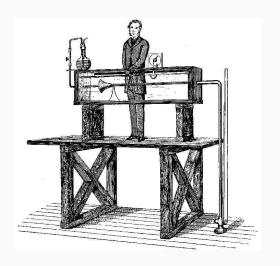
Resonances for Shear Flows and Complex Deformations

Jian Wang Institut des Hautes Études Scientifiques Joint work with Malo Jézéquel (CNRS)

Reynolds experiment

Reynolds experiment, 1883

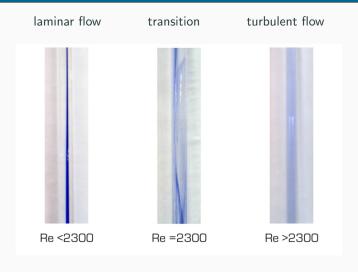


Reynolds experiment

Reynolds experiment

https://youtu.be/BBiR6FWmyv4

Reynolds Experiment



https://www.gunt.de/en/

Shear flows: stationary solutions (0, U(x)) to the Navier–Stokes equation (with forcing) in $[a, b] \times \mathbb{R}$.

Shear flows: stationary solutions (0, U(x)) to the Navier–Stokes equation (with forcing) in $[a, b] \times \mathbb{R}$.

Linearizing Navier–Stokes equation around a shear flow, following Kelvin, Reynolds, Rayleigh, Orr, Sommerfeld, Heisenberg, C. C. Lin, ..., one obtains the Orr–Sommerfeld equation on [a,b]

$$\left(\frac{i}{\alpha R}(\partial_x^2 - \alpha^2)^2 + (U(x) - c)(\partial_x^2 - \alpha^2) - U''(x)\right)\psi = 0,$$

$$\psi(a) = \psi(b) = \psi'(a) = \psi'(b) = 0.$$

Shear flows: stationary solutions (0, U(x)) to the Navier–Stokes equation (with forcing) in $[a, b] \times \mathbb{R}$.

Linearizing Navier–Stokes equation around a shear flow, following Kelvin, Reynolds, Rayleigh, Orr, Sommerfeld, Heisenberg, C. C. Lin, ..., one obtains the Orr–Sommerfeld equation on [a,b]

$$\left(\frac{i}{\alpha R}(\partial_x^2 - \alpha^2)^2 + (U(x) - c)(\partial_x^2 - \alpha^2) - U''(x)\right)\psi = 0,$$

$$\psi(a) = \psi(b) = \psi'(a) = \psi'(b) = 0.$$

- R > 0 Reynolds number; 1/R viscosity;
- $\alpha > 0$ frequency in y direction;
- $c \in \mathbb{C}$ spectral parameter

Shear flows: stationary solutions (0, U(x)) to the Navier–Stokes equation (with forcing) in $[a, b] \times \mathbb{R}$.

Linearizing Navier–Stokes equation around a shear flow, following Kelvin, Reynolds, Rayleigh, Orr, Sommerfeld, Heisenberg, C. C. Lin, ..., one obtains the Orr–Sommerfeld equation on [a,b]

$$\left(\frac{i}{\alpha R}(\partial_x^2 - \alpha^2)^2 + (U(x) - c)(\partial_x^2 - \alpha^2) - U''(x)\right)\psi = 0,$$

$$\psi(a) = \psi(b) = \psi'(a) = \psi'(b) = 0.$$

- R > 0 Reynolds number; 1/R viscosity;
- $\alpha > 0$ frequency in y direction;
- $c \in \mathbb{C}$ spectral parameter

 ${\rm Im} c>0\Rightarrow$ unstable solutions to the linearized Navier–Stokes equation

Spectral instability

Spectral instability can occur as Reynolds number grows to $+\infty$.

Spectral instability

Spectral instability can occur as Reynolds number grows to $+\infty$.

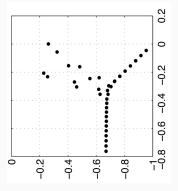
• Couette flow U(x) = x, $x \in [-1, 1]$: spectrally stable

Spectral instability

Spectral instability can occur as Reynolds number grows to $+\infty$.

