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Reynolds Experiment

laminar flow transition turbulent flow

https://www.gunt.de/en/
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Orr–Sommerfeld equation

Shear flows: stationary solutions (0,U(x)) to the Navier–Stokes equation

(with forcing) in [a, b]× R.

Linearizing Navier–Stokes equation around a shear flow, following Kelvin,

Reynolds, Rayleigh, Orr, Sommerfeld, Heisenberg, C. C. Lin, ..., one

obtains the Orr–Sommerfeld equation on [a, b](
i

αR
(∂2x − α2)2 + (U(x)− c)(∂2x − α2)− U ′′(x)

)
ψ = 0,

ψ(a) = ψ(b) = ψ′(a) = ψ′(b) = 0.

• R > 0 — Reynolds number; 1/R — viscosity;

• α > 0 — frequency in y direction;

• c ∈ C — spectral parameter

Imc > 0 ⇒ unstable solutions to the linearized Navier–Stokes equation
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Spectral instability

Spectral instability can occur as Reynolds number grows to +∞.

• Couette flow U(x) = x , x ∈ [−1, 1]: spectrally stable

• Poiseuille flow U(x) = 1− x2, x ∈ [−1, 1]: spectrally unstable.

Orszag ’71, Trefethen ’00, Grenier–Guo–Nguyen ’16, Almog–Helffer ’22

Poiseuille flow, R = 5772
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Inviscid limits

R < +∞ ⇒ the Orr–Sommerfeld equation is elliptic

⇒ discrete eigenvalues ΣR

Questions (Inviscid limits):

• What is the limit of ΣR as R → +∞?

• Can ΣR contain unstable eigenvalues?

This is a question of long history:

• Kelvin, Reynolds, Rayleigh, Orr, Sommerfeld, Heisenberg, C. C. Lin,

...

• Tatsumi–Gotoh–Ayukawa ’64: U(x) = tanh(x), x ∈ R —

limR→+∞ ΣR is NOT the set of eigenvalues for R = +∞.

• Grenier–Guo–Nguyen ’16: characteristic boundary layers, symmetric

analytic shear flows — ΣR must have unstable eigenvalues for R

large and α = α(R) small
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Inviscid limits

Question (Inviscid limits): What is the limit of ΣR as R → +∞?

• R < +∞, Orr–Sommerfeld equation(
i

αR
(∂2x − α2)2 + (U(x)− c)(∂2x − α2)− U ′′(x)

)
ψ = 0,

ψ(a) = ψ(b) = ψ′(a) = ψ′(b) = 0.

• R = +∞, Rayleigh equation(
(U(x)− c)(∂2x − α2)− U ′′(x)

)
ψ = 0,

ψ(a) = ψ(b) = 0.

Challenges:

• Degeneracy at U−1(c)

• Neumann boundary conditions disappear
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Complex deformation

Assume U analytic, c0 ∈ U((a, b)), U ′|U−1(c0) ̸= 0, c0 ̸= U(a),U(b).

Idea: Deform [a, b] on the complex plane to avoid U−1(c0).

Criteria for a “good” complex deformation

• Fix the boundary points a & b — to keep the boundary conditions

• U − c0 stays nonzero on the deformed segment — to gain ellipticity

• Im(U − c0) ≤ 0 on the deformed segment — same sign as ∂2x

c0

U(x+ itm(x))

Mq(x) q(x)

supp(χ2)

U(x)
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Complex deformation

Resonances c ∈ R for the shear flow U near c0

• c ∈ (c0 − δ, c0 + δ) + i(−δ,+∞)

• (U − c)(∂2z − α2)− U ′′ : H2
D(Ma,b) → L2(Ma,b) is not invertible

Example: U(x) = cos(3πx), x ∈ [−1, 1], α =
√
35π
2 .

It has only one embedded eigenvalue c = 0, but many resonances:
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Complex deformation

Method of complex deformations

• Scattering resonances: Aguilar–Combes ’71, Balslev–Combes ’71,

Simon ’79, Sjöstrand–Zworski ’91

• 0th order operators (models of internal waves):

Galkowski–Zworski ’22

• Anosov flows: Guedes-Bonthonneau–Jézéquel ’20

• Metric scattering: Guedes-Bonthonneau–Guillarmou–Jézéquel ’24

Complex deformation for Rayleigh/Orr–Sommerfeld

• Rosencrans–Sattinger ’66, Stepin ’96: analytic continuation of

Wronskian determinant

• Tatsumi–Gotoh–Ayukawa ’64: U(x) = tanh(x), x ∈ R
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Boundary layers: Vishik–Lyusternik

(https://en.wikipedia.org/wiki/Boundary layer)

Thin layer of fluid near the boundary, due to the boundary conditions

• Introduced by Prandtl ’04

• Method of Vishik–Lyusternik ’62,

• Method of Rayleigh–Airy operators Grenier–Guo–Nguyen ’16
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Boundary layers: Vishik–Lyusternik

To see how the Neumann boundary conditions disappear, construct

approximation solutions u#c,R , v
#
c,R concentrating near the boundary

• (Model) Roughly, u#c,R is like x 7→ e−
√
Rx for x → 0+

• (Approximation solutions)(
i

αR (∂
2
x − α2)2 + (U(x)− c)(∂2x − α2)− U ′′(x)

)
u#c,R = O(R−∞)

• (Boundary values)

u#c,R(a) = 1, (u#c,R)
′(a) =

√
iα(U(a)− c)R

1
2 +O(1), Re(u#c,R)

′(a) < 0.

