Loop Models on Causal Triangulations

Meltem Ünel (LMO, Université Paris-Saclay)

November 2022, IHES

Joint work with B. Durhuus, J. Rasmussen and X. Poncini, arXiv:2104.14176 .

Overview

Loop Models

- Causal triangulations
- Dense loop model
- Dilute loop model

2 Tree Correspondences

- Pure CDT
- Loop models
- Partition functions
- Oritical behavior
 - Pure CDT and dense model: trees
 - Dilute model: transfer matrix

Causal Triangulations

- A causal triangulation of a disk: a central vertex x and a sequence of cycles $S_0 \equiv \{x\}, S_1, \ldots, S_m.$
- For each k = 0, 1, ..., m 1, the annulus A_k is triangulated.

• A vertex v_1 in S_1 distinguished.

$$Z_m(g) := \sum_{C \in \mathcal{C}_m} g^{|C|}$$

$$Z(g) := \sum_{m=0}^{\infty} Z_m(g)$$

The set \mathcal{L}_m^{de} obtained by replacing elementary triangles with the ones above.

Now set

$$Z_m^{de}(g,\alpha) := \sum_{L \in \mathcal{L}_m^{de}} g^{|L|} \alpha^{s(L)}, \quad Z^{de}(g,\alpha) = \sum_{m=0}^{\infty} Z_m^{de}(g,\alpha)$$

where s(L) is the # of intersections, $\alpha \in [0,1]$ and $Z_0^{de}(g,\alpha) = 1$.

Dense loop model

イロト イヨト イヨト イヨト

æ

Dilute loop model

The set \mathcal{L}_m^{di} obtained by replacing elementary triangles with the ones above.

$$Z^{di}_m(g,\alpha):=\sum_{L\in \mathcal{L}^{di}_m}g^{|L|}\alpha^{s(L)}, \qquad Z^{di}(g,\alpha):=\sum_{m=0}^\infty Z^{di}_m(g,\alpha)\,.$$

Compatibility condition: $s_k(L) \equiv s_{k'}(L) \pmod{2}, \quad \forall k, k'.$

Dilute loop model

Meltem Unel, LMO, Paris-Saclay

Loop models on causal triangulations

イロト イヨト イヨト イヨト

æ

Lemma (3.1, 3.2):

- The number of possible dense, resp. dilute, loop configurations on a triangulated annulus A_k only depends on the boundary lengths l_k and l_{k+1}, not the details of the triangulation.
- **②** Given arbitrary (resp. even size) subsets of its spacelike edges, a triangulation of A_k admits one dense (resp. 2 dilute) loop configuration.

Tree correspondences

Bijective correspondence, ψ : $\mathcal{C}_m(N) \to \mathcal{T}_m(N)$.

$$V_k(T) := \{ v \in T \mid d_T(x_0, v) = k + 1 \} = \{ v_{k,i} \mid i = 1, \dots, |V_k(T)| \}.$$
$$V(T) := \bigcup_{k=1}^m V_k(T)$$

$$\tilde{\mathcal{T}}_m := \{ (T, \delta) \mid T \in \mathcal{T}_m, \ \delta : V(T) \to \{0, 1\} \}, \ |\delta| := \sum_{v \in V(T)} \delta(v)$$
$$\tilde{\mathcal{T}}_m^{ev}(N) := \{ (T, \delta) \in \tilde{\mathcal{T}}_m \mid T \in \mathcal{T}_m(N), \ \delta_k \in 2\mathbb{N}_0, \ k = 1, \dots, m \}$$

Proposition (3.5, 3.6): For every $m \in \mathbb{N}_0$ and $N \in \mathbb{N}$

(i) there is a bijective correspondence

$$\tilde{\psi}: \mathcal{L}_m^{de}(N) \to \widetilde{\mathcal{T}}_m(N)$$

(ii) there is a 2^m to 1 correspondence

$$\hat{\psi}: \mathcal{L}_m^{di}(N) \to \widetilde{\mathcal{T}}_m^{ev}(N)$$

such that if $(T, \delta) = \hat{\psi}(L)$ then $T = \psi(C)$.

