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Reynolds Experiment

laminar flow transition turbulent flow

Re <2300 Re =2300 Re >2300

https://www.gunt.de/en/
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Orr—-Sommerfeld equation

Shear flows: stationary solutions (0, U(x)) to the Navier-Stokes equation
(with forcing) in [a, b] x R.

Linearizing Navier-Stokes equation around a shear flow, following Kelvin,
Reynolds, Rayleigh, Orr, Sommerfeld, Heisenberg, C. C. Lin, ..., one
obtains the Orr—Sommerfeld equation on [a, b]

(002 ~ 22+ (U = <)(E2 - o) = U(x) ) w =
¥(a) = ¢(b) = ¢'(a) = ¢'(b) = 0.
e R > 0 — Reynolds number; 1/R — viscosity;

e a > 0 — frequency in y direction;

e c € C — spectral parameter

Imc > 0 = unstable solutions to the linearized Navier—Stokes equation
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Spectral instability

Spectral instability can occur as Reynolds number grows to +oc.

e Couette flow U(x) = x, x € [-1,1]: spectrally stable
e Poiseuille flow U(x) =1 — x?, x € [-1,1]: spectrally unstable.
Orszag '71, Trefethen '00, Grenier—Guo—Nguyen '16, Almog—Helffer '22
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Inviscid limits

R < 400 = the Orr—Sommerfeld equation is elliptic
= discrete eigenvalues > g

Questions (Inviscid limits):
e What is the limit of g as R — +o0?
e Can X contain unstable eigenvalues?

This is a question of long history:

e Kelvin, Reynolds, Rayleigh, Orr, Sommerfeld, Heisenberg, C. C. Lin,

e Tatsumi-Gotoh—Ayukawa '64: U(x) = tanh(x), x € R —
limg_ 100 2 g is NOT the set of eigenvalues for R = +oc.

e Grenier—Guo—Nguyen '16: characteristic boundary layers, symmetric
analytic shear flows — ¥ must have unstable eigenvalues for R
large and o = a(R) small
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Inviscid limits

Question (Inviscid limits): What is the limit of ¥g as R — +00?
e R < 400, Orr—Sommerfeld equation

i

((ai 2 4 (U(x) — (@ — 0?) U“(x)) =0,

e R = 400, Rayleigh equation
((U(x) = €)(95 — a®) = U"(x)) ¥ =0,
¥(a) = ¢ (b) =0.
Challenges:

e Degeneracy at U~1(c)

e Neumann boundary conditions disappear
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Complex deformation

Assume U analytic, co € U((a, b)), U'|y-1(c) # 0, co # U(a), U(b).
Idea: Deform [a, b] on the complex plane to avoid U~1(c).
Criteria for a “good” complex deformation
e Fix the boundary points a & b — to keep the boundary conditions
e U — ¢y stays nonzero on the deformed segment — to gain ellipticity

e Im(U — ¢) < 0 on the deformed segment — same sign as 92

J U +itm(x))

supp(xz) supp(x1)
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Complex deformation

Resonances ¢ € R for the shear flow U near ¢

e ce(cq—19,c+9)+i(—9d,+00)

o (U—¢)(02—0a?)—U": H (M) — L?>(M, ) is not invertible

Example: U(x) = cos(37x), x € [-1,1], a =

V357

It has only one embedded eigenvalue ¢ = 0, but many resonances:
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Complex deformation

Method of complex deformations
e Scattering resonances: Aguilar—Combes '71, Balslev—Combes '71,
Simon '79, Sjostrand—Zworski '91

e Oth order operators (models of internal waves):
Galkowski—Zworski '22

e Anosov flows: Guedes-Bonthonneau—Jézéquel '20

e Metric scattering: Guedes-Bonthonneau—Guillarmou—Jézéquel '24
Complex deformation for Rayleigh/Orr—Sommerfeld

e Rosencrans—Sattinger '66, Stepin '96: analytic continuation of
Wronskian determinant

o Tatsumi-Gotoh—Ayukawa '64: U(x) = tanh(x), x € R
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Boundary layers: Vishik—Lyusternik

(https://en.wikipedia.org/wiki/Boundary_layer)

Thin layer of fluid near the boundary, due to the boundary conditions
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Boundary layers: Vishik—Lyusternik

(https://en.wikipedia.org/wiki/Boundary_layer)
Thin layer of fluid near the boundary, due to the boundary conditions
e Introduced by Prandtl '04
e Method of Vishik—Lyusternik '62,

e Method of Rayleigh—Airy operators Grenier—Guo—Nguyen '16 -
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Boundary layers: Vishik—Lyusternik