- Couette flow U(x) = x, $x \in [-1, 1]$: spectrally stable
- Poiseuille flow $U(x) = 1 x^2$, $x \in [-1, 1]$: spectrally unstable.

Orszag '71, Trefethen '00, Grenier-Guo-Nguyen '16, Almog-Helffer '22



Poiseuille flow, R = 5772

$$R < +\infty \Rightarrow$$
 the Orr–Sommerfeld equation is *elliptic* \Rightarrow discrete eigenvalues Σ_R

```
R < +\infty \Rightarrow the Orr–Sommerfeld equation is elliptic \Rightarrow discrete eigenvalues \Sigma_R
```

Questions (Inviscid limits):

- What is the limit of Σ_R as $R \to +\infty$?
- Can Σ_R contain unstable eigenvalues?

```
R < +\infty \Rightarrow the Orr–Sommerfeld equation is elliptic \Rightarrow discrete eigenvalues \Sigma_R
```

Questions (Inviscid limits):

- What is the limit of Σ_R as $R \to +\infty$?
- Can Σ_R contain unstable eigenvalues?

This is a question of long history:

- Kelvin, Reynolds, Rayleigh, Orr, Sommerfeld, Heisenberg, C. C. Lin,
 ...
- Tatsumi–Gotoh–Ayukawa '64: $U(x) = \tanh(x), x \in \mathbb{R}$ $\lim_{R \to +\infty} \Sigma_R$ is NOT the set of eigenvalues for $R = +\infty$.
- Grenier–Guo–Nguyen '16: characteristic boundary layers, symmetric analytic shear flows Σ_R must have unstable eigenvalues for R large and $\alpha=\alpha(R)$ small

Question (Inviscid limits): What is the limit of Σ_R as $R \to +\infty$?

• $R < +\infty$, Orr–Sommerfeld equation

$$\left(\frac{i}{\alpha R}(\partial_x^2 - \alpha^2)^2 + (U(x) - c)(\partial_x^2 - \alpha^2) - U''(x)\right)\psi = 0,$$

$$\psi(a) = \psi(b) = \psi'(a) = \psi'(b) = 0.$$

Question (Inviscid limits): What is the limit of Σ_R as $R \to +\infty$?

• $R < +\infty$, Orr–Sommerfeld equation

$$\left(\frac{i}{\alpha R}(\partial_x^2 - \alpha^2)^2 + (U(x) - c)(\partial_x^2 - \alpha^2) - U''(x)\right)\psi = 0,$$

$$\psi(a) = \psi(b) = \psi'(a) = \psi'(b) = 0.$$

• $R = +\infty$, Rayleigh equation

$$((U(x)-c)(\partial_x^2-\alpha^2)-U''(x))\psi=0,$$

Question (Inviscid limits): What is the limit of Σ_R as $R \to +\infty$?

• $R < +\infty$, Orr–Sommerfeld equation

$$\left(\frac{i}{\alpha R}(\partial_x^2 - \alpha^2)^2 + (U(x) - c)(\partial_x^2 - \alpha^2) - U''(x)\right)\psi = 0,$$

$$\psi(a) = \psi(b) = \psi'(a) = \psi'(b) = 0.$$

• $R = +\infty$, Rayleigh equation

$$((U(x) - c)(\partial_x^2 - \alpha^2) - U''(x)) \psi = 0,$$

$$\psi(a) = \psi(b) = 0.$$

Question (Inviscid limits): What is the limit of Σ_R as $R \to +\infty$?

• $R < +\infty$, Orr–Sommerfeld equation

$$\left(\frac{i}{\alpha R}(\partial_x^2 - \alpha^2)^2 + (U(x) - c)(\partial_x^2 - \alpha^2) - U''(x)\right)\psi = 0,$$

$$\psi(a) = \psi(b) = \psi'(a) = \psi'(b) = 0.$$

• $R = +\infty$, Rayleigh equation

$$((U(x)-c)(\partial_x^2-\alpha^2)-U''(x))\psi=0,$$

$$\psi(a)=\psi(b)=0.$$

Challenges:

• Degeneracy at $U^{-1}(c)$

Question (Inviscid limits): What is the limit of Σ_R as $R \to +\infty$?

