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Gas networks

• Networks are inherently discrete

/switching

valve a with switching variable sa ∈ {0, 1}
sa = 0 ⇒ qa = 0
sa = 1 ⇒ pi = pj

• Physics are inherently continuous

/switching
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∂t +
∂(ρv)
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2D ρ |v | v = 0
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∂(Ev + pv)
∂x + Aρvg ∂h

∂x + πD cHT (T − Tsoil) = 0.
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TRR 154 on Gas Networks
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Robust Optimization

Some References (not at all exhaustive)
• Soyster (1973). Convex Programming with Set-Inclusive Constraints and

Applications to Inexact Linear Programming.
• Kouvelis, Yu 1997. Robust discrete optimization and its applications.
• Bertsimas, Sim several works on robust combinatorial optimization
• Ben-Tal, El Ghaoui, Nemirovski (2009). Robust optimization
• Gorissen, Yanikoglua, den Hertog (2015). A practical guide to robust

optimization
• and many more...
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Tractable Robust Counterparts for LP

Linear Inequality ā>x ≥ b with Polyhedral Uncertainty Set {ζ | Dζ ≥ d}

(ā + Pζ)Tx ≥ b ∀ ζ : Dζ ≥ d ⇔ āTx + min
{ζ:Dζ≥d}

(PTx)
T
ζ ≥ b

strong duality: min
ζ

(PTx)
T
ζ | Dζ ≥ d

 = maxy

{
dTy | DTy = PTx , y ≥ 0

}
⇒

āTx + maxy

{
dTy | DTy = PTx , y ≥ 0

}
≥ b. (?)

duality trick from robust optimization: If (?) is satisfied by some feasible y , then
it is also for the maximum ⇒ skip max.
x satisfies uncertain inequality iff ∃ y such that (x , y) satisfies

āTx + dTy ≥ b, DTy = PTx , y ≥ 0
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Tractable Robust Counterparts for LP (and MIP)

Discussion
• Can easily be extended to conic uncertainty sets if strong duality holds
• Tractable robust counterparts are systems of linear inequalities over dual cones
• Integrality in problem variables x does not change such reformulations; they

can still be applied.
•→ Robust (mixed integer) linear optimization with ’standard’ convex

uncertainty sets is not (much) more difficult than the nominal problem.
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Two-Stage Robust Optimization

Adjustable Uncertain Optimization Problem

min cTx
A1(u)x1 + A2(u)x2(u) ≤ b ∀ u ∈ U , U convex.

x1: variables on first stage, independent of u.
x2: variables on second stage, adjustable, depending on u. x2(·) is arbitrary
function in u.
adjustable/two-stage robust optimization problem:

min cTx
s.t. x1 ∈ {x1 | ∀ u ∈ U ∃ x2 such that A1(u)x1 + A2(u)x2 ≤ b}

is already NP-hard for easy cases.
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Two-Stage Robust Optimization
Affine Adjustability

strict robustness: ∃ (x1, x2) ∀ u ∈ U with A1(u)x1 + A2(u)x2 ≤ b,

adjustable robustness: ∃ x1 ∀ u ∈ U ∃ x2 with A1(u)x1 + A2(u)x2 ≤ b

restrictions on x2(u): often, affine adjustability is assumed:
x2(u) = Qu + q, with appropriate Q.

(AJ) min cTx1
A1(u)x1 + A2(u)[Qu + q] ≤ b ∀ u ∈ U

• (AJ) is non-linear, but can be reformulated as positive semidefinite constraint
• result might be conservative, due to restricted adjustability.
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Overview

• Robust Approaches to Gas Networks: strict + adjustable robustness, full
adjustability

• Robust Optimization in Air Traffic Management
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Robust Approaches in Energy (Networks)

