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Gas networks

= Networks are inherently discrete

valve a with switching variable s, € {0,1}

s;=0 = qg,=0
s;=1 = Pi = Pj

= Physics are inherently continuous
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TRR 154 on Gas Networks
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Robust Optimization

Some References (not at all exhaustive)

= Soyster (1973). Convex Programming with Set-Inclusive Constraints and
Applications to Inexact Linear Programming.

= Kouvelis, Yu 1997. Robust discrete optimization and its applications.

= Bertsimas, Sim several works on robust combinatorial optimization

= Ben-Tal, El Ghaoui, Nemirovski (2009). Robust optimization

= Gorissen, Yanikoglua, den Hertog (2015). A practical guide to robust
optimization

= and many more...
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Tractable Robust Counterparts for LP

Linear Inequality 3' x > b with Polyhedral Uncertainty Set {¢ | D¢ > d}

(G+PO) 'x>b V(:DC>dea x+ {C:r&igd}(PTx)Tg > b

strong duality: m@jn {(PTX)TC | D¢ > d} = max {dTy DTy =P'x,y > 0} =

2’ x + max {dTy DTy =P'x,y > 0f > b. (%)

duality trick from robust optimization: If (%) is satisfied by some feasible y, then
it is also for the maximum = skip max.
x satisfies uncertain inequality iff 3 y such that (x, y) satisfies

a'x+d'y>b, D'y=PTx, y>0
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Tractable Robust Counterparts for LP (and MIP)

Discussion

= Can easily be extended to conic uncertainty sets if strong duality holds
= Tractable robust counterparts are systems of linear inequalities over dual cones

= [ntegrality in problem variables x does not change such reformulations; they
can still be applied.

= — Robust (mixed integer) linear optimization with 'standard’ convex
uncertainty sets is not (much) more difficult than the nominal problem.
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Two-Stage Robust Optimization

Adjustable Uncertain Optimization Problem

min ¢’ x

Ar(u)xq + Ax(u)xo(u) < b Vuel, U convex.

x1: variables on first stage, independent of w.

xp: variables on second stage, adjustable, depending on u. x(-) is arbitrary
function in u.

adjustable /two-stage robust optimization problem:

min ch

s.t. x1 € {Xl ‘ Yuel dx, such that A1(U)X1 -+ A2(U)X2 < b}

is already NP-hard for easy cases.
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Two-Stage Robust Optimization
Affine Adjustability

strict robustness: 3 (xi, %) Vu € U with Aj(u)xy + Ax(u)xo < b,

adjustable robustness: Ix; Yu € U I x; with Aj(u)xy + Ax(u)x < b
restrictions on xp(u): often, affine adjustability is assumed:
xo(u) = Qu + g, with appropriate Q.

(AJ) min ¢’ x
Ai(u)xi + A(u)[Qu+q] < b Yuel

= (AJ) is non-linear, but can be reformulated as positive semidefinite constraint
= result might be conservative, due to restricted adjustability.

PGMO Days November 13, 2017 | F. Liers Robust Optimization for Network Optimization and ATM:



TRR
154

Overview

= Robust Approaches to Gas Networks: strict + adjustable robustness, full
adjustability
= Robust Optimization in Air Traffic Management
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Robust Approaches in Energy (Networks)

Some References on Electricity (not at all exhaustive)

= Bacaud, Lemarechal, Renaud, Sagastizabal 2001. Bundle methods in
stochastic optimal power management

» Zhao and Zeng 2012. Robust UC problem with demand response and wind
energy

= Bertsimas et al. 2013 Adaptive robust optimization for security constrained UC

» Wang et al. 2013. 2-stage robust optimization for N-k
contingency-constrained UC

» Ruiwei et al. 2014 2-stage network constrained robust UC problem

= Tahanan, van Ackooij, Frangioni, Lacalandra 2015. Large-scale UC under
uncertainty

