Shape Optimization: Theory and Numerics Maths en herbe – IHES

Beniamin BOGOSEL

CMAP, Ecole Polytechnique

18/01/2023

2 Eigenvalues of the Laplace operator

3 Hybrid proof strategy

In Numerical computations

Canonical Example: The isoperimetric problem

 \star Find the shortest curve enclosing a given area.

 $\min_{|\Omega|=c} \operatorname{Per}(\Omega).$

 \star Equivalently: Find the greatest area that can be enclosed by a curve of given length.

 $\max_{\operatorname{Per}(\Omega)=c} |\Omega|.$

Questions:

- A solution exists? Is it regular?
- Find it!

 \star Steiner's proof (1838): (he in fact tried to give at least five proofs for this problem)

- Pick four points on the boundary
- If the quadrilateral is not cyclic then its area can be increased without modifying the perimeter

- Therefore, any shape which is not a disk can be improved!
- Conclusion: the disk solves the isoperimetric problem.
- \star There's a gap in the argument above!
- \star Other proofs: Fourier series, symmetrization, optimality conditions, etc.

Theorem. Among all curves of a given length, the circle encloses the greatest area.

Proof. For any curve that is not a circle, there is a method (given by Steiner) by which one finds a curve that encloses greater area. Therefore the circle has the greatest area.

Theorem. Among all positive integers, the integer 1 is the largest.

Proof. For any integer that is not 1, there is a method (to take the square) by which one finds a larger positive integer. Therefore 1 is the largest integer.

Direct method in the calculus of variations: non-trivial here

- Find a minimizing/maximizing sequence $f(x_n) \to \inf f$ (what topology?)
- Compactness: Find a converging subsequence: $x_n \to x^*$
- Continuity: Prove that f is (semi) continuous: $\lim f(x_n) = f(x^*)$.

What is the best shape of an ice cube?

 \star I deally we would like to maximize the contact region between the ice cube and the liquid

 $\max_{|\Omega|=c} \operatorname{Per}(\Omega).$

Question: Do we have existence of an optimal shape in this case?

Beniamin BOGOSEL

Recalling basic Optimality conditions

$$\begin{split} &f,g:X\to \mathbb{R} \\ \star \min f(x) \text{ (unconstrained): } x^* \text{ solution} \Longrightarrow \nabla f(x^*)=0. \\ \star \min_{g(x)=0} f(x) \text{ (constrained): } x^* \text{ solution} \Longrightarrow \nabla f(x^*)=\lambda \nabla g(x^*). \end{split}$$

Polygonal isoperimetric inequality

 $\min_{|P|=c} \operatorname{Per}(P)$

Existence of solutions: "immediate" (classical compactness arguments) **Optimality conditions**: $\nabla \operatorname{Per}(P) = \lambda \nabla \operatorname{Area}(P)$

Solution to the isoperimetric problem

Ω: General Shape

 \star the solution is the disk

$\Omega: n-gon \\ \star \text{ the solution is the regular } n-gon$

Heuristic argument

If the optimal shape **among general shapes** is the disk then, when restricting to *n*-gons **the regular one should be optimal**.

Beniamin BOGOSEL

 $\min_{\Omega\in\mathcal{A}}J(\Omega)$

Theoretical aspects
* existence, regularity
* shape derivative
* find optimal shapes
* qualitative properties

Numerical aspects

- \star choice of discretization
- \star efficient computations
- \star new theoretical ideas
- \star solve theoretical gaps

Practical aspects

- \star industrial problems
- \star modelization
- \star simulation
- ***** MMOF team–CMAP

Beniamin BOGOSEL

1 Introduction to Shape Optimization

3 Hybrid proof strategy

4 Numerical computations

 $A \in \mathbb{R}^{d \times d}$, symmetric, positive definite: $x^T A x > 0$ for $x \neq 0$.

Spectral theorem

There exists an orthonormal basis of \mathbb{R}^d made of eigenvectors of $(v_i)_{i=1}^d$ of A corresponding to eigenvalues

$$0 < \lambda_1 \le \lambda_2 \le \dots \le \lambda_d.$$

 \star eigenvectors characterize invariant subspaces of A \star why are they interesting?