Some References on Electricity (not at all exhaustive)
• Bacaud, Lemarechal, Renaud, Sagastizábal 2001. Bundle methods in

stochastic optimal power management
• Zhao and Zeng 2012. Robust UC problem with demand response and wind

energy
• Bertsimas et al. 2013 Adaptive robust optimization for security constrained UC
• Wang et al. 2013. 2-stage robust optimization for N-k

contingency-constrained UC
• Ruiwei et al. 2014 2-stage network constrained robust UC problem
• Tahanan, van Ackooij, Frangioni, Lacalandra 2015. Large-scale UC under

uncertainty
• Ruiz and Conejo 2015. Robust transmission expansion planning
• D’Ambrosio, Liberti, 2016. Power edge set problem
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Optimization in Gas Networks

References (not at all exhaustive)
• Collins et al, 1978. (proof for uniqueness of flows in passive nets)
• De Wolf and Smeers 2000. (sequential linear programming approach for

piecewise linearized problem)
• Borraz-Sanchez and Rios-Mercado 2004. (dynamic programming)
• Geißler et al., 2011. (linear relaxation approach gas and water networks (with

active elements))
• Koch et al. Evaluating gas network capacities. SIAM, Philadelphia, PA, 2015.

(book on modeling and optimization of gas networks, MIP/MINLP/NLP
methods)

• Ríos-Mercado and Borraz-Sánchez 2015. (survey article)
• Gotzes et al 2016. (reduced description of passive network problem)
...not much out there on optimization approaches under uncertainty.
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Nomination Validation Under Uncertainty
Aßmann, L, Stingl

• gas transport model: stationary, isothermal
• the pipes’ roughness values is not known

precisely, has a large effect on the flow value,
and can only be measured with great effort.

Problem Statement
Is there a configuration of the active elements within the network such that there
exists a feasible gas flow for each possible realization of the uncertain data?
solution approaches for the nominal setting: Koch et al (2015), Pfetsch et al.
(2015)
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Pressure Loss in a Pipe

Horizontal pipe with pressures pin, pout and flow q.
Roughness k ∈ [kmin, kmax] is uncertain with a nominal value of k̂ .
Nominal Pressure Loss Equation

p2
in − p2

out = φ(k̂)|q|q

Pressure Loss Under Uncertainty{
p2

in − p2
out = φ(k)|q|q

}
k∈[kmin,kmax]

Since φ(k) is monotonically increasing in k :
{
p2

in − p2
out = φ|q|q

}
φ∈[φ(kmin), φ(kmax)]
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Robust Nomination Validation

min
p2,q

operating costs
∑

a∈δ+(v)
qa −

∑
a∈δ−(v)

qa = dv ∀ v ∈ V flow conservation

p2
i − p2

j = φaqa|qa| ∀ a = (i , j) ∈ A,∀φA ∈ Ua pressure loss
p2

v ∈ [p2
v , p

2
v ] ∀ v ∈ V pressure bounds

qa ∈ [qa, qa] ∀ a ∈ A flow bounds
active elements

...this is a mixed-integer two-stage robust optimization problem with a
non-convex quadratic lower level.
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Some References

• tractable robust counterpart in sense of Ben-Tal, Nemirovski, et al. (e.g.
MPS-SIAM, 2002) or Bertsimas et al. (e.g. SIAM Review, 2011): (how) can it
be applied due to
• non-convex character of our problem?
• full adjustability (which decision rules?)

• robust problems in optimal control: direct treatment of bilevel structure; the
inner (here: passive) problem is approximated (see, e.g., Diehl et al., 2006,
2008, Laas/ Ulbrich, 2017, Diehl, 2013)
• if the inner problem is non-convex (as in our problem), these methods may fail to

detect the worst-case scenario!

