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Canonical Example: The isoperimetric problem

? Find the shortest curve enclosing a given area.

min
|Ω|=c

Per(Ω).

? Equivalently: Find the greatest area that can be enclosed by a curve of given length.

max
Per(Ω)=c

|Ω|.

Questions:

A solution exists? Is it regular?

Find it!
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? Steiner’s proof (1838): (he in fact tried to give at least five proofs for this problem)

Pick four points on the boundary

If the quadrilateral is not cyclic then its area can be increased without modifying
the perimeter

Therefore, any shape which is not a disk can be improved!

Conclusion: the disk solves the isoperimetric problem.

? There’s a gap in the argument above!
? Other proofs: Fourier series, symmetrization, optimality conditions, etc.
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Existence of a solution is important!

Direct method in the calculus of variations: non-trivial here

Find a minimizing/maximizing sequence f(xn)→ inf f (what topology?)

Compactness: Find a converging subsequence: xn → x∗

Continuity: Prove that f is (semi) continuous: lim f(xn) = f(x∗).
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What is the best shape of an ice cube?

? Ideally we would like to maximize the contact region between the ice cube and the
liquid

max
|Ω|=c

Per(Ω).

Question: Do we have existence of an optimal shape in this case?
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Recalling basic Optimality conditions

f, g : X → R
? min f(x) (unconstrained): x∗ solution =⇒ ∇f(x∗) = 0.
? min
g(x)=0

f(x) (constrained): x∗ solution =⇒ ∇f(x∗) = λ∇g(x∗).
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Polygonal isoperimetric inequality

min
|P |=c

Per(P )

Existence of solutions: ”immediate” (classical compactness arguments)
Optimality conditions: ∇Per(P ) = λ∇Area(P )

Gradient of the area

aj

aj+1 aj−1

∇Area

? collinear with height in ∆aj−1ajaj+1

Gradient of the perimeter

aj

aj+1 aj−1

∇Per

? collinear with bisector in ∆aj−1ajaj+1

In the end: optimality conditions imply that P is the regular n-gon.
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Solution to the isoperimetric problem

min
|Ω|=c

Per(Ω).

Ω: General Shape
? the solution is the disk

Ω: n-gon
? the solution is the regular n-gon

Heuristic argument

If the optimal shape among general shapes is the disk then, when restricting to
n-gons the regular one should be optimal.
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Various Topics in Shape Optimization

min
Ω∈A

J(Ω)

Theoretical aspects
? existence, regularity
? shape derivative
? find optimal shapes
? qualitative properties

Numerical aspects
? choice of discretization
? efficient computations
? new theoretical ideas
? solve theoretical gaps

Practical aspects
? industrial problems
? modelization
? simulation
? MMOF team–CMAP
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Eigenvalues

A ∈ Rd×d, symmetric, positive definite: xTAx > 0 for x 6= 0.

Spectral theorem

There exists an orthonormal basis of Rd made of eigenvectors of (vi)
d
i=1 of A

corresponding to eigenvalues

0 < λ1 ≤ λ2 ≤ ... ≤ λd.

? eigenvectors characterize invariant subspaces of A
? why are they interesting?
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Applications

Knowing the spectrum is good for:

Solving linear systems Ax = b:

b =

d∑
i=1

βivi =⇒ x =

d∑
i=1

βi
λi
vi

Solving systems of Ordinary Differential Equations ∂U
∂t +AU = 0, U(0) = u0

u0 =

d∑
i=1

βivi =⇒ U(t) =

d∑
i=1

βi exp(−λit)vi.

Decay rate in the worst case: exp(−λ1t)v1

To have a small decay rate we need a small λ1.
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Laplace operator

? Dimension 1: ∆u := u′′

? Dimension 2: ∆u :=
∂2u

∂x2
+
∂2u

∂y2

? Dimension 3: ∆u :=
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

Heat equation: q : [0, T ]×Ω→ R,
∂q

∂t
−∆q = 0, q(0, x) = q0(x), q(t, x) = 0 for x ∈ ∂Ω.

? The Laplacian with Dirichlet boundary conditions has a sequence of eigenvalues
0 < λ1(Ω) ≤ λ2(Ω) ≤ ...→∞ solving the following problems:{

−∆uk = λk(Ω)uk in Ω
uk = 0 on ∂Ω.