Applications

Knowing the spectrum is good for:

• Solving linear systems Ax = b:

$$b = \sum_{i=1}^{d} \beta_i v_i \Longrightarrow x = \sum_{i=1}^{d} \frac{\beta_i}{\lambda_i} v_i$$

• Solving systems of Ordinary Differential Equations $\frac{\partial U}{\partial t} + AU = 0, U(0) = u_0$

$$u_0 = \sum_{i=1}^d \beta_i v_i \Longrightarrow U(t) = \sum_{i=1}^d \beta_i \exp(-\lambda_i t) v_i.$$

Decay rate in the worst case: $\exp(-\lambda_1 t)v_1$ To have a small decay rate we need a small λ_1 .

Beniamin BOGOSEL

Laplace operator

 $\begin{array}{l} \star \text{ Dimension 1: } \Delta u := u'' \\ \star \text{ Dimension 2: } \Delta u := \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \\ \star \text{ Dimension 3: } \Delta u := \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \end{array}$

Heat equation: $q: [0,T] \times \Omega \to \mathbb{R}, \frac{\partial q}{\partial t} - \Delta q = 0, q(0,x) = q_0(x), q(t,x) = 0$ for $x \in \partial \Omega$. \star The Laplacian with Dirichlet boundary conditions has a sequence of eigenvalues $0 < \lambda_1(\Omega) \le \lambda_2(\Omega) \le ... \to \infty$ solving the following problems:

$$\begin{cases} -\Delta u_k = \lambda_k(\Omega)u_k & \text{in } \Omega\\ u_k = 0 & \text{on } \partial\Omega. \end{cases}$$

* if
$$q_0 = \sum_{k \ge 1} \beta_k u_k$$
 then $q(t, x) = \sum_{k \ge 0} \beta_k e^{-\lambda_k(\Omega)t} u_k(x)$.

* The heat is best preserved when for large t when $\lambda_1(\Omega)$ is minimal

Optimization of spectral quantities with respect to the domain

[Lord Rayleigh, Theory of sound, Second Edition, p.339, first published in 1877]

210. We have seen that the gravest tone of a membrane, whose boundary is approximately circular, is nearly the same as that of a mechanically similar membrane in the form of a circle of the same mean radius or area. If the area of a membrane be given, there must evidently be some form of boundary for which the pitch (of the principal tone) is the gravest possible, and this

$$-\Delta u = \lambda u, \ u \in H_0^1(\Omega)$$
$$0 < \lambda_1(\Omega) \le \lambda_2(\Omega)...$$

Rayleigh quotients: $\lambda_k(\Omega) = \min_{S_k \subset H_0^1(\Omega)} \max_{\phi \in S_k \setminus \{0\}} \frac{\int_{\Omega} |\nabla \phi|^2 dx}{\int_{\Omega} \phi^2 dx}$ Scaling: $\lambda_k(t\Omega) = \lambda_k(\Omega)/t^2$. Monotonicity: $\Omega_1 \subset \Omega_2 \Rightarrow \lambda_k(\Omega_1) \ge \lambda_k(\Omega_2)$ Multiplicity: if Ω is connected then $\lambda_1(\Omega) < \lambda_2(\Omega)$

Optimizing Eigenvalues - Drums

Lord Rayleigh - The Theory of Sound (1877)

The Drum

The shape that minimizes the area of a membrane at given frequency is the disk.

Faber-Krahn (1920-1923) The disk minimizes $\lambda_1(\Omega)$ at fixed area

$$\begin{cases} -\Delta u = \lambda_1(\Omega)u & \text{in } \Omega\\ u = 0 & \text{on } \partial\Omega \end{cases}$$

Beniamin BOGOSEL

Steiner symmetrization: consider a direction L

- rearrange all slices of Ω with hyperplanes orthogonal to L into segments centered on L
- for $u: \Omega \to \mathbb{R}$ the Steiner symmetrization consists in performing a Steiner symmetrization for all its level sets

photo: [Treibergs, Steiner Symmetrization and Applications] Some properties:

$$|\Omega| = |\Omega^*|, \ \int_{\Omega} u^2 = \int_{\Omega^*} (u^*)^2 \text{ and } \int_{\Omega} |\nabla u|^2 \ge \int_{\Omega^*} |\nabla u^*|^2$$