• further interesting related work based on partitioning of uncertainty set in
order to cope with full adjustability as well as binary variables (Bertsimas,
Dunning 2014, Postek, den Hertog, 2014, . . .)
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Difficulty of the Problem

We face a robust

potential simplification

mixed-integer

continuous (passive networks)

two-level optimization problem with

single-level, affine adjustability, etc.

non-convex quadratic lower level

piecewise-linear relaxed lower level
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Linearized Pressure Loss Equation

Approximating the pressure loss equation through a piecewise linear function τ(q)
with given error ε > 0, e.g.,
Geißler et al. (2012):

τ(q)− ε ≤ φ(k̂)q|q| ≤ τ(q) + ε

Mixed-integer linear constraints for linearized pressure loss equation:
τ(q)− ε ≤ p2

in − p2
out ≤ τ(q) + ε

Mixed-Integer Linear Pressure Loss Under Uncertainty
With [cmin, cmax] = [φ(k̂)−1φ(kmin), φ(k̂)−1φ(kmax)]:

{
c(τ(q)− ε) ≤ p2

in − p2
out ≤ c(τ(q) + ε)

}
c∈[cmin,cmax]
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Pressure Loss Equation with Uncertain Scaling

Figure : Nonlinear Function with Uncertain Scaling. Figure : Linearization of Nonlinear Function with Uncertain Scaling.

PGMO Days November 13, 2017 | F. Liers | Robust Optimization for Network Optimization and ATM: 19



Strict Robust Counterpart for Robust Nomination
Validation

Figure : Uncertain Linearization. Figure : Robustification.
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Numerical Results for the Strict Robust Counterpart
For each pipe, the following uncertain roughness
is assumed:

ka ∈ [k̂a, (1 + rmax)k̂a].

rmax MIP obj. MIP runtime NLP obj.
nominal 214.22 44.25 s 444.20

0.001 214.22 236.12 s infeas.
0.01 214.22 165.12 s 444.20
0.05 infeas.
0.1 infeas.
0.5 infeas.

Table : Objective values of nominal and robustified instances.

...can be computed fast (via a MIP), but yields (too) conservative solutions.
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Adjustable Robustness for Nomination Validation

Relaxing one of the assumptions for strict robustness leads to adjustable
robustness:
• solutions must be feasible for all possible realizations of the uncertain data
• variables must be fixed before uncertainty becomes known

→ solution can depend on the uncertain data:
“Here-and-Now” or First Stage Variables

must be fixed before the uncertainty becomes known
“Wait-and-See” or Second Stage Variables

may adjust themselves to the realized uncertainty
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Affine Adjustable Robustness for Nomination Validation

• random recourse
• assume affine linear second-stage variables ⇒ reformulation:
• one SDP constraint for each original constraint
• each SDP constraint has size (dim(U) + 1 × dim(U) + 1)

• exact reformulation for dim(U) = 1, approximative otherwise
• restricted adjustability of pressure and flow since the binary auxilliary variables

for the piecewise linear model cannot be cast on the second stage
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Numerical Results for Affinely Adjustable Robustness
Software used: Python, MISDP plugin for SCIP (Mars, Schewe (2012))
• passive network
• linear pressure loss equation
• pressure loss equation is approximated through 8 sampling points

runtime [s]
topology #bin. mean min max
1 pipe 7 1.02 0.86 1.33
2 pipes 14 1.10 0.93 1.41
3 pipes 21 1.41 1.04 2.38
triangle 21 2.14 1.33 3.33
square 28 5.50 2.63 10.21
chorded square 35 15.26 5.70 36.08
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Comparison of Strict and Adjustable Models for
Nomination Validation
• 5 sampling points per pressure loss equation
• uncertainty set on each arc: ca ∈ [0.96, 2], a ∈ A
• 6 different approximation errors: ε ∈ {0.5, 1, 2, 3, 4, 5}

robustification
topology nominal strict adjustable
1 pipe 6 2 6
2 pipes 6 2 6
3 pipes 6 2 6
triangle 6 4 6
square 6 4 4
chorded square 6 3 4

...(somewhat) less conservative, but costly.
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New Approach: Robustness Equals Set Containment
D. Aßmann, L, M. Stingl (FAU), J. Vera (Tilburg) https://opus4.kobv.de/opus4-trr154/frontdoor/index/index/docId/136

uncertain parameter u ∈ U ⊆ Rn

problem variables x ∈ Rm

constraints F (u, x) ≥ 0
feasible combinations B := {u ∈ U , x ∈ Rm | F (u, x) ≥ 0}
Robust Feasibility as Set Containment
Deciding robust feasibility