? if q0 =
∑

k≥1 βkuk then q(t, x) =
∑
k≥0

βke
−λk(Ω)tuk(x).

? The heat is best preserved when for large t when λ1(Ω) is minimal
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Optimization of spectral quantities with respect to the domain

[Lord Rayleigh, Theory of sound, Second Edition, p.339, first published in 1877]

−∆u = λu, u ∈ H1
0 (Ω)

0 < λ1(Ω) ≤ λ2(Ω)...

Rayleigh quotients: λk(Ω) = min
Sk⊂H1

0 (Ω)
max

φ∈Sk\{0}

∫
Ω |∇φ|

2dx∫
Ω φ

2dx

Scaling: λk(tΩ) = λk(Ω)/t2.
Monotonicity: Ω1 ⊂ Ω2 ⇒ λk(Ω1) ≥ λk(Ω2)
Multiplicity: if Ω is connected then λ1(Ω) < λ2(Ω)
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Optimizing Eigenvalues - Drums

Lord Rayleigh - The Theory of Sound (1877)

The Drum

The shape that minimizes the area of a membrane at given frequency is the disk.

Faber-Krahn (1920-1923)

The disk minimizes λ1(Ω) at fixed area

{
−∆u = λ1(Ω)u in Ω

u = 0 on ∂Ω
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Symmetryzation

Steiner symmetrization: consider a direction L

rearrange all slices of Ω with hyperplanes orthogonal to L
into segments centered on L

for u : Ω→ R the Steiner symmetrization consists in
performing a Steiner symmetrization for all its level sets

photo: [Treibergs,
Steiner Symmetrization

and Applications]
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Motivation for performing symmetrizations

Some properties:

|Ω| = |Ω∗|,
∫

Ω
u2 =

∫
Ω∗

(u∗)2 and

∫
Ω
|∇u|2 ≥

∫
Ω∗
|∇u∗|2

Important consequence. Symmetrization decreases the first eigenvalue at fixed
volume

λ1(Ω) = inf
u∈H1

0 (Ω),u6=0

∫
Ω |∇u|

2∫
Ω u

2
=

∫
Ω |∇u1|2∫

Ω u
2
1

≥
∫

Ω∗ |∇u∗1|2∫
Ω∗(u∗1)2

≥ λ1(Ω∗)

Beniamin Bogosel Shape Optimization: Theory and Numerics 15/33



Minimizing the first Dirichlet-Laplace eigenvalue

{
−∆u = λ1(Ω)u in Ω

u = 0 on ∂Ω

Faber-Krahn (1920-1923)

The disk minimizes λ1(Ω) at
fixed area.

? Symmetrization decreases λ1

Polyà-Szegö Conjecture (1920-1923)

The regular n-gon minimizes λ1(Ω) among
n-gons of fixed area.

? An optimal n-gon exists [Henrot, Extremum
problems for eigenvalues].
? Cases n ∈ {3, 4} solved by Polyà and Szegö.
? Proofs based on Steiner symmetrization.
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What is known?

Up to re-scalings the following problems are equivalent:

min
|Ω|=π, Ω∈Pn

λ1(Ω), min
Ω∈Pn

|Ω|λ1(Ω), min
Ω∈Pn

(
λ1(Ω) + |Ω|

)
? n = 3: the equilateral triangle is the minimizer
Proof: A sequence of Steiner symmetrizations w.r.t the
mediatrix of the sides converges to the equilateral triangle.

? n = 4: the square is the minimizer
Proof: A sequence of three Steiner symmetrizations
transforms any quadrilateral into a rectangle.

? n ≥ 5: (almost) nothing is known

Steiner symmetrization does not work: the number of
sides may increase!

photo: [Henrot, Extremum problems...]
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Various works on the subject

Numerical evidence:

[Antunes, Freitas, 06]: derivative free - compute λ1 on many polygons

[Bogosel, PhD thesis, 15]: gradient algorithm, confirmation for n ≤ 15.

[Dominguez, Nigam, Shahriari, 17]: stochastic optimization, confirmation for n = 5

Theory:

[Fragala, Velichkov, 19]: optimality conditions - different proof for n = 3

[Laurain, 19]: second shape derivative on polygons, Hessian matrix
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Numerics in Shape Optimization

min
Ω∈A

J(Ω)

Engineering: improve a given shape
Theory: give hints for new theoretical ideas
Prove something:
Easy: show that a shape is not optimal! Find a counterexample.
Hard: show that a given shape is optimal!