• (Smallness) ∥u#c,R∥Hk ≤ R− 1−2k
4 , k ≥ 0.

Construction of these boundary layers are achieved by the WKB method.
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Resonances as inviscid limits

Theorem (Jézéquel–W. ’25). In (c0 − δ, c0 + δ) + i(−δ,+∞),

• the set of resonances R is discrete;

• c ∈ R, Imc > 0 ⇒ c is an eigenvalue of Rayleigh equation;

• c ∈ R, Imc = 0 ⇒ c is a “generalized embedded eigenvalue”

(Wei–Zhang–Zhao ’19)

• ΣR converges to R as R → +∞;

• for “simple” resonances, the rate of convergence is R− 1
2 .
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Theorem (Jézéquel–W. ’25). In (c0 − δ, c0 + δ) + i(−δ,+∞),

• the set of resonances R is discrete;

• c ∈ R, Imc > 0 ⇒ c is an eigenvalue of Rayleigh equation;

• c ∈ R, Imc = 0 ⇒ c is a “generalized embedded eigenvalue”

(Wei–Zhang–Zhao ’19)

• ΣR converges to R as R → +∞;

• for “simple” resonances, the rate of convergence is R− 1
2 .

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

real part

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

im
a

g
in

a
ry

 p
a
rt

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

ΣR as R → +∞ spectrum of Rayleigh equation

14



Resonances as inviscid limits
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Theorem (Jézéquel–W. ’25). In (c0 − δ, c0 + δ) + i(−δ,+∞),

• the set of resonances R is discrete;

• c ∈ R, Imc > 0 ⇒ c is an eigenvalue of Rayleigh equation;

• c ∈ R, Imc = 0 ⇒ c is a “generalized embedded eigenvalue”

(Wei–Zhang–Zhao ’19)

• ΣR converges to R as R → +∞;

• for “simple” resonances, the rate of convergence is R− 1
2 .

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

real part

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

im
a

g
in

a
ry

 p
a

rt

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

ΣR as R → +∞ spectrum of Rayleigh equation

14



Resonances as inviscid limits
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Resonances as inviscid limits

• Pollicott–Ruelle resonances:

Dyatlov–Zworski ’15 Anosov flows;

Drouot ’17 geodesic flows;

Dang–Rivière ’18 gradient flows for Morse–Smale functions

• Scattering resonances for Schrödinger:

Zworski ’15, ’18: V ∈ L∞comp

Kameoka–Nakamura ’20: Wigner–von Neumann ’20

Xiong ’20, ’21, ’22: black box etc.

• 0th order operators (models of internal waves):

Galkowski–Zworski ’22
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Gallery: Resonances

U(x) = cos(3πx), x ∈ [−1, 1]

Plot of resonances, color = α

Proposition. No resonances near c0 for large α.
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Gallery: Resonances

Couette–Poiseuille U(x) = (1− θ)x + θ(1− x2), x ∈ [−1, 1]

Plot of resonances, color = θ

Proposition. Couette flow has no resonances.
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Gallery: Viscous perturbations

U(x) = cos(0.7πx), x ∈ [−1, 1]

Plot of ΣR , color = R− 1
2
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Gallery: Viscous perturbations

U(x) = cos(ωx), x ∈ [−1, 1], ω ∈ (0.5π, π), α =
√
ω2 − 0.25π2

Plot of ΣR , color = ω
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Proposition. First order approximation c(R) = ċ(0)R− 1
2 +O(R−1)

ċ(0) = π2e
πi
4

2ω2
√

α| cos(ω)|

(
p.v.

∫ 1

−1

(cos(πx
2

))2

cos(ωx)
dx + 2πi

ω

(
cos

(
π2

4ω

))2
)−1

, Imċ(0) > 0.
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Perspectives

• Inviscid limits of eigenvalues near critical/boundary values of U?

• Applications to evolution problems of shear flows?

• Higher dimensional models in fluid mechanics: baroclinic flows;

secondary instability of Görtler vortices

(More complicated boundary conditions/systems)

• Inviscid limits of internal waves Jézéquel–W. ’25+

Thank you!

21



Perspectives

• Inviscid limits of eigenvalues near critical/boundary values of U?

• Applications to evolution problems of shear flows?

• Higher dimensional models in fluid mechanics: baroclinic flows;

secondary instability of Görtler vortices
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