∀ u ∈ U ∃ x such that F (u, x) ≥ 0
is equivalent to set containment problem

U ⊆ Proju(B).

robust optimization: two-stage adjustable nonlinear problem w. empty first stage
+ nonlinear/nonconvex constraints
+ no decision rules → full adjustability
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Solution Approach: Robustness Equals Set Containment

u

x

Proju(B)

U

B = {(u, x) | F (u, x) ≥ 0}

U ⊆ Proju(B)?
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Polynomial SDP Relaxation Hierarchy
let K := {x | g1(x) ≥ 0, . . . , gm(x) ≥ 0} (f , gi poly.):

min
x∈K

f (x) = sup
λ∈R

λ s.t. f (x)− λ ≥ 0 ∀ x ∈ K

= sup
λ∈R

λ s.t. f (x)− λ ∈ P(K )

≥ sup
λ∈R

λ s.t. f (x)− λ ∈ Σd(K )

• replace minx∈K f (x) with hierarchy of SDP relaxations;
Sherali-Adams (’90), Lováxz-Schrijver (’91), Parrilo (’00), Lasserre (2001)

• relaxation hierarchy main ideas:
1. formulate optimization problem in terms of nonnegative polynomials
2. sum of squares condition (p =

∑
i q2

i ) can be checked easily with SDP
3. replace nonnegativity by weaker degree bounded SOS formulation
→ max degree 2d ≡ level of hierarchy d
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Deciding Robust Feasibility
Assume B = G ∩ H:

G := {u, x | u ∈ U , h(u, x) = 0} , (gas: flow equation)
H := {u, x | fi(u, x) ≥ 0, i ∈ I} . (gas: pressure constrs.)

Furthermore, assume extension x for u ∈ U is unique.
Lemma (Elimination of Projection)

U ⊆ Proju(B) ⇐⇒ G ⊆ H

• proof idea: exploit uniqueness of x : G = {u, x | u ∈ U , x = x(u)}
Minimize Constraints to Check Set Containment

U ⊆ Proju(B) ⇐⇒ G ⊆ H
⇐⇒ inf

(u,x)∈G
fi(u, x) ≥ 0 (∀ i ∈ I)

=⇒ global optimal solutions needed, use polynomial optimization
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Deciding Robust Infeasibility
• infeasible iff. U 6⊆ Proju(B) ⇐⇒ U \ Proju(B) 6= ∅
• idea: find function f that is non-negative on Proju(B) and negative on
U \ Proju(B)

u

f (u)

U
Proju(B)

û

f (û) < 0

f (u) ≥ 0

• as optimization problem, objective −∞ iff. robust infeasible:

inf
f ,u

f (u)

∣∣∣∣∣∣∣∣
u ∈ U
f ∈ {f | f (u) ≥ 0 ∀ u ∈ Proju(B)}


• any feasible f with f (u) < 0 certifies violation of set containment
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Polynomial Approximation of Robust Infeasibility Problem
• abstract problem: inf {f (u) | u ∈ U , f ≥ 0 on Proju(B)}

• restrict functions to nonnegative polynomials p over Proju(B),
approximate with sum of square polynomials

• replace p(u) with weaker
∫
U pdµ =

∫
U
∑
α
pαuαdµ =

∑
α
pα

∫
U u

αdµ
→ requires moments

∫
U u

αdµ

Lemma (Elimination of Projection)
The following problems have same objective value:

(1)
infp

∑
α
pα

∫
U u

αdµ
p ∈ P[Proju(B)]

(2)

inf
p̃

∑
α,β

p̃α,β
∫
U u

αxβdµ

p̃α,β = 0 ∀ β 6= 0
p̃ ∈ P[B]
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Deciding Robustness for Nomination Validation in Gas
Networks