» Ruiz and Conejo 2015. Robust transmission expansion planning
= D'Ambrosio, Liberti, 2016. Power edge set problem
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Optimization in Gas Networks

References (not at all exhaustive)

Collins et al, 1978. (proof for uniqueness of flows in passive nets)

De Wolf and Smeers 2000. (sequential linear programming approach for
piecewise linearized problem)

Borraz-Sanchez and Rios-Mercado 2004. (dynamic programming)

GeiBler et al., 2011. (linear relaxation approach gas and water networks (with
active elements))

Koch et al. Evaluating gas network capacities. SIAM, Philadelphia, PA, 2015.
(book on modeling and optimization of gas networks, MIP /MINLP /NLP
methods)

Rios-Mercado and Borraz-Sanchez 2015. (survey article)
Gotzes et al 2016. (reduced description of passive network problem)

...not much out there on optimization approaches under uncertainty.
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Nomination Validation Under Uncertainty

ABmann, L, Stingl

T e

= gas transport model: stationary, isothermal

= the pipes’ roughness values is not known
precisely, has a large effect on the flow value,
and can only be measured with great effort.

Problem Statement

Is there a configuration of the active elements within the network such that there
exists a feasible gas flow for each possible realization of the uncertain data?
solution approaches for the nominal setting: Koch et al (2015), Pfetsch et al.
(2015)
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Pressure Loss in a Pipe

Horizontal pipe with pressures pin, pout and flow g.
Roughness k € [kmin, kmax] is uncertain with a nominal value of k.

Nominal Pressure Loss Equation
2 2 7
Pin — Pout = @(k)lalq
Pressure Loss Under Uncertainty

{p|2n T pgut — ¢(k)‘q‘q}k€[kmin,kmax]

Since ¢(k) is monotonically increasing in k:

2 2
{Pin — Pout = ¢|q|q }¢€[¢(kmin)7¢(kmax)]
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Robust Nomination Validation
min operating costs
p.q
> g,— X qa=d, Vv € V flow conservation
acot(v) aco—(v)
pi— P = 0aqalqal  Va=(i,j) € AVoae U, pressure loss
p. € [p2,P)] Vv €V pressure bounds
92 € |9,.9.] Vae A flow bounds

active elements

...this is a mixed-integer two-stage robust optimization problem with a
non-convex quadratic lower level.
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Some References

= tractable robust counterpart in sense of Ben-Tal, Nemirovski, et al. (e.g.
MPS-SIAM, 2002) or Bertsimas et al. (e.g. SIAM Review, 2011): (how) can it
be applied due to

= non-convex character of our problem?
= full adjustability (which decision rules?)

= robust problems in optimal control: direct treatment of bilevel structure; the
inner (here: passive) problem is approximated (see, e.g., Diehl et al., 2006,

2008, Laas/ Ulbrich, 2017, Diehl, 2013)

= if the inner problem is non-convex (as in our problem), these methods may fail to
detect the worst-case scenario!

= further interesting related work based on partitioning of uncertainty set in

order to cope with full adjustability as well as binary variables (Bertsimas,
Dunning 2014, Postek, den Hertog, 2014, .. .)
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Difficulty of the Problem

We face a robust

mixed-integer

two-level optimization problem with

non-convex quadratic lower level
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Linearized Pressure Loss Equation

Approximating the pressure loss equation through a piecewise linear function 7(q)

with given error € > 0, e.g.,
GeiBler et al. (2012):

(q) — e < ¢(k)glq| < 7(q) + ¢

Mixed-integer linear constraints for linearized pressure loss equation:

7(q) —e < ph — pae < 7(q) +¢

Mixed-Integer Linear Pressure Loss Under Uncertainty
With [Cmina Cmax] — [¢(k)_1¢(kmin)a ¢(k)_1¢(kmaX)]:
{C(T(CI) - E:) S p|2n o pc2>ut S C(T(q) + 8) }CE[Cmin;CmaX]
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Pressure Loss Equation with Uncertain Scaling