æ

$$W_m(g,\alpha) := \sum_{(T,\delta)\in\widetilde{\mathcal{T}}_m} g^{|T|-1} \alpha^{|\delta|}, \quad W_m^{ev}(g,\alpha) := \sum_{(T,\delta)\in\widetilde{\mathcal{T}}_m^{ev}} g^{|T|-1} \alpha^{|\delta|}$$

$$Dense: \quad Z^{de}(g,\alpha) = W(g,\alpha^2),$$

$$\underline{Dilute}: \quad Z^{di}(g,\alpha) = \sum_{m=0}^{\infty} Z^{di}_m(g,\alpha) = \sum_{m=0}^{\infty} 2^m W^{ev}_m(g,\alpha).$$

The 2^m factor is important!

э

Critical behavior: labelled trees

Dense case: Critical behavior fully determined via the correspondence.

$$W(g, \alpha) = W(g(1 + \alpha)) = \frac{1 - \sqrt{1 - 4g(1 + \alpha)}}{2g(1 + \alpha)}$$

Dilute case: Not so trivial.

$$W_m^{ev}(g,\alpha) = \sum_{T \in \mathcal{T}_m} g^{|T|-1} \prod_{i=1}^m \frac{1}{2} \left[(1+\alpha)^{n_i} + (1-\alpha)^{n_i} \right].$$

The best we get from here is an inequality:

$$W^{ev}\left(g(1+\alpha), 0, \frac{k}{2}\right) \le W^{ev}(g, \alpha, k) \le W^{ev}\left(g(1+\alpha), 0, \frac{k}{1+\alpha}\right).$$

Meltem Unel, LMO, Paris-Saclay

Transfer matrix formalism - Pure CDT

- Encode the degrees of freedom along the space-like boundaries by vectors in $l_2(\mathbb{N})$,
- Transfer matrix T, an operator on $l_2(\mathbb{N})$:

$$\mathsf{T}_{r,s}(g) := \binom{r+s-1}{r} g^{\frac{r+s}{2}}.$$

$$Z_m(g) = \langle v(g) | (\mathsf{T}(g))^{m-1} | v(g) \rangle , \ v_n(g) := g^{\frac{n}{2}} \in l_2(\mathbb{N}) .$$

• T(g) is not symmetric but admits a factorization T(g) = DK(g) where

$$\mathsf{D}_{r,s} := \frac{\delta_{r,s}}{r}, \qquad \mathsf{K}_{r,s}(g) := \frac{(r+s-1)!}{(r-1)!(s-1)!} g^{\frac{r+s}{2}}.$$

Transfer matrix

Proposition (5.1): The operator K(g) is trace-class for $g \in \mathbb{D}$, it is positive definite for $g \in (0, \frac{1}{4})$, and the function $h \mapsto K(h^2)$ is analytic on $\{h \in \mathbb{C} \mid |h| < \frac{1}{2}\}$.

$$\|\mathsf{K}(g)\|_1 = \operatorname{tr} |\mathsf{K}(g)| = \|\mathsf{K}(|g|)\|_1 = \frac{|g|}{(1-4|g|)^{\frac{3}{2}}}$$

$$\operatorname{tr}(\mathsf{T}(g)) = \sum_{s=1}^{\infty} \mathsf{T}_{s,s}(g) = \frac{1 - \sqrt{1 - 4g}}{2\sqrt{1 - 4g}}, \quad g \in (0, \frac{1}{4}).$$

Proposition (5.3): The largest eigenvalue $\lambda_1(g)$ of $D^{\frac{1}{2}}K(g)D^{\frac{1}{2}}$ satisfies

$$\lambda_1(g) \nearrow 1$$
 as $g \nearrow \frac{1}{4}$.

Meltem Unel, LMO, Paris-Saclay Loop models on causal triangulations

Transfer matrix: loops

• Dense: Just scale $g \to g(1 + \alpha^2)$, the rest works out the same.