• $R < +\infty$, Orr–Sommerfeld equation

$$\left(\frac{i}{\alpha R}(\partial_x^2 - \alpha^2)^2 + (U(x) - c)(\partial_x^2 - \alpha^2) - U''(x)\right)\psi = 0,$$

$$\psi(a) = \psi(b) = \psi'(a) = \psi'(b) = 0.$$

• $R = +\infty$, Rayleigh equation

$$((U(x)-c)(\partial_x^2-\alpha^2)-U''(x))\psi=0,$$

$$\psi(a)=\psi(b)=0.$$

Challenges:

- Degeneracy at $U^{-1}(c)$
- Neumann boundary conditions disappear

Assume *U* analytic, $c_0 \in U((a,b))$, $U'|_{U^{-1}(c_0)} \neq 0$, $c_0 \neq U(a)$, U(b).

Assume *U* analytic, $c_0 \in U((a,b))$, $U'|_{U^{-1}(c_0)} \neq 0$, $c_0 \neq U(a)$, U(b).

Idea: Deform $\left[a,b\right]$ on the complex plane to avoid $U^{-1}(c_0)$.

Assume *U* analytic, $c_0 \in U((a, b))$, $U'|_{U^{-1}(c_0)} \neq 0$, $c_0 \neq U(a)$, U(b).

Idea: Deform [a, b] on the complex plane to avoid $U^{-1}(c_0)$.

Criteria for a "good" complex deformation

• Fix the boundary points a & b — to keep the boundary conditions

Assume *U* analytic, $c_0 \in U((a,b))$, $U'|_{U^{-1}(c_0)} \neq 0$, $c_0 \neq U(a)$, U(b).

Idea: Deform [a, b] on the complex plane to avoid $U^{-1}(c_0)$.

Criteria for a "good" complex deformation

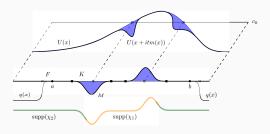
- Fix the boundary points a & b to keep the boundary conditions
- ullet $U-c_0$ stays nonzero on the deformed segment to gain ellipticity

Assume *U* analytic, $c_0 \in U((a,b))$, $U'|_{U^{-1}(c_0)} \neq 0$, $c_0 \neq U(a)$, U(b).

Idea: Deform [a, b] on the complex plane to avoid $U^{-1}(c_0)$.

Criteria for a "good" complex deformation

- Fix the boundary points a & b to keep the boundary conditions
- ullet $U-c_0$ stays nonzero on the deformed segment to gain ellipticity
- $\operatorname{Im}(U-c_0) \leq 0$ on the deformed segment same sign as ∂_x^2



Resonances $c \in \mathcal{R}$ for the shear flow U near c_0

•
$$c \in (c_0 - \delta, c_0 + \delta) + i(-\delta, +\infty)$$

Resonances $c \in \mathcal{R}$ for the shear flow U near c_0

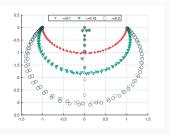
- $c \in (c_0 \delta, c_0 + \delta) + i(-\delta, +\infty)$
- $(U-c)(\partial_z^2-\alpha^2)-U'':H^2_{\rm D}(M_{a,b})\to L^2(M_{a,b})$ is not invertible

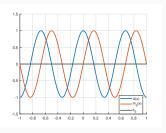
Resonances $c \in \mathcal{R}$ for the shear flow U near c_0

- $c \in (c_0 \delta, c_0 + \delta) + i(-\delta, +\infty)$
- $(U-c)(\partial_z^2-\alpha^2)-U'':H_D^2(M_{a,b})\to L^2(M_{a,b})$ is not invertible

Example: $U(x) = \cos(3\pi x), x \in [-1, 1], \alpha = \frac{\sqrt{35}\pi}{2}.$

It has only one embedded eigenvalue c=0, but many resonances:



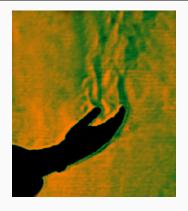


Method of complex deformations

- Scattering resonances: Aguilar–Combes '71, Balslev–Combes '71, Simon '79, Sjöstrand–Zworski '91
- 0th order operators (models of internal waves):
 Galkowski–Zworski '22
- Anosov flows: Guedes-Bonthonneau-Jézéquel '20
- Metric scattering: Guedes-Bonthonneau-Guillarmou-Jézéquel '24

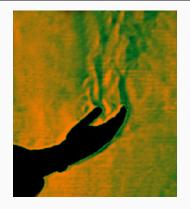
Complex deformation for Rayleigh/Orr-Sommerfeld

- Rosencrans–Sattinger '66, Stepin '96: analytic continuation of Wronskian determinant
- Tatsumi–Gotoh–Ayukawa '64: $U(x) = \tanh(x)$, $x \in \mathbb{R}$



(https://en.wikipedia.org/wiki/Boundary_layer)

Thin layer of fluid near the boundary, due to the boundary conditions



(https://en.wikipedia.org/wiki/Boundary_layer)

Thin layer of fluid near the boundary, due to the boundary conditions

- Introduced by Prandtl '04
- Method of Vishik–Lyusternik '62,
- Method of Rayleigh-Airy operators Grenier-Guo-Nguyen '16

To see how the Neumann boundary conditions disappear, construct approximation solutions $u_{c,R}^{\#}$, $v_{c,R}^{\#}$ concentrating near the boundary

• (Model) Roughly, $u_{c,R}^{\#}$ is like $x\mapsto e^{-\sqrt{R}x}$ for $x\to 0+$

To see how the Neumann boundary conditions disappear, construct approximation solutions $u_{c,R}^{\#}$, $v_{c,R}^{\#}$ concentrating near the boundary

- (Model) Roughly, $u_{c,R}^{\#}$ is like $x \mapsto e^{-\sqrt{R}x}$ for $x \to 0+$
- (Approximation solutions) $\left(\frac{i}{\alpha R} (\partial_x^2 \alpha^2)^2 + (U(x) c)(\partial_x^2 \alpha^2) U''(x) \right) u_{c,R}^\# = \mathcal{O}(R^{-\infty})$

To see how the Neumann boundary conditions disappear, construct approximation solutions $u_{c,R}^\#$, $v_{c,R}^\#$ concentrating near the boundary

- (Model) Roughly, $u_{c,R}^{\#}$ is like $x \mapsto e^{-\sqrt{R}x}$ for $x \to 0+$
- (Approximation solutions) $\left(\frac{i}{\alpha R} (\partial_x^2 \alpha^2)^2 + (U(x) c)(\partial_x^2 \alpha^2) U''(x) \right) u_{c,R}^\# = \mathcal{O}(R^{-\infty})$
- (Boundary values) $u_{c,R}^{\#}(a) = 1, \ (u_{c,R}^{\#})'(a) = \sqrt{i\alpha(U(a)-c)R^{\frac{1}{2}}} + \mathcal{O}(1), \ \operatorname{Re}(u_{c,R}^{\#})'(a) < 0.$

To see how the Neumann boundary conditions disappear, construct approximation solutions $u_{c,R}^\#$, $v_{c,R}^\#$ concentrating near the boundary

- (Model) Roughly, $u_{c,R}^{\#}$ is like $x \mapsto e^{-\sqrt{R}x}$ for $x \to 0+$
- (Approximation solutions) $\left(\frac{i}{\alpha R} (\partial_x^2 \alpha^2)^2 + (U(x) c)(\partial_x^2 \alpha^2) U''(x) \right) u_{c,R}^\# = \mathcal{O}(R^{-\infty})$
- (Boundary values) $u_{c,R}^{\#}(a) = 1, \ (u_{c,R}^{\#})'(a) = \sqrt{i\alpha(U(a)-c)R^{\frac{1}{2}}} + \mathcal{O}(1), \ \operatorname{Re}(u_{c,R}^{\#})'(a) < 0.$
- (Smallness) $||u_{c,R}^{\#}||_{H^k} \le R^{-\frac{1-2k}{4}}, \ k \ge 0.$

