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Context

Computation intensive embedded systems
New Moore law :

The number of transistors cores doubles every 2 years
New generation of microprocessor architectures : embedded manycores

Massively (100+) multi-core systems on-chip

Difficulties in developing applications for these architectures
Running correctly large parallel programs
Efficiently exploiting the parallelism
Performance constraints and dependability requirements
Limited resources

Need of theoretical and practical advances in :
Programming models and languages
Innovative compilation technologies
Suitable operations research techniques
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Manycore architectures

Manycore system : A parallel computing system integrating a number
of processing cores, a mix of shared and local memory, distributed
global memory or multilevel cache hierarchy and an interconnection
network-on-chip (NoC).
Example : Kalray MPPA (Massively Parallel Processor Array)

A clustered massively (200+) multicore architecture
The clusters are MIMD (Multiple Instructions Multiple Data) parallel
computing systems with several cores and a shared memory, connected
via an on-chip asynchronous packet network with a 2D tore topology
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Dataflow programming models and languages

Dataflow models
A network of agents/tasks
communicating through
unidirectional FIFO channels
Exclusively data-driven
synchronization

ΣC Language
Adapted to a wide range of
embedded applications
High-level : no mention of the
memory hierarchy or chip layout
Explicit expression of parallelism
Extension to C

Laplacian computation for an image.

Target tracking pipeline application.
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Compilation process

Lexical, syntactic, semantic etc. analysis.

Code generation.

Construction of the process networks.

Composition of data access patterns,
Parallelism reduction.

Buffer dimensioning.

Construction of a partial ordering of tasks
occurrences.

Partitioning/Placement/Routing.

Generation of runtime tables.

Loadbuild.

Execution.

And. . . Iterative compilation. Compilation of a ΣC application.
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Placement & routing

Partitioning :
Group together communicating tasks, under multidimensional capacity
constraints.
Economic function : NoC bandwidth.
Class of problem : node capacitated graph partitioning.
Order of mag. : thousands of tasks (maybe much more in fact...), tens
of partitions.

Placing :
Assignment of groups of tasks to nearby architectural elements.
Economic function : latency.
Class of problem : quadratic assignment.
Order of mag. : tens of groups, tens of nodes.

Routing :
Computation of data routes accross the NoC.
Economic function : latency & link load.
Class of problem : (constrained) multi-flow.
Order of mag. : tens of flows, tens of nodes.

NP-hard underlying discrete optimization problems.
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Approaches

Beginning of the development cycle :
Sequential approach : partition then place then route (using fast–few
seconds–approximate algorithms).

GRASP for partioning.
Simulated annealing for placing.
Integer programming for routing.

Towards the end of the dev. cycle :
Global approach : partition and place and route in one go.

But the problem is much more complex and intrinsically multi-criterion,
thus its resolution is much more computationally involved.
Master (partioning) and slave (routing) approach (leveraging on the
previous algorithms) along with parallelization.
Few tens of minutes on a 50 cores parallel computer.
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Partitioning problem statement

Partitioning of Process Networks
Dataflow application graphs
Group together tasks which communicate more, under resource
constraints, in order to optimize a network bandwidth criterion.

Let G = (V ,A) be a directed graph, R the set of resources and N the
set of architecture nodes (i.e., clusters). s : V −→ R+|R| is a size
function for the vertices, q : A−→ R+ is an affinity function for the
weights of the edges and C ∈ R+|R| a multi-dimensional array for the
capacities of the nodes.
Find an assignment of vertices to nodes, denoted f : V −→ N, which
satisfies the capacity constraints

∑
v∈V :f (v)=n

s(v)≤ Cr ,∀n ∈ N,∀r ∈ R,

and minimizes the objective function

∑
a=(v ,w)∈A:f (v)6=f (w)

q(a).
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Partitioning : an example

A graph example

Mono-resource case
Unitary weights for the
vertices
Unitary weights for the edges
Cnr = 5,∀n ∈ N

Partitioning (cost 13).
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Relative affinity

1 Relative affinity of S ⊂ V to S ′ ⊂ V (S ∩S ′ = /0) :

∝ α(S ,S ′)
(

1
α(S , S̄)

+
1

α(S ′, S̄ ′)

)
,

where α(S ,S ′) = ∑a∈δ(S ,S ′) qa.
2 Example of partitioning using relative affinity :