Beniamin Bogosel Shape Optimization: Theory and Numerics 19/33



1 Introduction to Shape Optimization

2 Eigenvalues of the Laplace operator

3 Hybrid proof strategy

4 Numerical computations



Derivatives

? a symmetric matrix A is positive definite if all its eigenvalues are positive

Optimality conditions again

If ∇f(x∗) = 0 and D2f(x∗) =
(

∂2f
∂xi∂xj

)
is positive definite then x∗ is a local minimum

? We have a function depending on 2n variables (vertex coordinates).
? compute the first and second derivatives of

λ1(x0, y0, x1, y1, ..., xn−1, yn−1).

? not straightforward:

Coords. −→ Shape −→ PDE −→ λ1
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Sensitivity analysis: shape derivatives

? objective: J : P 7→ |P |λ(P ) (scale invariant)
? λ simple =⇒ J is smooth! [Henrot, Pierre]

? J((I + θ)(Ω)) = J(Ω) + J ′(Ω)(θ) + o(‖θ‖)
? Standard form: under regularity assumptions we can write J ′(Ω)(θ) =

∫
∂Ω f θ · n
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Shape derivatives: simple eigenvalues

? a simple eigenvalue λ is differentiable. If u is an associated normalized eigenfunction:

λ′(Ω)(θ) = −
∫
∂Ω

(
∂u

∂n

)2

θ · n = −
∫
∂Ω
|∇u|2θ · n

? the formula holds when u ∈ H2(Ω), for example when Ω is convex [Grisvard]
? second shape derivative: formulas are known but require additional regularity
assumptions on Ω, which are not verified by polygons

Key Idea!

? [Laurain, 19]: do not use the standard form: less regularity is needed

λ′(Ω)(θ) =

∫
Ω

Sλ1 : Dθ with Sλ1 = [|∇u|2 − λ(Ω)u2] Id−2∇u⊗∇u

? also see [Henrot Pierre, Shape variation and optimization, Section 5.9.7]
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Second Fréchet shape derivative

? computing the Fréchet derivative w.r.t. ξ we obtain (after some long computations...)

λ′′(Ω)(θ, ξ) =

∫
Ω
Kλ(θ, ξ)

with

Kλ(θ, ξ) = −2∇u̇(θ) · ∇u̇(ξ) + 2λ(Ω)u̇(θ)u̇(ξ) + Sλ1 : (Dθ div ξ +Dξ div θ)

+
(
−|∇u|2 + λu2

)
(div ξ div θ +DθT : Dξ)

+2(DθDξ +DξDθ +DξDθT )∇u · ∇u
−
[
λ′(Ω)(θ) div ξ + λ′(Ω)(ξ) div θ

]
u2.

where u̇(θ) and u̇(ξ) are derivatives of u in directions θ and ξ.
? We obtained a new formula valid for Lipschitz domains
? replace θ, ξ with polygonal perturbations to obtain the gradient and Hessian.
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Theoretical dead end

Regular n-gon: explicit Hessian depending on the solution of n+ 1 PDEs

4 eigenvalues are zero: corresponding to rigid motions and scalings

Explicit eigenvalues depending on 3 PDEs

Formulas are so complex that we did not manage to prove theoretically that the
eigenvalues are positive!

? Goal: if the remaining 2n− 4 Hessian eigenvalues are strictly positive then local
minimality is proved.
? When theory doesn’t help, turn to numerics!
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General proof strategy

Given f : Rd → R:

Conjecture

x∗ is a minimizer of f on Rd

Strategy:
1. Prove that x∗ is a local minimizer
2. Find an explicit neighborhood of x∗ where local minimality occurs
3. Prove that points far away from x∗ are not minimizers
4. Prove that if f(x) > f(x∗) + ε then f(x) > f(x∗) in a neighborhood of x
5. Use a finite number of numerical computations to conclude.

To obtain a proof all numerical computations need to have certified error bounds!
Machine errors need to be accounted for: interval arithmetics!
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Error accumulation

? floating point arithmetic is used in numerical analysis software
? Using 15 digit precision

5.00000000000002 + 6.00000000000003 = 11.0000000000000

? We make an error equal to 5× 10−14. Small, but not zero.