To see how the Neumann boundary conditions disappear, construct approximation solutions $u_{c,R}^{\#}$, $v_{c,R}^{\#}$ concentrating near the boundary

- (Model) Roughly, $u_{c,R}^{\#}$ is like $x \mapsto e^{-\sqrt{R}x}$ for $x \to 0+$
- (Approximation solutions) $\left(\frac{i}{\alpha R} (\partial_x^2 \alpha^2)^2 + (U(x) c)(\partial_x^2 \alpha^2) U''(x) \right) u_{c,R}^\# = \mathcal{O}(R^{-\infty})$
- (Boundary values) $u_{c,R}^{\#}(a) = 1, \ (u_{c,R}^{\#})'(a) = \sqrt{i\alpha(U(a)-c)}R^{\frac{1}{2}} + \mathcal{O}(1), \ \operatorname{Re}(u_{c,R}^{\#})'(a) < 0.$
- (Smallness) $\|u_{c,R}^{\#}\|_{H^k} \leq R^{-\frac{1-2k}{4}}, \ k \geq 0.$

Construction of these boundary layers are achieved by the WKB method.

Resonances as inviscid limits

Theorem (Jézéquel–W. '25). In
$$(c_0 - \delta, c_0 + \delta) + i(-\delta, +\infty)$$
,

• the set of resonances \mathcal{R} is discrete;

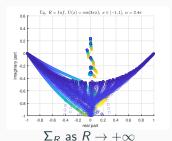
- the set of resonances R is discrete;
- $c \in \mathcal{R}$, $\mathrm{Im} c > 0 \Rightarrow c$ is an eigenvalue of Rayleigh equation;

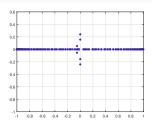
- the set of resonances R is discrete;
- $c \in \mathcal{R}$, $\mathrm{Im} c > 0 \Rightarrow c$ is an eigenvalue of Rayleigh equation;
- $c \in \mathcal{R}$, $\mathrm{Im} c = 0 \Rightarrow c$ is a "generalized embedded eigenvalue" (Wei–Zhang–Zhao '19)

- the set of resonances R is discrete;
- $c \in \mathcal{R}$, $\mathrm{Im} c > 0 \Rightarrow c$ is an eigenvalue of Rayleigh equation;
- $c \in \mathcal{R}$, $\mathrm{Im} c = 0 \Rightarrow c$ is a "generalized embedded eigenvalue" (Wei–Zhang–Zhao '19)
- Σ_R converges to \mathcal{R} as $R \to +\infty$;

- the set of resonances R is discrete;
- $c \in \mathcal{R}$, $\mathrm{Im} c > 0 \Rightarrow c$ is an eigenvalue of Rayleigh equation;
- $c \in \mathcal{R}$, $\mathrm{Im} c = 0 \Rightarrow c$ is a "generalized embedded eigenvalue" (Wei–Zhang–Zhao '19)
- Σ_R converges to \mathcal{R} as $R \to +\infty$;
- for "simple" resonances, the rate of convergence is $R^{-\frac{1}{2}}$.

- the set of resonances R is discrete;
- $c \in \mathcal{R}$, $\mathrm{Im} c > 0 \Rightarrow c$ is an eigenvalue of Rayleigh equation;
- $c \in \mathcal{R}$, $\mathrm{Im} c = 0 \Rightarrow c$ is a "generalized embedded eigenvalue" (Wei–Zhang–Zhao '19)
- Σ_R converges to \mathcal{R} as $R \to +\infty$;
- for "simple" resonances, the rate of convergence is $R^{-\frac{1}{2}}$.





spectrum of Rayleigh equation

Pollicott–Ruelle resonances:
 Dyatlov–Zworski '15 Anosov flows;
 Drouot '17 geodesic flows;
 Dang–Rivière '18 gradient flows for Morse–Smale functions

• Scattering resonances for Schrödinger: Zworski '15, '18: $V \in L^{\infty}_{\text{comp}}$ Kameoka–Nakamura '20: Wigner–von Neumann '20

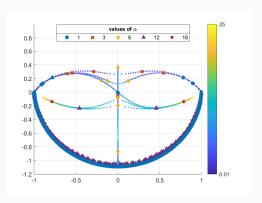
Kameoka-Nakamura '20: Wigner-von Neumann '20

Xiong '20, '21, '22: black box etc.