2-partition (cost 3).
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A randomized greedy algorithm for the deterministic case

Algorithm 1 RG_PART
1: Initialization W = V
2: Assign the first min(|V |, |N|) vertices

to the |N| nodes and update W
3: Find an admissible assignment

(v∗,n∗), if any, with max. relative
affinity γ1

4: Find an admissible fusion (n∗1,n
∗
2), if

any, with max. relative affinity γ2
5: If γ1 ≥ γ2 then assign v∗ to n∗ and

update the set W . Else merge n∗1 and
n∗2

6: If W is empty or there is neither any
admissible assignment nor any admis-
sible fusion, stop. Else, go to Step 3. Partitioning of a grid 23×23.
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Uncertainty sources and motivation

Main sources of uncertainty for the partitioning problem : computing
kernel execution times
Causes :

Characteristics of the processor architecture (cache memories, memory
access controllers)
Internal uncertainty due to execution times for computing kernels of
intermediate granularity

Uncertainty due to data dependent control flows

Characteristics :
Bounded support for the distributions of execution times
Multimodal distributions
Dependencies between the random variables (e.g. a target tracking
pipeline)

Difficult to :
Fully describe or estimate the parameters of such distributions
Make use of existing optimization techniques for dealing with such
uncertainty
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Related works : Optimization under uncertainty

Chance-constrained programs

min
x

f (x)

P(G (x ,ξ )≤ 0)≥ 1− ε .

Issues
Combinatorial programs
Possible non-convexity of the feasible set
Complex probability distributions

Resolution techniques
Approaches which guarantee to find optimal solutions

Convexities studies (e.g. Prékopa)
Relaxation methods for obtaining equivalent deterministic programs
(e.g. Bertsimas et Sim, Ben-Tal et. Nemirovski)
Sampling approaches (e.g. Calafiore, Ahmed, etc.)

(Meta)Heuristics
Genetic algorithm and Monte-Carlo simulation (Loughlin)
Tabu search (Aringhieri, Tanner)
Beam search heuristic (Beraldi)
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Robust binomial approach 1/2

The weights of the tasks, depending of execution times are random
variables (r.v.) with complicated multi-dimensional multi-modal joint
distributions.

=>Non parametric sample approach using statistical hypothesis testing
and an already existing algorithm for the deterministic case.

No hypothesis made on the distribution of the random data (especially
concerning the dependence between the r.v.)
Easy adaptation of a heuristic already conceived for the deterministic
version of the same problem
Take advantage of available experimental data
Elementary tools from statistical hypothesis testing theory
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Robust binomial approach 2/2

Let ξ1, . . . ,ξNS be a sample of size NS of i.i.d. realizations of the random vector ξ

Approximation equivalent of a chance-constrained program :

Initial
min
x

f (x)

P(G(x ,ξ )≤ 0)≥ 1− ε.

Approximation
min
x

f (x)

∑
NS
i=1 χi ≥ k(NS ,1− ε,α)

G(x , ξ̃i )≤ (1−χi )L; i = 1, . . . ,NS

Binary variable χi for observation ξi :

χi =

{
1 if G

(
x , ξ̃ i

)
≤ 0,

0 otherwise.

∑
NS
i=1 χi ∼B(NS ,p0) => determine k(NS ,1− ε,α) such that p0 = 1− ε

Parameter α ∈ (0,1), confidence level, is the type I error of the statistical hypothesis test :{
H0 : P(G(x ,ξ )≤ 0) < 1− ε

H1 : P(G(x ,ξ )≤ 0)≥ 1− ε
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Randomized greedy algorithm for the stochastic case (1/2)

If the weights of the vertices Svr are r.v., then the capacity constraints

∑
v∈V :f (v)=n

s(v)≤ Cr ,∀n ∈ N,∀r ∈ R

become

P

(∧
n∈N

∧
r∈R

∑
v∈V :f (v)=n

Svr ≤ Cr

)
≥ 1− ε.