• lots of absolute values due to pressure drop equation:
πi − πj = φaqa |qa|

(π denote squared pressures)

•

trees: no absolute values X

one cycle: partitions of U allow elimination of |·| X

≥ one cycle(s): binaries + bigM,
case distinction
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The Passive Nomination Validation Problem
• eliminate variables (Gotzes et al. (2016)) → only cycle flows qN remaining
• set of feasible (roughness, flow)-tuples:

B :=

φ ∈ U , qN ∈ R|N|
∣∣∣∣∣∣∣∣
AT

Ng(φ, qN) = diag(φN)qN |qN|
πi + gi(φ, qN) ≤ πj + gj(φ, qN) ∀ i , j ∈ V


• gi(φ, qN) is aggregated pressure drop between root node and node i ∈ V
Robust feasible if and only if:

U ⊆ Projφ(B) = {φ | ∃ qN : (φ, qN) ∈ B} .

φ

qN

Projφ(B)

U

B = {(φ, qN) | qN feasible for φ}



Deciding Robust Feasibility on Tree Networks is Easy!
• tree G , root r , arcs directed away from r ; no cycle → no qN

B :=
{
φ ∈ U

∣∣∣∣ πi + gi(φ) ≤ πj + gj(φ) ∀ i , j ∈ V
}

with
gi(φ) =

∑
a∈Path(r ,i)

φa q2
a︸︷︷︸

const!

• robust feasible iff. U ⊆ Projφ(B) = B
• set containment (polyhedral U) can be checked with LPs (Mangasarian

(2002))
Lemma
Given a tree G, the gas network problem is robust feasible if and only if

πr ∈ [π∗r , π
∗
r ]

where π∗r , π∗r are optimal values of two LPs.
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Extension to Tree + Edge Networks
• add edge to tree topology → cycle is created
• decompose graph into cycle and subtrees
• determine condition for robust feasibility of all subtrees
• remove trees and update pressure bounds of cycle nodes

−→

−→ computational complexity mostly depends on size of cycle
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Numerical Experiments: Test Instances
• focus on cycle network, preprocess attached trees
• instance: cycle with n = 2, . . . , 7 nodes
• variable uncertainty set:

U(c) := ×a∈A[1, c]

• two special sets:
Ufeas := U(2)

Uinfeas := U(4)
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Deciding Robust Feasibility
• application of feasibility method (minimization) to Ufeas

# success at level mean runtime
nodes |I | 2 3 4 2 3 4
2 2 1 1 0 0.03 s 0.04 s 0.11 s
3 6 5 1 0 0.04 s 0.11 s 0.61 s
4 12 11 1 0 0.05 s 0.32 s 3.90 s
5 20 19 1 0 0.08 s 1.23 s 26.68 s
6 30 29 1 0 0.15 s 4.53 s 148.40 s
7 42 42 0 0 0.24 s 15.72 s 809.94 s

→ almost all subproblems confirm set containment at level 2

PGMO Days November 13, 2017 | F. Liers | Robust Optimization for Network Optimization and ATM: 39



Strength of Robust Feasibility and Infeasibility Methods
• vary uncertainty set U(c) = ×a∈A[1, c] for c ∈ [2, 4] on problem 4

• remark: ’gap’ may be further tightened by driving level d up . . .
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Conclusions

• (affinely) adjustable robust optimization is too conservative
full adjustability:
• use polynomial optimization to decide robustness

• separate methods for feasibility / infeasibility

• gas: tree, tree+edge topologies: easy (LP)

• gas: complexity in size of cycle
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Two-Stage Robust Gas Network Operation with
Compressors

Assmann, L, Stingl
Assumptions: no compressor in a cycle, compressor changes squared pressures

πv − πu = ∆a, ∆a ∈ [∆a, ∆a] ⊆ R≥0, (u, v) = a ∈ Acs

cost-minimum operation of compressors yields:

min wT∆

A+q = qnom+,

A+T
π = F (φ, q, ∆),

∆ ∈ [∆,∆] ⊆ R|Acs|
≥0

π ∈ [π, π] ⊆ R|V |≥0 ,

q ∈ R|A|.