AY AY

Ve

H Cmax — 2
B nominal
[ | Cmin = 0.5

Figure : Nonlinear Function with Uncertain Scaling. Figure : Linearization of Nonlinear Function with Uncertain Scaling.
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Strict Robust Counterpart for Robust Nomination

Validation

B Cpax = 2
B nominal
[ | Cmin = 0.5
Figure : Uncertain Linearization. Figure : Robustification.
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Numerical Results for the Strict Robust Counterpart

For each pipe, the following uncertain roughness

| is assumed:
Z@ﬂ ka S [l/;aa (]- + rmax)ll;a]-
E._
o Fmax MIP obj. MIP runtime NLP ob;j.
AL nominal  214.22 44255 44420
-

4l 0.001 214 .22 236.12s infeas.

fﬁ i A 0.01 214.22 165.12s  444.20
T S el 0.05 infeas.
4%}“ 0.1 infeas.
0.5 infeas.

Table : Objective values of nominal and robustified instances.

...can be computed fast (via a MIP), but yields (too) conservative solutions.
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Adjustable Robustness for Nomination Validation

Relaxing one of the assumptions for strict robustness leads to adjustable
robustness:

= solutions must be feasible for all possible realizations of the uncertain data

. variabl e ficed bef e |

— solution can depend on the uncertain data:

“Here-and-Now" or First Stage Variables
must be fixed before the uncertainty becomes known

“Wait-and-See” or Second Stage Variables
may adjust themselves to the realized uncertainty

PGMO Days November 13, 2017 | F. Liers | Robust Optimization for Network Optimization and ATM:
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Affine Adjustable Robustness for Nomination Validation

= random recourse
= assume affine linear second-stage variables = reformulation:
= one SDP constraint for each original constraint

= each SDP constraint has size (dim(U) +1 x dim(U) + 1)
= exact reformulation for dim(U) = 1, approximative otherwise

= restricted adjustability of pressure and flow since the binary auxilliary variables

for the piecewise linear model cannot be cast on the second stage

PGMO Days November 13, 2017 | F. Liers | Robust Optimization for Network Optimization and ATM:
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Numerical Results for Affinely Adjustable Robustness

Software used: Python, MISDP plugin for SCIP (Mars, Schewe (2012))

= passive network
= linear pressure loss equation

= pressure loss equation is approximated through 8 sampling points

runtime [s]
topology #bin. mean min max
1 pipe /7 1.02 0.86 1.33
2 pipes 14 1.10 0.93 1.41
3 pipes 21 141 1.04 2.38
triangle 21 214 133 3.33
square 28 550 2.63 10.21
chorded square 35 15.26 5.70 36.08
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Comparison of Strict and Adjustable Models for

Nomination Validation

= 5 sampling points per pressure loss equation
= uncertainty set on each arc: ¢, € [0.96, 2],

acA

= 6 different approximation errors: ¢ € {0.5,1,2,3,4,5}

robustification

topology nominal strict adjustable

1 pipe
2 pipes
3 pipes
triangle
square
chorded square 6

S O O O O

2

LW B~ B DNDN

6

A~ B~ O OO

...(somewhat) less conservative, but costly.
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Difficulty of the Problem
We face a robust
potential simplification
mixed-integer continuous (passive networks)
two-level optimization problem with | single-level, affine adjustability, etc.
non-convex quadratic lower level piecewise-linear relaxed lower level
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New Approach: Robustness Equals Set Containment

D. ABmann, L, M. Stingl (FAU), J. Vera (Tilburg) https://opus4.kobv.de/opus4-trr154/frontdoor/index/index/docld /136
uncertain parameter u € Y C R"
problem variables x € R™
constraints F(u,x) > 0
feasible combinations B := {u € U,x € R" | F(u,x) > 0}

Robust Feasibility as Set Containment
Deciding robust feasibility

VueU 3Tx suchthat F(u,x)>0

is equivalent to set containment problem
U C Proj,(B).

