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Chennai, India

In-vehicle congestion
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Sao Paulo Metro Station

Platform congestion
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London Tube

Bus stop congestion
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Problem

Given


transit network (V ,A)
travel demands gd

i ≥ 0
arc travel times ta = sa(va)

bus frequencies µa

bus capacities ca

Determine:

passenger flows on line segments

travel times for each OD pair

waiting times at bus stops
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Common lines – uncongested (Chriqui-Robillard’75)

O D...

ℓ1
ℓ2

ℓn

Travel times t1 ≤ . . . ≤ tn
Frequencies µ1, . . . , µn

Strategies s ⊆ L

Ts = Ws +
∑
a∈s

ta π
a
s =

1 +
∑

a∈s ta µa∑
a∈s µa

τ = min
s⊆L

Ts

Theorem (Chriqui-Robillard’75)

Optimal strategy: s∗ = {1, 2, . . . , k∗} take the k∗ fastest lines.

⇒ linear time algorithm: s∗ = {a : ta ≤ Ts∗}
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Extension to networks

Spiess’1984, Gendreau’1984, Nguyen-Pallottino’1988, Spiess-Florian’1989,

Fernández-De Cea’1989, Wu-Florian-Marcotte’1994,

Bouzaiene-Gendreau-Nguyen’1995

These models overlook capacity effects.

3 On-board: increased discomfort

3 Bus stops: increased waiting times

3 Boardings & alightings: increased travel times

7 Boarding probabilities: changes in flow distribution

Key point: estimate correctly the flows !
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Denied boardings deferred to other services
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Emma Freijinger, November 2013 

“Sydney bus and train 
commuters say overcrowding is 
still their main public transport 
concern.” 
http://www.abc.net.au/news/stories/2010/12/31/
3104302.htm?site=sydney

“Buses in Sydney on the busiest 
routes are often overcrowded 
and do not stop for passengers, 
with an extraordinary 22% of 
people missing their service.” 
http://www.2ue.com.au/blogs/2ue-
blog/crowded-buses-just-not-
stopping/20111130-1o6f1.html

Sydney
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Common lines with congestion

O D...
g⇒ ⇒g

ℓ1
ℓ2

ℓn

Split the demand g =
∑

s⊆L xs so that only optimal strategies are used

xs > 0 ⇒ Ts ≜ Ws +
∑

a∈sta π
a
s is minimal

{
Ws = Ws(x) ?
πa
s = πa

s (x) ?
... queueing theory
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Bulk queues M |M |1

v −→ ⃝ −→ µ, c (λ < µC )

Little’s formula yields the waiting time

W (v) =
1

v
E(L) =

1

v

ρ

1− ρ

where ρ = ρ(v) ∈ [0, 1] is the solution of

µ(ρ+ ρ2 + · · ·+ ρc) = v .

Definition

Effective frequency is defined as f (v) ≜ 1
W (v)

Remark: for light demand v ∼ 0 we have f (v) ∼ µ.
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Strategies with congestion

Let s ⊆ L and denote fa(va) the effective frequency of each line a ∈ L.

Lemma (C-Correa’2001)

Assume Poisson arrivals with rate xs . Then the expected flows va on the
lines a ∈ s are the unique solution of the system

(E ) va = xs
fa(va)∑
b∈s fb(vb)

Moreover, setting fa = fa(va) we have

Ws = 1/
∑

b∈s fb

πa
s = fa/

∑
b∈s fb

Ts =
1+

∑
a∈s ta fa∑
a∈s fa

When there are several xs ’s we have va = va(x), fa = fa(x),...
No analytic expressions available... yet !
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Common lines – Equilibrium model

We postulate fa = fa(va) as a decreasing function of the line’s load, and
we denote v = v(x) the unique solution of the system

(E ) va =
∑

s xs π
a
s =

∑
s∋a

xs
fa(va)∑
b∈s fb(vb)

Equilibrium: Split the demand g =
∑

sxs with xs ≥ 0 so that

(W ) xs > 0 ⇒ Ts(v) = τ(v)

where

Ts(v) =
1+

∑
a∈s ta fa(va)∑
a∈s fa(va)

τ(v) = min
s⊆L

Ts(v)
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Characterization & Existence

Theorem (C-Correa’2001)

Let v̄a(α) be the inverse function of va 7→ va
fa(va)

and denote τα≜τ(v̄(α)).
Then the equilibrium flows va are the optimal solutions of

min
(α,v)

∑
a∈L

[
tava +

∫ α

0
[τξ − ta]+ v̄

′
a(ξ) dξ

]
∑

a∈L va = g

0 ≤ va ≤ v̄a(α).

In particular, there exists an equilibrium.