0th order operators (models of internal waves):
 Galkowski–Zworski '22

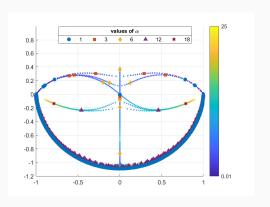
$$U(x) = \cos(3\pi x), x \in [-1, 1]$$

Plot of resonances, color $= \alpha$



$$U(x) = \cos(3\pi x), x \in [-1, 1]$$

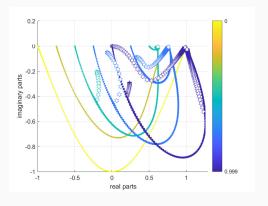
Plot of resonances, color $= \alpha$



Proposition. No resonances near c_0 for large α .

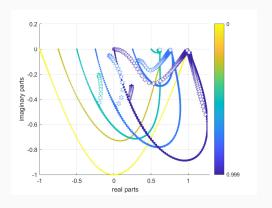
Couette-Poiseuille
$$U(x)=(1-\theta)x+\theta(1-x^2), x\in[-1,1]$$

Plot of resonances, color $=\theta$



Couette-Poiseuille
$$U(x)=(1-\theta)x+\theta(1-x^2), x\in [-1,1]$$

Plot of resonances, color $=\theta$

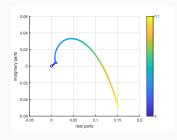


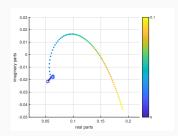
Proposition. Couette flow has no resonances.

Gallery: Viscous perturbations

$$U(x)=\cos(0.7\pi x),\ x\in[-1,1]$$

Plot of Σ_R , color $=R^{-\frac{1}{2}}$





$$\alpha = \sqrt{0.7^2 - 0.5^2}\pi$$

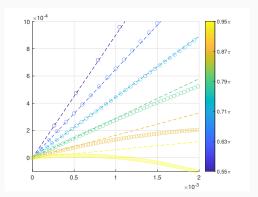
unstable embedded eigenvalue 0

$$\alpha = \sqrt{0.7^2 - 0.45^2} \pi$$

unstable complex resonance

Gallery: Viscous perturbations

$$U(x)=\cos(\omega x),\ x\in[-1,1],\ \omega\in(0.5\pi,\pi),\ \alpha=\sqrt{\omega^2-0.25\pi^2}$$
 Plot of Σ_R , color $=\omega$



Proposition. First order approximation
$$c(R) = \dot{c}(0)R^{-\frac{1}{2}} + \mathcal{O}(R^{-1})$$

$$\dot{c}(0) = \frac{\pi^2 e^{\frac{\pi i}{4}}}{2\omega^2 \sqrt{\alpha |\cos(\omega)|}} \left(\text{p.v.} \int_{-1}^{1} \frac{(\cos(\frac{\pi x}{2}))^2}{\cos(\omega x)} dx + \frac{2\pi i}{\omega} \left(\cos\left(\frac{\pi^2}{4\omega}\right) \right)^2 \right)^{-1}, \quad \text{Im} \dot{c}(0) > 0.$$

Perspectives

- Inviscid limits of eigenvalues near critical/boundary values of *U*?
- · Applications to evolution problems of shear flows?
- Higher dimensional models in fluid mechanics: baroclinic flows; secondary instability of Görtler vortices (More complicated boundary conditions/systems)
- Inviscid limits of internal waves Jézéquel–W. '25+

Perspectives

- Inviscid limits of eigenvalues near critical/boundary values of *U*?
- Applications to evolution problems of shear flows?
- Higher dimensional models in fluid mechanics: baroclinic flows; secondary instability of Görtler vortices (More complicated boundary conditions/systems)
- Inviscid limits of internal waves Jézéquel-W. '25+

Thank you!