robust optimization: two-stage adjustable nonlinear problem w. empty first stage
+ nonlinear/nonconvex constraints
+ no decision rules — full adjustability

PGMO Days November 13, 2017 | F. Liers | Robust Optimization for Network Optimization and ATM: 28




Solution Approach: Robustness Equals Set Containment

Proj,(B)

U C Proj,(B)?
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Polynomial SDP Relaxation Hierarchy
let K :={x|g(x) >0,....gn(x) >0} (f,g poly.):
)r(nei}rg f(x)=supAst f(x)—A>0 VxeK

AER

=supAst. f(x)— X € P(K)
AeR

>sup Ast. f(x)— e 2yK)
AR

= replace minyex f(x) with hierarchy of SDP relaxations;
Sherali-Adams ('90), Lovaxz-Schrijver ('91), Parrilo ('00), Lasserre (2001)

= relaxation hierarchy main ideas:

1. formulate optimization problem in terms of nonnegative polynomials
2. sum of squares condition (p = ¥; g?) can be checked easily with SDP
3. replace nonnegativity by weaker degree bounded SOS formulation

— max degree 2d = level of hierarchy d
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Deciding Robust Feasibility
Assume B = G N H:
G ={u,x|uel, h(ux) =0}, (gas: flow equation)
H = {u,x|fi(u,x)>0,i€l}. (gas: pressure constrs.)

Furthermore, assume extension x for u € U is unique.

Lemma (Elimination of Projection)
U C Proj,(B) — GCH

= proof idea: exploit uniqueness of x: G = {u,x|u e U, x = x(u)}

Minimize Constraints to Check Set Containment

U C Proj,(B) — GCH

. _ < .
= (u,IQ)feQ fi(u,x) >0 (Viel

— global optimal solutions needed, use polynomial optimization
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Deciding Robust Infeasibility
= infeasible iff. U & Proj,(B) <= U\ Proj,(B) # 0

= idea: find function f that is non-negative on Proj,(B) and negative on

U \ Proj,(B)

= as optimization problem, objective —oc iff. robust infeasible:
ueld
inf < f
IfrTU{ () fe{f|fluy>0 VYue Proj,(B)}

= any feasible f with f(u) < 0 certifies violation of set containment
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Polynomial Approximation of Robust Infeasibility Problem

= abstract problem: inf {f(u)|u €U, f >0 on Proj,(5)}

= restrict functions to nonnegative polynomials p over Proj,(B),
approximate with sum of square polynomials

= replace p(u) with weaker | pdp = |, > pou“dp =3 py |, u“dp
— requires moments f u“du

Lemma ( )
The following problems have same objective value:
inf > p, u®x’d
inf > po f, udp ) P af Pass H
p € PIProj,(B)] bag =0 7570

p € P[B]
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Deciding Robustness for Nomination Validation in Gas
Networks

= |ots of absolute values due to pressure drop equation:

T — T = (/baqa ‘qa|

(7 denote squared pressures)

trees: no absolute values
one cycle: partitions of U/ allow elimination of |-|

> one cycle(s): binaries + bigM,
case distinction

PGMO Days November 13, 2017 | F. Liers | Robust Optimization for Network Optimization and ATM:
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The Passive Nomination Validation Problem

= eliminate variables (Gotzes et al. (2016)) — only cycle flows gy remaining
= set of feasible (roughness, flow)-tuples:

Ang(o, qu) = diag(én)an |qn|
T+ gi(o, qn) <7+ gi(d,qn) Vi jEV
= gi(®, gn) is aggregated pressure drop between root node and node i € V

B:=1{6eld qgyec RN

Robust feasible if and only if:

U C Projy(B) ={¢|3 qn: (¢, qn) € B} .
an

B = {(¢, qn) | gn feasible for ¢}

U

Proj¢(B)
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Deciding Robust Feasibility on Tree Networks is Easy!