Important consequence. Symmetrization decreases the first eigenvalue at fixed volume

$$\lambda_1(\Omega) = \inf_{u \in H_0^1(\Omega), u \neq 0} \frac{\int_{\Omega} |\nabla u|^2}{\int_{\Omega} u^2} = \frac{\int_{\Omega} |\nabla u_1|^2}{\int_{\Omega} u_1^2} \ge \frac{\int_{\Omega^*} |\nabla u_1^*|^2}{\int_{\Omega^*} (u_1^*)^2} \ge \lambda_1(\Omega^*)$$

Beniamin BOGOSEL

Minimizing the first Dirichlet-Laplace eigenvalue

$$\begin{cases} -\Delta u = \lambda_1(\Omega)u & \text{in } \Omega\\ u = 0 & \text{on } \partial\Omega \end{cases}$$

<

Faber-Krahn (1920-1923)

The disk minimizes $\lambda_1(\Omega)$ at fixed area.

 \star Symmetrization decreases λ_1

Polyà-Szegö Conjecture (1920-1923)

The regular *n*-gon minimizes $\lambda_1(\Omega)$ among *n*-gons of fixed area.

- \star An optimal *n*-gon exists [Henrot, *Extremum problems for eigenvalues*].
- \star Cases $n \in \{3,4\}$ solved by Polyà and Szegö.
- \star Proofs based on Steiner symmetrization.

Beniamin BOGOSEL

What is known?

Up to re-scalings the following problems are equivalent:

 $\min_{|\Omega|=\pi, \ \Omega \in \mathcal{P}_n} \lambda_1(\Omega), \qquad \min_{\Omega \in \mathcal{P}_n} |\Omega| \lambda_1(\Omega), \qquad \min_{\Omega \in \mathcal{P}_n} \left(\lambda_1(\Omega) + |\Omega| \right)$

 \star n = 3: the **equilateral triangle** is the minimizer **Proof:** A sequence of Steiner symmetrizations w.r.t the mediatrix of the sides converges to the equilateral triangle.

 \star n = 4: the square is the minimizer **Proof:** A sequence of three Steiner symmetrizations transforms any quadrilateral into a rectangle.

 $\star~n \geq 5$: (almost) nothing is known

• Steiner symmetrization does not work: the number of sides may increase!

photo: [Henrot, Extremum problems...]

Beniamin BOGOSEL

Numerical evidence:

- [Antunes, Freitas, 06]: derivative free compute λ_1 on many polygons
- [Bogosel, PhD thesis, 15]: gradient algorithm, confirmation for $n \leq 15$.
- [Dominguez, Nigam, Shahriari, 17]: stochastic optimization, confirmation for n = 5

Theory:

- [Fragala, Velichkov, 19]: optimality conditions different proof for n=3
- [Laurain, 19]: second shape derivative on polygons, Hessian matrix

$\min_{\Omega\in\mathcal{A}}J(\Omega)$

Engineering: improve a given shape

Theory: give hints for new theoretical ideas

Prove something:

Easy: show that a shape is not optimal! Find a counterexample.

Hard: show that a given shape is optimal!

1 Introduction to Shape Optimization

2 Eigenvalues of the Laplace operator

3 Hybrid proof strategy

 \star a symmetric matrix A is positive definite if all its eigenvalues are positive

Optimality conditions again

If $\nabla f(x^*) = 0$ and $D^2 f(x^*) = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}\right)$ is positive definite then x^* is a local minimum

 \star We have a function depending on 2n variables (vertex coordinates). \star compute the first and second derivatives of

$$\lambda_1(x_0, y_0, x_1, y_1, \dots, x_{n-1}, y_{n-1}).$$

 \star not straightforward:

Coords.
$$\longrightarrow$$
 Shape \longrightarrow PDE $\longrightarrow \lambda_1$

Beniamin Bogosel

* objective: $J : P \mapsto |P|\lambda(P)$ (scale invariant) * λ simple \Longrightarrow J is smooth! [Henrot, Pierre]

- $\star J((I+\theta)(\Omega)) = J(\Omega) + J'(\Omega)(\theta) + o(\|\theta\|)$
- * Standard form: under regularity assumptions we can write $J'(\Omega)(\theta) = \int_{\partial \Omega} \mathbf{f} \ \theta \cdot \mathbf{n}$

Shape derivatives: simple eigenvalues

 \star a simple eigenvalue λ is differentiable. If u is an associated normalized eigenfunction:

$$\lambda'(\Omega)(\theta) = -\int_{\partial\Omega} \left(\frac{\partial u}{\partial \mathbf{n}}\right)^2 \theta \cdot \mathbf{n} = -\int_{\partial\Omega} |\nabla u|^2 \theta \cdot \mathbf{n}$$

* the formula holds when $u \in H^2(\Omega)$, for example when Ω is **convex** [Grisvard] * second shape derivative: formulas are known but require additional regularity assumptions on Ω , which are not verified by polygons

Key Idea!