To see how the Neumann boundary conditions disappear, construct
approximation solutions ufR, va concentrating near the boundary

o (Model) Roughly, u? g is like x — e=VR* for x — 0+
° (/—\pprOX|mat|on solutions)

(37(02 = 0P + (U() = €)(@ — 0?) = U"(x)) ulp = O(R™)
e (Bo undary values)
ulr

(a) =1, = ia(U(a) — ¢) R2 + O(1), Re(uc r)(a) <
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o (Model) Roughly, u? g is like x — e=VR* for x — 0+
° (/—\pprOX|mat|on solutions)
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(Boundary values)
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Boundary layers: Vishik—Lyusternik

To see how the Neumann boundary conditions disappear, construct
approximation solutions ufR, va concentrating near the boundary

o (Model) Roughly, u? g is like x — e=VR* for x — 0+
° (/—\pprOX|mat|on solutions)
(37(02 = 0P + (U() = €)(@ — 0?) = U"(x)) ulp = O(R™)
(Boundary values)
(a) =1, \/mR2 + 0O(1), Re(uc r)(a) <

° (Smallness) ||UC7R||HI< <R, k>0.

Construction of these boundary layers are achieved by the WKB method.
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Resonances as inviscid limits

Theorem (Jézéquel-W. '25). In (cp — 9, co + &) + i(—0, +0o0),
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Resonances as inviscid limits

Theorem (Jézéquel-W. '25). In (cp — 9, co + &) + i(—0, +0o0),

the set of resonances R is discrete;
c € R, Imc > 0= c is an eigenvalue of Rayleigh equation;
c€R,Imc=0= cisa ‘generalized embedded eigenvalue”

(Wei-Zhang—Zhao '19)
e Y r converges to R as R — +o0;
“_ - ” . _1
for “simple” resonances, the rate of convergence is R~ 2.

S, R=Inf, Ulz) = cos(3re), 7 € [-1,1], a =247
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Yr as R — o0 spectrum of Rayleigh equation
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Resonances as inviscid limits
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cos_segment_movie.mp4
Media File (video/mp4)


Resonances as inviscid limits

e Pollicott—Ruelle resonances:
Dyatlov—Zworski '15 Anosov flows;
Drouot '17 geodesic flows;
Dang—Riviere "18 gradient flows for Morse-Smale functions

e Scattering resonances for Schrodinger:
Zworski '15, '18: V € L5,
Kameoka—Nakamura '20: Wigner—von Neumann 20

Xiong '20, '21, '22: black box etc.

e Oth order operators (models of internal waves):
Galkowski—Zworski '22
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U(x) = cos(3nx), x € [-1,1]

Plot of resonances, color = «

[ values of a |
08 e 1 w3 6 A 12 % 18
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U(x) = cos(3nx), x € [-1,1]

Plot of resonances, color = «

[ values of a | »
08 e 1 w3 6 A 12 % 18

0.01

Proposition. No resonances near ¢y for large «.
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Reson

Couette—Poiseuille U(x) = (1 — 0)x + 0(1 — x?), x € [-1,1]

Plot of resonances, color = 6

02 0

02

-04

imaginary parts

-06

-08 1

) . 0.999
-1 -0.5 0 05 1
real parts

18



Reson

Couette—Poiseuille U(x) = (1 — 0)x + 0(1 — x?), x € [-1,1]

Plot of resonances, color = 6
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Proposition. Couette flow has no resonances.
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Gallery: Viscous perturbations

U(x) = cos(0.77x), x € [-1,1]

Plot of ¥g, color = R~2
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unstable embedded eigenvalue 0
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a =+/0.72 — 0.4527

unstable complex resonance
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Gallery: Viscous perturbations

U(x) = cos(wx), x € [-1,1], w € (0.57,7), & = Vw? — 0.2572

Plot of X g, color = w
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¢(0) :L p.v 1 wdx + 2= (cos (LZ) oy Im¢(0) > 0
2w24/a| cos(w)| o -1 cos(wx) w 4w ’ . -



Inviscid limits of eigenvalues near critical /boundary values of U?

Applications to evolution problems of shear flows?

Higher dimensional models in fluid mechanics: baroclinic flows;
secondary instability of Gortler vortices
(More complicated boundary conditions/systems)

Inviscid limits of internal waves Jézéquel-W. '25+
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Inviscid limits of eigenvalues near critical /boundary values of U?

Applications to evolution problems of shear flows?

Higher dimensional models in fluid mechanics: baroclinic flows;
secondary instability of Gortler vortices
(More complicated boundary conditions/systems)

Inviscid limits of internal waves Jézéquel-W. '25+

Thank you!
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