= tree G, root r, arcs directed away from r; no cycle — no gy

={peU|m+a(d) <m+g(o) VijeV |
with

gilp)= X ¢, qa

acPath(r,i)

= robust feasible iff. U C Proj,(B) = B
= set containment (polyhedral {/) can be checked with LPs (Mangasarian
(2002))

Lemma

Given a tree G, the gas network problem is robust feasible if and only if

constI

e [x, ]

where 1y, 7, are optimal values of two LPs.
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Extension to Tree + Edge Networks

add edge to tree topology — cycle is created

decompose graph into cycle and subtrees
determine condition for robust feasibility of all subtrees

remove trees and update pressure bounds of cycle nodes

-

—— computational complexity mostly depends on size of cycle

PGMO Days November 13, 2017 | F. Liers | Robust Optimization for Network Optimization and ATM:
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Numerical Experiments: Test Instances

focus on cycle network, preprocess attached trees

instance: cycle with n=2,...,7 nodes

variable uncertainty set:

U(c) := Xaeall, €]

two special sets:

Useas := U(2)
Z/{infeas L= Z/[(4)

PGMO Days November 13, 2017 | F. Liers | Robust Optimization for Network Optimization and ATM:
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Deciding Robust Feasibility

= application of feasibility method (minimization) to Ueas

# success at level mean runtime
nodes |/| 2 3 4 2 3 4
2 2 1 1 0 0.03s 0.04s 0.11s
3 6 5 1 0 0.04s 0.11s 0.61s
4 12 11 1 0 0.05s 0.32s  3.90s
5 20 19 1 0 0.08s 1.23s 26.68s
6 30 29 1 0 0.15s 453s 148.40s
7 42 42 0 0 0.24s 15.72s 809.94s

— almost all subproblems confirm set containment at level 2
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Strength of Robust Feasibility and Infeasibility Methods

= vary uncertainty set U(c) = X,eall, ¢| for ¢ € [2,4] on problem 4

) no certificage for
P ) &/ infeasibility| (zero)
(] s s s 8 8 @ . . @ [ N ]
i ) l
_2"| ’ “ - ) 1 Y
/_‘/ o— level 3 "gap” ————a & @ ¢ & o
ke
no certificate for i . L
teasibility (negative) — il — level 4 Ep'—= o o o o o 0 o \
_ " L certified infeasi bility
—&0 o . (negative)
= feasibility (level 2) L
100 s feasibility (level 3) Lo,
e infeasibility (level 3) L
120 s infeasibility (level 4) “

2 22 24 26 28 3 32 34 36 38 4

= remark: 'gap’ may be further tightened by driving level d up ...
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Conclusions

= (affinely) adjustable robust optimization is too conservative

full adjustability:
= use polynomial optimization to decide robustness

= separate methods for feasibility / infeasibility

= gas: tree, treetedge topologies: easy (LP)

= gas: complexity in size of cycle

PGMO Days November 13, 2017 | F. Liers | Robust Optimization for Network Optimization and ATM:
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Two-Stage Robust Gas Network Operation with
Compressors

Assmann, L, Stingl

Assumptions: no compressor in a cycle, compressor changes squared pressures
Ty — Ty = Aaa Aa < [Aaaza] C R207 (U, V) = a € A

cost-minimum operation of compressors yields:

min w' A
A q — qnom—i—
A 7T = gb q, _¢aqa da ifac A i
AE[AA]CIRCS A, if a € As.
€ [z,7] C RY,

q < RA.
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Two-Stage Robust Gas Network Operation with
Compressors

explicit algebraic description of feasible set (Gotzes et al. (2016)) can be
generalized by compressors =-

min {w'(A)|3A € R" Vue U3Jy € R™ with g(y,u) =0, h(A,y,u) <0},

1. g(y, u) = 0 admit a unique flow-pressure solution y*(u) for all u € U.
2. h(A, y,u) <0 are separable: h(A,y,u) =s(A)+ t(y, u).

