Kdi(g, α)D 1

2 are positive definite trace-class
operators on l2(N) for g ∈ (0, 1

4(1+α)), α ∈ [0, 1], and the
Perron-Frobenius...

D 1
2 Kdi(g, α)D 1

2 is analytic in (
√
g, α) for |α| < 1 and |g| < 1

4(1+|α|) .

Proposition (5.4) For every α ∈ [0, 1], the largest eigenvalue
λdi1 (g, α) of D 1

2 Kdi(g, α)D 1
2 is a strictly increasing function of g.

As g approaches 1
4(1+α) from below, its limit λ̄di1 (α) satisfies

λ̄di1 (α) ≤ 1.
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Final result

Observe:

Kdi(g, 0) = K(g), Kdi(g, 1) = K(2g)/2 ⇒ λ̄di1 (0) = 1, λ̄di1 (1) =
1
2 .

Theorem [Durhuus, Poncini, Rasmussen, U.]: For α real and
sufficiently small, the critical coupling gdic (α) for Zdi(g, α) is determined
by the equation

λdi1
(
gdic (α), α

)
= 1

2 ,

and there exist C1(α), C2(α) > 0 such that

C1(α)

gdic (α)− g
≤ Zdi(g, α) ≤ C2(α)

gdic (α)− g

for g close to gdic (α).
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Conclusions / Questions

For small α, we have height coupled trees. Exponent characterising
the singularity changes form 1

2 to −1.

Strong evidence that the background geometry is affected.

Is there a phase transition for some value of α or is the height
coupling effective all the way to 1?

Correspondence with Ising clusters: new information?

Encoding the length of the loops?
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Thank you for your attention!
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Transfer matrix formalism - Pure CDT

Encode the degrees of freedom along the space-like boundaries by vectors in l2(N),
Transfer matrix T, an operator on l2(N) :

Tr,s(g) :=

(
r + s− 1

r

)
g

r+s
2 .

T(g) is not symmetric but admits a factorization T(g) = DK(g) where

Dr,s :=
δr,s
r

, Kr,s(g) :=
(r + s− 1)!

(r − 1)!(s− 1)!
g

r+s
2 .

Proposition (5.1): The operator K(g) is trace-class for g ∈ D, it is positive definite for
g ∈ (0, 1

4
), and the function h 7→ K(h2) is analytic on {h ∈ C | |h| < 1

2
}.

‖K(g)‖1 = tr |K(g)| = ‖K(|g|)‖1 =
|g|

(1− 4|g|) 3
2

tr
(
T(g)

)
=

∞∑
s=1

Ts,s(g) =
1−

√
1− 4g

2
√
1− 4g

, g ∈ (0,
1

4
) .
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Perron-Frobenius: For g ∈ (0, 1
4
), K(g) has a simple positive largest eigenvalue

which equals ‖K(g)‖, corresponding normalized eigenvector has positive entries.
Kato-Rellich: This eigenvalue is analytic on (0, 1

4
) as well as the components of

the corresponding eigenvector (up to a phase).

Same hold for D 1
2 K(g)D 1

2 .
Now, express the partition function as a matrix element:

Zm(g) =
〈
v(g)

∣∣Tm−1(g)
∣∣v(g)〉, vn(g) := g

n
2 , m, n ∈ N .

Define Zper
m (g) := tr

(
Tm−1(g)

)
= tr

(
(D 1

2 K(g)D 1
2 )m−1

)
, m ≥ 2.

A simple observation: Zm(g) ≤ Zper
m+1(g) for m ≥ 1 and g ∈ [0, 1

4
).

Proposition (5.3): The largest eigenvalue λ1(g) of D 1
2 K(g)D 1

2 satisfies

λ1(g) ↗ 1 as g ↗ 1
4
.
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Transfer matrix - dilute model

Observe! Tdi(g, α) = 2DKdi(g, α) where

Kdi
r,s(g, α) =

1

2

(r + s− 1)!

(r − 1)!(s− 1)!

[
(1+α)r + (1−α)r

] 1
2
[
(1+α)s + (1−α)s

] 1
2 g

r+s
2 .

Similar to the pure case:

Zdi(g, α) = 1 +
∞∑

m=1

〈
v(g, α)

∣∣(Tdi(g, α)
)m−1∣∣v(g, α)〉.,

vn(g, α) :=
[
(1 + α)n + (1− α)n

] 1
2 g

n
2 , n ∈ N.

Kdi(g, α) and D 1
2 Kdi(g, α)D 1

2 are positive definite trace-class operators on l2(N)
for g ∈ (0, 1

4(1+α)
), α ∈ [0, 1], and the Perron-Frobenius...

D 1
2 Kdi(g, α)D 1

2 is analytic in (
√
g, α) for |α| < 1 and |g| < 1

4(1+|α|) . Proposition
(5.4) For every α ∈ [0, 1], the largest eigenvalue λdi

1 (g, α) of D 1
2 Kdi(g, α)D 1

2 is a
strictly increasing function of g. As g approaches 1

4(1+α)
from below, its limit

λ̄di
1 (α) satisfies

λ̄di
1 (α) ≤ 1.
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