Adaptation of the randomized greedy algorithm for the stochastic case
Compare the number of constraint violations to k(NS ,1− ε,α)
Modification of the notions of admissible assignment and of admissible
fusion
Respect the prescribed probability level ε with a given confidence level
α

Complexity : a linear increase with a factor of NS

O. Stan, R. Sirdey, J. Carlier, D. Nace ()Stochastic Partitioning of Process Networks 16/10/12 17 / 24



Randomized greedy algorithm for the stochastic case (2/2)

Algorithm 2 RG_PART_STOCH

Input: W , N, R , ε , α , NS , S̃ (k)
vr for each {v ∈ V , r ∈ R , k = 1...NS }

1: Initialization W = V
2: Assign the first min(|V |, |N|) vertices in lexicographic order to the |N|

nodes and update the set W
3: Find an admissible stochastic assignment (v∗,n∗) (v∗ ∈W , n∗ ∈N),

if any, with max. relative affinity γ1
4: Find admissible stochastic fusion (n∗1,n

∗
2) (n∗1 ∈ N, n∗2 ∈ N), if any,

with max. relative affinity γ2
5: If γ1 ≥ γ2 then assign v∗ to n∗ and update the set W . Else merge n∗1 and

n∗2.
6: If W is empty or there is neither any admissible assignment nor any

admissible fusion, stop. Else, go to Step 3.
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Benchmark

Uncertain Parameters Generation
Simulation of a joint bimodal distribution (modes uniform in their
intervals and selected in an equally likely manner)

1st mode : hypercube [0,8 ;0,9]|V |

2nd mode : hypercube [1,1 ;1,2]|V |

Sample size : 100 or 1000
Data sets (modified for stochastic case)

Examples of grids, representative in size for our application
Johnson et al. bisection instances
Mono-dimensional resource

Deterministic case
Unitary weights for vertices and edges
Average differential approximation ratios of 5.22% compared to best
known solutions

Evaluation of stochastic algorithm
Overall : cost, robustness, computation time
Test 1 : number of nodes (same node capacity)
Test 2 : capacity of nodes (same number of nodes)
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Results - stochastic version (1/3)

Table : NS = 100, ε = 0.05, α = 0.05

1st test 2nd test
Name #nodes sol time C sol time

Grid 4×4 6 (4) 14 (8) ≈ 0 4.71 (4) 12 ≈ 0
Grid 10×10 6 (5) 38 (28) 0.02 s 23.3 (20) 29 0.01 s
Grid 23×23 16 (16) 182 (150) 1.12 s 44.1 (40) 173 0.99 s

Table : NS = 1000, ε = 0.01, α = 0.01

1st test 2nd test
Name #nodes sol time C sol time

Grid 4×4 6 14 ≈ 0 4.74 10 ≈ 0
Grid 10×10 6 37 0.15 s 23.36 37 0.13 s
Grid 23×23 16 182 10.75 s 44.183 193 9.67 s
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Results 2nd data set - stochastic version (2/3)

Johnson instances
25 graphs with the number of vertices varying between 124 and 1000
Tests with samples of 100 (ε = 0.05, α = 0.05) and 1000
(ε,α ∈ 0.01,0.05)

Results
14 and respectively 15 robust solutions with a gap in the cost quality of
less than 5% from the deterministic solutions for ε = 0.05, α = 0.05
14 robust solutions with a relative 5% gap in the cost quality to the
deterministic solutions for ε = 0.01, α = 0.01
Execution times : an average of 48.04 sec. for a sample size of 1000
against 25.93 sec. for a sample size of 100
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Overall results - stochastic version (3/3)

Similar results when increasing the sample size
1st test

Ratio of 1.5 between the number of nodes needed for finding a
stochastic feasible solution and the number of nodes in the
deterministic case for both data sets

2nd test
Equally large increase in the capacity of the nodes in the order of 1.1

Acceptable execution time
Solutions of good quality, statistically significantly guaranteed (α)
with a target probability level (ε)
Solutions found by the algorithm for the deterministic case not robust
in ≈ 50% of cases
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Conclusion et Perspectives

Conclusion
Problem of chance-constrained partitioning networks of communicating
processes arising in dataflow compilation
A qualitative analysis of the sources of uncertainty lead to the choice of
a non parametric approach
Heuristic algorithm combining a sample statistical approach with an
existing (software engineering consideration) greedy method for the
deterministic version
Statistically significantly robust solutions of an acceptable quality
within an admissible average running time

Perspectives
Design of a parallelized implementation of the method
Apply the robust binomial approach to other optimization problems
related to the compilation for manycore systems (e.g.
placement/routing)
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Thank you !
Questions ?
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