Lemma

The set of feasible first stage decisions A is given by
{AeR™|s(A) < b}, with

bi = —max {ti(y,u) |g(y,u) =0,y € R"}.
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Algorithmically Tractable Version of the Problem

replace in the computation of b; all non-convex functions by piecewise
relaxations (overestimators)

leads to somewhat more conservative solutions, while preserving robust
feasibility

two-stage robust problem then can be solved simply as a mixed-integer linear
problem!

running times < 0.01s for netl10

Robust feasible compressor configurations

a0 F 7 = T - -
Y —o—; = 4 (nominal)
inflow: 9 ) b € [3,5)
T = 50 outflow: b € [4 — ¢, 4+ (] o ——h € [2,6]
| mi0 = 70 ' ——b; € [1,7]
@_@_\‘ X = ——b € [0,8]
£ 20t . ]
_outflow: by € [4 —c,4 + (] a
9 2 70
f =%
_outflow: bg € [4 — ¢, 4+ ]
g > 60 -
0k | I -I-"'-—-'_'-"'---'--"_.—.—4"-- »
30 35 40 45 ]
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Summary up to now

= (affinely) adjustable robust optimization is too conservative

full adjustability:

= use polynomial optimization to decide robustness
= separate methods for feasibility / infeasibility

= gas: tree, treetedge topologies: easy (LP)

= gas: complexity in size of cycle

PGMO Days November 13, 2017 | F. Liers | Robust Optimization for Network Optimization and ATM:
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Overview

= Robust Approaches to Gas Networks: strict + adjustable robustness, full
adjustability
= Robust Optimization in Air Traffic Management
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Robust Pre-Tactical Planning Air Traffic Management

Hupp, Kapolke, L, Martin, Weismantel

source: fagayiayhighlands.nat

= optimization of runway utilization is one of the main challenges in ATM

goal: runway schedules that are robust against uncertainties
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Pre-Tactical Planning Phase

= assign aircraft to time windows

= for each aircraft: possible time interval for landing

N N/

&y RG] [5] 6] [7] 3

time interval for landing

objective:
maximize punctuality i.e. minimize deviation from the (published) flight plan
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Pre-Tactical Planning Phase

uncertainty: time interval for landing

scenario 2 occurs

t | scenario 1

] | scenario 2 | |

= if scenario 2 occurs, plan of scenario 1 might become infeasible
= the aircraft may need to be replanned
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Modelling Issues for Robust Pre-Tactical Planning

= fairness
= (recoverable) robust optimization for the plans made the evening before, say

= fast algorithms for recovery actions during operation in case of large
disturbances

(Not covered here in further detail.)
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Pre-Tactical Planning Phase

first stage: second stage:
e
G‘\;z('EZ\;!IUJ) G},:(E‘,,IUJ)

} | scenario 1 scenario 2 | |

two-stage optimization task:

PGMO Days November 13, 2017 | F. Liers | Robust Optimization for Network Optimization and ATM: 52



TRR
154

Pre-Tactical Planning Phase

first stage:
e W

G =(E, TU))

f'\
> J ....ﬂ

| scenario 1

two-stage optimization task:

1
X,j — ]
0, otherwise
Yij = :
/ 0, otherwise

second stage:

N
\\ C\
b

ryaniniain

scenario 2 |

, if aircraft i is assigned to time window j on the first stage

1, if aircraft / is assigned to time window j on the second stage
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Pre-Tactical Planning Phase

For reasons of fairness: restrict replanning for each aircraft by at most r

first stage: second stage:
N N (1)
G =(E, 1U)) G}. = (E}.,] u J) \\\\

i scenario 1 scenario 2 |

e

Special knapsack constraint for each aircraft:

|2x12 + 3x13 + 4x14 + 5x15 + 6x16 — 4y14 — by1s — 6y16 — Ty17 — 8y1s| < r

x; € {0,1} first stage variables, y; € {0,1} second stage variables
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Pre-Tactical Planning Phase

