Algorithmic Game Theory: from Multi-agent Optimization to On-line Learning

Roberto Cominetti (Universidad Adolfo Ibáñez) Panayotis Mertikopoulos (CNRS)

Journées SMAI MODE 2020

Motivation & Outline

You are planning your commute route for tomorrow.

Not sure about your departure time, nor who might be on the road.

A game with a random set of players!

In US alone, congestion cost US\$305 billion in 2017 $\approx 1.6\% \ \text{of GNP...} \ 3\% \ \text{increase from previous year !}$ (source: INRIX)

Lost productivity of workers sitting in traffic, wasted fuel...

...before accounting for environmental impacts, accidents, quality of life.

Urban traffic under congestion

SANTIAGO

6.000.000 people 11.000.000 daily trips 1.750.000 car trips

Morning peak

500.000 car trips 29.000 OD pairs

2266 nodes / 7636 arcs

Many Questions

- How should we model traffic and congestion ?
 - Urban traffic / transit systems / telecom / logistic networks
 - Selfish routing / routing apps / autonomous vehicles
- Equilibrium models vs adaptive dynamics ?
 - Can players "learn" how to play an equilibrium ?
 - Informational constraints and bounded rationality
- Deterministic or stochastic models ?
 - What are the impacts of uncertainty and risk-aversion?
- Static vs dynamic routing ?
- Asymptotics for large games ?
- How inefficient is selfish routing?
 - How (much) can we reduce congestion?

...and more !

Outline of the Mini-course

Part I (Cominetti)

- Lecture 1: Basic concepts in game theory
- Lecture 2: Non-atomic routing games Wardrop equilibrium
- Lecture 3: Large routing games Wardrop or Poisson?

Part II (Mertikopoulos)

- Lecture 4: Game dynamics and evolutionary biology
- Lecture 5: Learning in finite games and multi-armed bandits
- Lecture 6: Learning in continuous games and online convex optimization