 \star [Laurain, 19]: do not use the standard form: less regularity is needed

$$\lambda'(\Omega)(\theta) = \int_{\Omega} \mathbf{S}_{1}^{\lambda} : D\theta \text{ with } \mathbf{S}_{1}^{\lambda} = [|\nabla u|^{2} - \lambda(\Omega)u^{2}] \operatorname{\mathbf{Id}} - 2\nabla u \otimes \nabla u$$

* also see [Henrot Pierre, Shape variation and optimization, Section 5.9.7]

Beniamin BOGOSEL

Second Fréchet shape derivative

 \star computing the Fréchet derivative w.r.t. ξ we obtain (after some long computations...)

$$\lambda''(\Omega)(\theta,\xi) = \int_{\Omega} \mathcal{K}^{\lambda}(\theta,\xi)$$

with

$$\begin{split} \mathcal{K}^{\lambda}(\theta,\xi) &= -2\nabla \dot{u}(\theta) \cdot \nabla \dot{u}(\xi) + 2\lambda(\Omega) \dot{u}(\theta) \dot{u}(\xi) + \mathbf{S}_{1}^{\lambda} : (D\theta \operatorname{div} \xi + D\xi \operatorname{div} \theta) \\ &+ \left(-|\nabla u|^{2} + \lambda u^{2} \right) (\operatorname{div} \xi \operatorname{div} \theta + D\theta^{T} : D\xi) \\ &+ 2(D\theta D\xi + D\xi D\theta + D\xi D\theta^{T}) \nabla u \cdot \nabla u \\ &- \left[\lambda'(\Omega)(\theta) \operatorname{div} \xi + \lambda'(\Omega)(\xi) \operatorname{div} \theta \right] u^{2}. \end{split}$$

where $\dot{u}(\theta)$ and $\dot{u}(\xi)$ are derivatives of u in directions θ and ξ . * We obtained a new formula valid for Lipschitz domains * replace θ, ξ with **polygonal perturbations** to obtain the gradient and Hessian.

- Regular *n*-gon: explicit Hessian depending on the solution of n + 1 PDEs
- 4 eigenvalues are zero: corresponding to rigid motions and scalings
- Explicit eigenvalues depending on 3 PDEs
- Formulas are so complex that we did not manage to prove theoretically that the eigenvalues are positive!

 \star Goal: if the remaining 2n-4 Hessian eigenvalues are strictly positive then local minimality is proved.

 \star When theory doesn't help, turn to numerics!

General proof strategy

Given $f : \mathbb{R}^d \to \mathbb{R}$:

Conjecture

 x^* is a minimizer of f on \mathbb{R}^d

Strategy:

- 1. Prove that x^* is a local minimizer
- 2. Find an explicit neighborhood of x^* where local minimality occurs
- 3. Prove that points far away from x^* are not minimizers
- 4. Prove that if $f(x) > f(x^*) + \varepsilon$ then $f(x) > f(x^*)$ in a neighborhood of x
- 5. Use a finite number of numerical computations to conclude.

To **obtain a proof** all numerical computations need to have certified error bounds! Machine errors need to be accounted for: **interval arithmetics!** 1 Introduction to Shape Optimization

2 Eigenvalues of the Laplace operator

(3) Hybrid proof strategy

Error accumulation

- \star floating point arithmetic is used in numerical analysis software
- \star Using 15 digit precision

5.0000000000002 + 6.000000000003 = 11.0000000000000

 \star We make an error equal to $5\times 10^{-14}.$ Small, but not zero.

 \star Patriot missile failure: time was counted in 10ths of seconds: 1/10 not representable exactly in binary. After 100 hours the representation error was 0.342 seconds! Scud missile travels 1.5km/s!