For reasons of fairness: restrict replanning for each aircraft by at most r

first stage: second stage:
N N (1)
G =(E, 1U)) G}. = (E}.,] u J) \\\\

i scenario 1 scenario 2 |

e

Special knapsack constraint for each aircraft:

|2x12 + 3x13 + 4x14 + 5x15 + 6x16 — 4y14 — By15 — 6y16 — Ty17 — 8yis| < 2

x;j € {0,1} first stage variables, y; € {0,1} second stage variables
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Pre-Tactical Planning Phase

For reasons of fairness: restrict replanning for each aircraft by at most r

first stage: second stage:
N N (D
G =(E, 1)) G=E. 100 |\
f/ \\ \\
raniniainigialaln & !ﬂﬂ!ﬁ@mm
I | scenario | scenario 2 | i

Special knapsack constraint for each aircraft:

|2x12 + 3x13 + 4x14 + 5x15 + 6x16 — 4y14 — By15 — 6y16 — Ty17 — 8yis| < 2

x;j € {0,1} first stage variables, y; € {0,1} second stage variables

PGMO Days November 13, 2017 | F. Liers | Robust Optimization for Network Optimization and ATM:



TRR
154

(Towards) robust bipartite b-Matching Problem (RMP)

= minimize deviation from scheduled times

= assign each aircraft to one time window on the first and second stage
= assign at most b aircraft to a time window

= restrict replanning action
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Robust bipartite 6-Matching Problem (RMP)

mn Y cxi+ X cy;
ee U ))eE g
JjeJ: Jjed:
(ia.j)eEX (iaj)EEy
> x5 < b, > yi<bVjelJ
iel: i€l
(7j)€Ex (iJ)€E,

> Jjexi— X jryi<rn Viel
jed: Jjed:
(iaj)eEX (ivj)EE}/

Xe, Yf S {071}

Vec E, f € E

(aircraft)

(time windows)

(replanning constraints)
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Mixed Integer Reformulations

= Approach [Bader,Hildebrand,Weismantel,Zenklusen (2016)]
= Solve:

max ¢ x
st. Ax<b
x eZ"
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Mixed Integer Reformulations

= Approach [Bader,Hildebrand,Weismantel,Zenklusen (2016)]
= Solve:

maXx CTX

st. Ax<b
x-cZ" x e R" Wx e ZF

Given: Polyhedron P = {x € R" | Ax < b}, A, b integral
Goal: Find W € Z**n

conv({x € P | x € Z"})=conv({x € P | Wx € Z*})

= k instead of n integrality constraints
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Affine TU Decomposition of Matrix A:

A A, U, W integer matrices
A=A+ UW

W

such that

is totally unimodular (TU).

Theorem [Bader,Hildebrand, Weismantel, Zenklusen (2016)]:

Let

P={x e R"| Ax < b},

A= A+ UW be affine TU decomposition,
then

conv({x € P | x € Z"})=conv({x € P | Wx € Z*}).
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Robust bipartite b-Matching Problem with One
Replanning Constraint for All Aircraft (RMP1)
min JGZ i +,€Zy i Y
> xj=1, > oyi=1 Viel (aircraft — M)
Jjed: eJ:
(ij)EEx (ij)EE,
Z/ xj < b, ZI yi < b VjeJ (time windows — M)
(/3§EE (/3§€E
> X jexi—x X ey <r (sum of replannings — R)
iel jelJ: iel jeJ:
(ij)€Ex (ij)€E,
xe, yr € {0,1} Vee E, f€E,
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Affine TU Decomposition for RMP1 with One Replanning
Constraint

oal: affine TU decomposition

| =aow and |

R ) is TU.

A
W

(work in progress.)
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Conclusions

= tradeoff between conservatism and algorithmic tractability can nicely be seen
in gas network operation.

= full adjustability via polynomial optimization
= (or via piecewise linearization when compressors are involved, with somewhat
increased conservatism)

= affine TU decompositions can successfully be applied for pretactical planning
under uncertainty.
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PGMO Days November 13, 2017 |

Thank you very much!

F. Liers |
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