Remark: Once α is known, the flows v are easily obtained.
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Characterization & Existence

Theorem (C-Correa’2001)

Let α be the unique solution of
∑

ta<τα
v̄a(α) ≤ g ≤

∑
ta≤τα

v̄a(α).
Then v is an equilibrium iff

∑
a∈L va = g with

va
fa(va)


= α if ta < τα
≤ α if ta = τα
= 0 if ta > τα

ααα
2 3

αx(  )^

αx(  )

^
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Comments

Existence + characterization + conditions for uniqueness

Constant time for some ranges of demand

Co-existence of multiple equilibrium strategies

Inefficient equilibria... Braess-type paradox

Model consistent with simulations
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Network Transit Equilibrium

Family of common line problems coupled by flow conservation.

xdi ...
i

ja

d

ta(v) τdja

Generalized Bellman Equations:

τdd = 0 ; τdi = min
s⊆A+

i

1+
∑

a∈s [ta(v)+τd
j(a)

]fa(v)∑
a∈s fa(v)

Flow Conservation:

xdi ≜ gd
i +

∑
A−
i
vda =

∑
A+
i
vda

Existence of equilibria: Kakutani’s Fixed Point Theorem
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Characterization

Theorem (Cepeda-C-Florian’2006)

(vda ) are equilibrium flows iff there exist (αd
i ) such that

vda
fa(v)


= αd

i if ta(v) + τdj(a)(v) < τdi (v)

≤ αd
i if ta(v) + τdj(a)(v) = τdi (v)

= 0 if ta(v) + τdj(a)(v) > τdi (v)

These are precisely the optimal solutions of

min
(vd

a )

∑
d

[∑
a∈A ta(v)v

d
a +

∑
i∈V max

a ∈ A+
i

vd
a

fa(v)
−
∑

i∈V gd
i τ

d
i (v)

]
s.t. gd

i +
∑

A−
i
vda =

∑
A+
i
vda
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Applications

Model implemented as a macro within EMME software (INRO).

Has been used in

2005: Sao Paulo

2010: San Francisco, Bangkok

2011: Sidney, Mexico City, Los Angeles,

2012: Santiago

2013: Brisbane, Rio de Janeiro

2014: Stockholm

2016: Toronto

Source: Michael Florian (INRO)
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Application: Santiago (developed by SECTRA, 2012)
Santiago, Chile (2012)

Emma Freijinger, November 2013 
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AITPM Conference, Perth., August 2013Source: SECTRA
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AITPM Conference, Perth., August 2013

Flows on all transit modes
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AITPM Conference, Perth., August 2013

Source: SECTRA
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Assigned vs. metro counts segment volume

Emma Freijinger, November 2013 
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3 Research opportunities

Adaptive dynamics
Dynamic equilibrium
TCP/IP multipath routing
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Adaptive dynamics

Are drivers fully rational? Do they have full information?

Do myopic adaptive dynamics support equilibrium?

Recent results by C-Melo-Sorin’2010 and Bravo’2011 provide partial
answers and lead to other notions of equilibria

Many open questions remain !

almost sure convergence under small noise
speeds of convergence of stochastic adaptive dynamics
multiplicity and bifurcations of equilibria
large population asymptotics
more realistic adaptive dynamics
robustness under model specification
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Dynamic equilibrium

Traffic equilibrium under automated guidance software tools

Dynamic equilibrium more appropriate than static equilibrium

Recent progress for fluid queuing networks:

“derivatives of equilibria ≡ normalized thin flows with resetting”

characterization & computation of equilibria: Koch-Skutella’2010
characterization & existence of equilibria: C-Correa-Larré’2015
long-term behavior of equilibria: C-Correa-Olver’2017

Many open questions remain !

finite convergence of reconstruction algorithm
efficient computation of NTFR’s and equilibria
multiple origin-destination networks
other link dynamics: LWR, spillbacks
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TCP/IP multipath routing

Each source s ∈ S transmits packets from os to ds

TCP = At which rate? / IP = Along which route?

Random delays t̃a = queuing + transmission + propagation

Finite queuing buffers ⇒ packet loss probabilities pa

Congestion control – TCP Reno/Tahoe/Vegas
Sources adjust transmission rates in response to congestion.
Feedback mechanism: higher congestion ⇔ smaller rates.
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Congestion control and multipath routing

Kelly et al. 1998: Steady states of TCP protocols are

Equilibria for an associated potential game
TCP reverse-engineered as a decentralized asynchronous
algorithm that solves a network optimization problem

Many open questions remain !

Convergence analysis accounting for stochastics & delays
Increase transmission rates: multi-path routing
Combine NUM with MTE (C-Guzmán’2014)

Design stable packet-level protocols
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Thanks!

Reprints available at
https://sites.google.com/site/cominettiroberto/
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