Beniamin BOGOSEL

 \star the result of a numerical computation is not exact: information is lost

Interval arithmetics

- \star A floating point number is replaced by an interval.
- \star The output of a sequence of interval operations is an interval guaranteed to contain the exact result

* Specific upwards/downwards rounding procedures are used
* Specialized interval arithmetic software exist: Intlab (Matlab), IntervalArithmetic (Julia), etc.

```
Examples:

[2.99, 3.01] + [0.99, 1.01] = [3.98, 4.02]

[2.99, 3.01] \times [0.99, 1.01] = [2.9601, 3.0401]

[0.99, 1.01]/[2.99, 3.01] = [0.3289, 0.3378]
```

Triangulation, variational formulation, linear system/eigenvalue problem:

$$-\Delta u = f, u \in H_0^1(\Omega) \text{ vs } \int_{\Omega} \nabla u_h \cdot \nabla v_h = \int_{\Omega} f_h v_h, \ \forall v_h \in V^h \subset H_0^1(\Omega)$$

* discretization errors: continuous vs discrete solutions: $||u - u_h||$

Nobody worries about this

- \star exact discrete solutions vs solutions obtained via iterative algorithms
- \star floating point arithmetic errors: meshing, assembly

Explicit error estimates for the Laplacian eigenvalues

 $\star -\Delta u = \lambda u, \ u \in H_0^1(\Omega), \ \Omega \text{ polygon}$ $\star \text{ piecewise linear finite elements}$

Explicit a priori error estimates [Liu, Oishi, 13]

- $|\lambda \lambda_h| \le C_1 h^2$
- $||u u_h||_{L^2} \le C_2 h^2$
- $\|\nabla u \nabla u_h\|_{L^2} \le C_3 h$
- Our contribution: eigenvalues of the Hessian have estimates with error $C_{\gamma}h^{1-2\gamma}$, $\gamma \in (0, 1/2), C_{\gamma} \to \infty$ as $\gamma \to 0$.

where C_1, C_2, C_3, C_γ are **explicit** for a given mesh.

 \star easy to see how to choose h in order to achieve a desired precision

high precision \rightarrow small $h \rightarrow$ big discrete linear systems \rightarrow bad control of machine errors

Local minimality – regular pentagon

- * Regular pentagon of radius 1: $h=10^{-4},$ approx 250 million d.o.f
- \star FreeFEM using 200 processors: Cholesky cluster–Institut Polytechnique Paris
- * explicit estimates-intervals containing the exact result: $q \in [q_h C_q h^k, q_h + C_q h^k]$
- \star INTLAB gives the bounds for the Hessian eigenvalues
- \star we do not control machine errors in the FEM computations! (future work)

* such errors are of size
$$O(\varepsilon h^{-2})$$
, $\varepsilon = 2.2 \times 10^{-16}$: in our work $\approx 10^{-8}$

 \star recall that four eigenvalues are zero!

Pentagon					
Eigenvalue	lower bound	upper bound	multiplicity		
2.568803	2.359297	2.784816	2		
8.015038	7.558395	8.460722	2		
13.458443	13.012758	13.915086	2		

 \star similar results are obtained for $n \in \{6,7,8\}$

	h	d.o.f.	optimal h	d.o.f
Pentagon	10^{-4}	$250\ 025\ 001$	9.8e-4	≈ 2.6 million
Hexagon	10^{-4}	$300 \ 030 \ 001$	4.2e-4	≈ 17 million
Heptagon	10^{-4}	$350\ 035\ 001$	1.9e-4	≈ 97 million
Octagon	10^{-4}	400 040 001	1.35e-4	≈ 220 million

 \star improving the theoretical estimates should further decrease the size of the computational problems

 \star Local minimality+Some Theory \Longrightarrow Explicit local-minimality neighborhood

Finalize the proof

Theorem. Given $n \ge 3$, a finite number of numerical computations solve the conjecture.

* First 2 pictures: lower bound for area and eigenvalue * if current lower bound for $\lambda_1(P)|P|$ is not good enough, divide the squares sides in half and consider all combinations recursively

 \star if the recursion does not end we converge to a counterexample!

 \star Third picture: example of validation of a (really small) region: 262144 computations

Beniamin Bogosel

Preprint: [Bogosel, Bucur, On the polygonal Faber-Krahn inequality, March 2022]

- We propose a new hybrid proof strategy for proving this classical conjecture.
- Local minimality: almost done, with the help of numerical computations.
- Validated numerical computations open the way to new mathematical results unattainable with traditional methods!