Fa(φ, q, ∆) =


−φaqa|qa| if a ∈ Api,

∆a if a ∈ Acs.
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Two-Stage Robust Gas Network Operation with
Compressors
explicit algebraic description of feasible set (Gotzes et al. (2016)) can be
generalized by compressors ⇒

min
∆

{
w>(∆)

∣∣∣∣ ∃∆ ∈ Rn1 ∀ u ∈ U ∃ y ∈ Rn2 with g(y , u) = 0, h(∆, y , u) ≤ 0
}
,

1. g(y , u) = 0 admit a unique flow-pressure solution y∗(u) for all u ∈ U .
2. h(∆, y , u) ≤ 0 are separable: h(∆, y , u) = s(∆) + t(y , u).
Lemma
The set of feasible first stage decisions ∆ is given by

{∆ ∈ Rn1 | s(∆) ≤ b} ,with

bi = −max
u∈U
{ti(y , u) | g(y , u) = 0, y ∈ Rn2} .
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Algorithmically Tractable Version of the Problem
• replace in the computation of bi all non-convex functions by piecewise

relaxations (overestimators)
• leads to somewhat more conservative solutions, while preserving robust

feasibility
• two-stage robust problem then can be solved simply as a mixed-integer linear

problem!
• running times < 0.01s for net10

1 2 3

4

5

6

7

8

9

10

∆π23 ∆π57

inflow: 9
π1 = 50

outflow: b8 ∈ [4− c, 4 + c]
π8 ≥ 60

outflow: b9 ∈ [4− c, 4 + c]
π9 ≥ 70

outflow: b10 ∈ [4− c, 4 + c]
π10 ≥ 70
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Summary up to now

• (affinely) adjustable robust optimization is too conservative
full adjustability:
• use polynomial optimization to decide robustness
• separate methods for feasibility / infeasibility
• gas: tree, tree+edge topologies: easy (LP)
• gas: complexity in size of cycle
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Overview

• Robust Approaches to Gas Networks: strict + adjustable robustness, full
adjustability

• Robust Optimization in Air Traffic Management
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Robust Pre-Tactical Planning Air Traffic Management

Hupp, Kapolke, L, Martin, Weismantel

⇒ optimization of runway utilization is one of the main challenges in ATM
goal: runway schedules that are robust against uncertainties
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Pre-Tactical Planning Phase

• assign aircraft to time windows
• for each aircraft: possible time interval for landing

objective:
maximize punctuality i.e. minimize deviation from the (published) flight plan
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Pre-Tactical Planning Phase

uncertainty: time interval for landing

⇒ if scenario 2 occurs, plan of scenario 1 might become infeasible
⇒ the aircraft may need to be replanned
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Modelling Issues for Robust Pre-Tactical Planning

• fairness
• (recoverable) robust optimization for the plans made the evening before, say
• fast algorithms for recovery actions during operation in case of large

disturbances
(Not covered here in further detail.)
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Pre-Tactical Planning Phase

two-stage optimization task:

xij =


1, if aircraft i is assigned to time window j on the first stage
0, otherwise

yij =


1, if aircraft i is assigned to time window j on the second stage
0, otherwise
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Pre-Tactical Planning Phase

For reasons of fairness: restrict replanning for each aircraft by at most r

Special knapsack constraint for each aircraft:
|2x12 + 3x13 + 4x14 + 5x15 + 6x16 − 4y14 − 5y15 − 6y16 − 7y17 − 8y18| ≤ r

xij ∈ {0, 1} first stage variables, yij ∈ {0, 1} second stage variables
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(Towards) robust bipartite b-Matching Problem (RMP)