• Dilute: $\mathsf{T}^{di}(g,\alpha) = 2\mathsf{D}\mathsf{K}^{di}(g,\alpha)$ where

$$\mathsf{K}_{r,s}^{di}(g,\alpha) = \frac{1}{2} \frac{(r+s-1)!}{(r-1)!(s-1)!} \left[(1+\alpha)^r + (1-\alpha)^r \right]^{\frac{1}{2}} \left[(1+\alpha)^s + (1-\alpha)^s \right]^{\frac{1}{2}} g^{\frac{r+s}{2}}$$

• Similar to the pure case:

$$Z^{di}(g,\alpha) = 1 + \sum_{m=1}^{\infty} \langle v(g,\alpha) | (\mathsf{T}^{di}(g,\alpha))^{m-1} | v(g,\alpha) \rangle,$$
$$v_n(g,\alpha) := \left[(1+\alpha)^n + (1-\alpha)^n \right]^{\frac{1}{2}} g^{\frac{n}{2}}, \qquad n \in \mathbb{N}.$$

Transfer matrix: dilute

• $\mathsf{K}^{di}(g,\alpha)$ and $\mathsf{D}^{\frac{1}{2}}\mathsf{K}^{di}(g,\alpha)\mathsf{D}^{\frac{1}{2}}$ are positive definite trace-class operators on $l^2(\mathbb{N})$ for $g \in (0, \frac{1}{4(1+\alpha)})$, $\alpha \in [0, 1]$, and the Perron-Frobenius...

• $\mathsf{D}^{\frac{1}{2}}\mathsf{K}^{di}(g,\alpha)\mathsf{D}^{\frac{1}{2}}$ is analytic in (\sqrt{g},α) for $|\alpha| < 1$ and $|g| < \frac{1}{4(1+|\alpha|)}$.

Proposition (5.4) For every $\alpha \in [0,1]$, the largest eigenvalue $\lambda_1^{di}(g,\alpha)$ of $\mathsf{D}^{\frac{1}{2}}\mathsf{K}^{di}(g,\alpha)\mathsf{D}^{\frac{1}{2}}$ is a strictly increasing function of g. As g approaches $\frac{1}{4(1+\alpha)}$ from below, its limit $\bar{\lambda}_1^{di}(\alpha)$ satisfies

 $\bar{\lambda}_1^{di}(\alpha) \le 1.$

17/23

Observe:

$$\mathsf{K}^{di}(g,0) = \mathsf{K}(g), \ \ \mathsf{K}^{di}(g,1) = \mathsf{K}(2g)/2 \quad \Rightarrow \quad \bar{\lambda}_1^{di}(0) = 1, \quad \bar{\lambda}_1^{di}(1) = \frac{1}{2}.$$

Theorem [Durhuus, Poncini, Rasmussen, U.]: For α real and sufficiently small, the critical coupling $g_c^{di}(\alpha)$ for $Z^{di}(g,\alpha)$ is determined by the equation

$$\lambda_1^{di} \left(g_c^{di}(\alpha), \alpha \right) = \frac{1}{2},$$

and there exist $C_1(\alpha), C_2(\alpha) > 0$ such that

$$\frac{C_1(\alpha)}{g_c^{di}(\alpha) - g} \leq Z^{di}(g, \alpha) \leq \frac{C_2(\alpha)}{g_c^{di}(\alpha) - g}$$

for g close to $g_c^{di}(\alpha)$.

Conclusions / Questions

- For small α, we have height coupled trees. Exponent characterising the singularity changes form ¹/₂ to −1.
- Strong evidence that the background geometry is affected.
- Is there a phase transition for some value of α or is the height coupling effective all the way to 1?
- Correspondence with Ising clusters: new information?

Encoding the length of the loops?

Thank you for your attention!

20/23

Transfer matrix formalism - Pure CDT

- Encode the degrees of freedom along the space-like boundaries by vectors in $l_2(\mathbb{N})$,
- Transfer matrix T, an operator on $l_2(\mathbb{N})$:

$$\mathsf{T}_{r,s}(g):=\binom{r+s-1}{r}g^{\frac{r+s}{2}}$$

• T(g) is not symmetric but admits a factorization T(g) = DK(g) where

$$\mathsf{D}_{r,s} := \frac{\delta_{r,s}}{r}, \qquad \mathsf{K}_{r,s}(g) := \frac{(r+s-1)!}{(r-1)!(s-1)!} g^{\frac{r+s}{2}}$$

Proposition (5.1): The operator K(g) is trace-class for $g \in \mathbb{D}$, it is positive definite for $g \in (0, \frac{1}{4})$, and the function $h \mapsto K(h^2)$ is analytic on $\{h \in \mathbb{C} \mid |h| < \frac{1}{2}\}$.