? Patriot missile failure: time was counted in 10ths of seconds: 1/10 not
representable exactly in binary. After 100 hours the representation error was 0.342
seconds! Scud missile travels 1.5km/s!
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Rigorous Computer Arithmetic

? the result of a numerical computation is not exact: information is lost

Interval arithmetics

? A floating point number is replaced by an interval.
? The output of a sequence of interval operations is an interval guaranteed to contain the
exact result
? Specific upwards/downwards rounding procedures are used
? Specialized interval arithmetic software exist: Intlab (Matlab), IntervalArithmetic
(Julia), etc.

Examples:
[2.99, 3.01] + [0.99, 1.01] = [3.98, 4.02]
[2.99, 3.01]× [0.99, 1.01] = [2.9601, 3.0401]
[0.99, 1.01]/[2.99, 3.01] = [0.3289, 0.3378]
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Finite elements method

Triangulation, variational formulation, linear system/eigenvalue problem:

−∆u = f, u ∈ H1
0 (Ω) vs

∫
Ω
∇uh · ∇vh =

∫
Ω
fhvh, ∀vh ∈ V h ⊂ H1

0 (Ω)

? discretization errors: continuous vs discrete solutions: ‖u− uh‖

Nobody worries about this

? exact discrete solutions vs solutions obtained via iterative algorithms
? floating point arithmetic errors: meshing, assembly
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Explicit error estimates for the Laplacian eigenvalues

? −∆u = λu, u ∈ H1
0 (Ω), Ω polygon

? piecewise linear finite elements

Explicit a priori error estimates [Liu, Oishi, 13]

|λ− λh| ≤ C1h
2

‖u− uh‖L2 ≤ C2h
2

‖∇u−∇uh‖L2 ≤ C3h

Our contribution: eigenvalues of the Hessian have estimates with error Cγh
1−2γ ,

γ ∈ (0, 1/2), Cγ →∞ as γ → 0.

where C1, C2, C3, Cγ are explicit for a given mesh.

? easy to see how to choose h in order to achieve a desired precision

high precision → small h → big discrete linear systems → bad control of machine errors
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Local minimality – regular pentagon

? Regular pentagon of radius 1: h = 10−4, approx 250 million d.o.f
? FreeFEM using 200 processors: Cholesky cluster–Institut Polytechnique Paris
? explicit estimates–intervals containing the exact result: q ∈ [qh − Cqhk, qh + Cqh

k]
? INTLAB gives the bounds for the Hessian eigenvalues
? we do not control machine errors in the FEM computations! (future work)
? such errors are of size O(εh−2), ε = 2.2× 10−16: in our work ≈ 10−8

? recall that four eigenvalues are zero!

Pentagon

Eigenvalue lower bound upper bound multiplicity

2.568803 2.359297 2.784816 2

8.015038 7.558395 8.460722 2

13.458443 13.012758 13.915086 2

? similar results are obtained for n ∈ {6, 7, 8}
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Computations of optimal size

h d.o.f. optimal h d.o.f

Pentagon 10−4 250 025 001 9.8e-4 ≈ 2.6 million

Hexagon 10−4 300 030 001 4.2e-4 ≈ 17 million

Heptagon 10−4 350 035 001 1.9e-4 ≈ 97 million

Octagon 10−4 400 040 001 1.35e-4 ≈ 220 million

? improving the theoretical estimates should further decrease the size of the
computational problems
? Local minimality+Some Theory =⇒ Explicit local-minimality neighborhood
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Finalize the proof

Theorem. Given n ≥ 3, a finite number of numerical computations solve the conjecture.

Si2

Si3

Si4

a0 a1

Si2

Si3

Si4

a0 a1

Si2

Si3
Si4

a0 a1

? First 2 pictures: lower bound for area and eigenvalue
? if current lower bound for λ1(P )|P | is not good enough, divide the squares sides in half
and consider all combinations recursively
? if the recursion does not end we converge to a counterexample!
? Third picture: example of validation of a (really small) region: 262144 computations
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Conclusion

Preprint: [Bogosel, Bucur, On the polygonal Faber-Krahn inequality, March 2022]

We propose a new hybrid proof strategy for proving this classical conjecture.

Local minimality: almost done, with the help of numerical computations.

Validated numerical computations open the way to new mathematical results
unattainable with traditional methods!
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