• minimize deviation from scheduled times
• assign each aircraft to one time window on the first and second stage
• assign at most b aircraft to a time window
• restrict replanning action
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Robust bipartite b-Matching Problem (RMP)

minx ,y
∑

(i ,j)∈Ex

cx
ij xij +

∑
(i ,j)∈Ey

cy
ij yij

∑
j∈J :

(i ,j)∈Ex

xij = 1, ∑
j∈J :

(i ,j)∈Ey

yij = 1 ∀ i ∈ I (aircraft)

∑
i∈I :

(i ,j)∈Ex

xij ≤ b, ∑
i∈I :

(i ,j)∈Ey

yij ≤ b ∀ j ∈ J (time windows)

∣∣∣∣∣∣∣∣
∑

j∈J :
(i ,j)∈Ex

j · xij −
∑

j∈J :
(i ,j)∈Ey

j · yij

∣∣∣∣∣∣∣∣ ≤ ri ∀ i ∈ I (replanning constraints)

xe, yf ∈ {0, 1} ∀ e ∈ Ex , f ∈ Ey
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Mixed Integer Reformulations

• Approach [Bader,Hildebrand,Weismantel,Zenklusen (2016)]
• Solve:

max c>x
s.t. Ax ≤ b

x ∈ Zn

x ∈ Zn x ∈ Rn,Wx ∈ Zk

Goal: Find W ∈ Zk×n

conv({x ∈ P | x ∈ Zn})=conv({x ∈ P |Wx ∈ Zk})

• k instead of n integrality constraints
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Mixed Integer Reformulations

• Approach [Bader,Hildebrand,Weismantel,Zenklusen (2016)]
• Solve:

max c>x
s.t. Ax ≤ b

x ∈ Zn x ∈ Rn,Wx ∈ Zk

Given: Polyhedron P = {x ∈ Rn | Ax ≤ b}, A, b integral
Goal: Find W ∈ Zk×n

conv({x ∈ P | x ∈ Zn})=conv({x ∈ P |Wx ∈ Zk})

• k instead of n integrality constraints
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Affine TU Decomposition of Matrix A:
A,A,U ,W integer matrices

A = A + UW
such that  AW


is totally unimodular (TU).
Theorem [Bader,Hildebrand,Weismantel,Zenklusen (2016)]:
Let

P = {x ∈ Rn | Ax ≤ b},
A = A + UW be affine TU decomposition,

then
conv({x ∈ P | x ∈ Zn})=conv({x ∈ P |Wx ∈ Zk}).
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Robust bipartite b-Matching Problem with One
Replanning Constraint for All Aircraft (RMP1)

minx ,y
∑

ij∈Ex
cx

ij xij +
∑

ij∈Ey
cy

ij yij

∑
j∈J :

(i ,j)∈Ex

xij = 1, ∑
j∈J :

(i ,j)∈Ey

yij = 1 ∀ i ∈ I (aircraft → M)

∑
i∈I :

(i ,j)∈Ex

xij ≤ b, ∑
i∈I :

(i ,j)∈Ey

yij ≤ b ∀ j ∈ J (time windows → M)

∣∣∣∣∣∣∣∣
∑
i∈I

∑
j∈J :

(i ,j)∈Ex

j · xij −
∑
i∈I

∑
j∈J :

(i ,j)∈Ey

j · yij

∣∣∣∣∣∣∣∣ ≤ r (sum of replannings → R)

xe, yf ∈ {0, 1} ∀ e ∈ Ex , f ∈ Ey
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Affine TU Decomposition for RMP1 with One Replanning
Constraint

Goal: affine TU decomposition

MR
 = A + UW and

 AW
 is TU.

(work in progress.)
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Conclusions

• tradeoff between conservatism and algorithmic tractability can nicely be seen
in gas network operation.

• full adjustability via polynomial optimization
• (or via piecewise linearization when compressors are involved, with somewhat

increased conservatism)
• affine TU decompositions can successfully be applied for pretactical planning

under uncertainty.
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Thank you very much!
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