$$\|\mathsf{K}(g)\|_1 = \operatorname{tr} |\mathsf{K}(g)| = \|\mathsf{K}(|g|)\|_1 = \frac{|g|}{(1-4|g|)^{\frac{3}{2}}}$$

$$\mathrm{tr}\big(\mathsf{T}(g)\big) = \sum_{s=1}^{\infty} \mathsf{T}_{s,s}(g) = \frac{1 - \sqrt{1 - 4g}}{2\sqrt{1 - 4g}}, \quad g \in (0, \frac{1}{4}).$$

- Perron-Frobenius: For g ∈ (0, ¹/₄), K(g) has a simple positive largest eigenvalue which equals ||K(g)||, corresponding normalized eigenvector has positive entries.
- Kato-Rellich: This eigenvalue is analytic on (0, ¹/₄) as well as the components of the corresponding eigenvector (up to a phase).
- Same hold for $D^{\frac{1}{2}}K(g)D^{\frac{1}{2}}$.
- Now, express the partition function as a matrix element:

$$Z_m(g) = \left\langle v(g) \middle| \mathsf{T}^{m-1}(g) \middle| v(g) \right\rangle, \quad v_n(g) := g^{\frac{n}{2}}, \qquad m, n \in \mathbb{N}.$$

• Define
$$Z_m^{per}(g) := \operatorname{tr}\left(\mathsf{T}^{m-1}(g)\right) = \operatorname{tr}\left((\mathsf{D}^{\frac{1}{2}}\mathsf{K}(g)\mathsf{D}^{\frac{1}{2}})^{m-1}\right), \ m \ge 2.$$

• A simple observation: $Z_m(g) \leq Z_{m+1}^{per}(g)$ for $m \geq 1$ and $g \in [0, \frac{1}{4})$.

Proposition (5.3): The largest eigenvalue $\lambda_1(g)$ of $D^{\frac{1}{2}}K(g)D^{\frac{1}{2}}$ satisfies

$$\lambda_1(g) \nearrow 1$$
 as $g \nearrow \frac{1}{4}$.

Transfer matrix - dilute model

• Observe! $\mathsf{T}^{di}(g, \alpha) = 2\mathsf{D}\mathsf{K}^{di}(g, \alpha)$ where

$$\mathsf{K}_{r,s}^{di}(g,\alpha) = \frac{1}{2} \frac{(r+s-1)!}{(r-1)!(s-1)!} \left[(1+\alpha)^r + (1-\alpha)^r \right]^{\frac{1}{2}} \left[(1+\alpha)^s + (1-\alpha)^s \right]^{\frac{1}{2}} g^{\frac{r+s}{2}}$$

Similar to the pure case:

$$Z^{di}(g,\alpha) = 1 + \sum_{m=1}^{\infty} \langle v(g,\alpha) | (\mathsf{T}^{di}(g,\alpha))^{m-1} | v(g,\alpha) \rangle,$$
$$v_n(g,\alpha) := \left[(1+\alpha)^n + (1-\alpha)^n \right]^{\frac{1}{2}} g^{\frac{n}{2}}, \qquad n \in \mathbb{N}.$$

- $\mathsf{K}^{di}(g,\alpha)$ and $\mathsf{D}^{\frac{1}{2}}\mathsf{K}^{di}(g,\alpha)\mathsf{D}^{\frac{1}{2}}$ are positive definite trace-class operators on $l^2(\mathbb{N})$ for $g \in (0, \frac{1}{4(1+\alpha)})$, $\alpha \in [0, 1]$, and the Perron-Frobenius...
- $D^{\frac{1}{2}}K^{di}(g,\alpha)D^{\frac{1}{2}}$ is analytic in (\sqrt{g},α) for $|\alpha| < 1$ and $|g| < \frac{1}{4(1+|\alpha|)}$. Proposition (5.4) For every $\alpha \in [0,1]$, the largest eigenvalue $\lambda_1^{di}(g,\alpha)$ of $D^{\frac{1}{2}}K^{di}(g,\alpha)D^{\frac{1}{2}}$ is a strictly increasing function of g. As g approaches $\frac{1}{4(1+\alpha)}$ from below, its limit $\overline{\lambda}_1^{di}(\alpha)$ satisfies

$$\bar{\lambda}_1^{di}(\alpha) \le 1$$