Chennai, India

In-vehicle congestion

R. Cominetti (UAI)

Optimization & Games in Transportation

Sao Paulo Metro Station

Platform congestion

R. Cominetti (UAI)

Optimization & Games in Transportation

London Tube

Bus stop congestion

Problem

 ${\rm Given} \left\{ \begin{array}{ll} {\rm transit network} & (V,A) \\ {\rm travel demands} & g_i^d \geq 0 \\ {\rm arc travel times} & t_a = s_a(v_a) \end{array} \right.$

Problem

 $\label{eq:Given} \mathsf{Given} \left\{ \begin{array}{ll} \text{transit network} & (V,A) \\ \text{travel demands} & g_i^d \geq 0 \\ \text{arc travel times} & t_a = s_a(v_a) \\ \text{bus frequencies} & \mu_a \\ \text{bus capacities} & c_a \end{array} \right.$

Problem

 $\label{eq:Given} \mathsf{Given} \left\{ \begin{array}{ll} \mathsf{transit} \; \mathsf{network} & (V,A) \\ \mathsf{travel} \; \mathsf{demands} & g_i^d \geq 0 \\ \mathsf{arc} \; \mathsf{travel} \; \mathsf{times} & t_a = s_a(v_a) \\ \mathsf{bus} \; \mathsf{frequencies} & \mu_a \\ \mathsf{bus} \; \mathsf{capacities} & c_a \end{array} \right.$

Determine:

- passenger flows on line segments
- travel times for each OD pair
- waiting times at bus stops

Common lines – uncongested (Chriqui-Robillard'75)

Strategies $s \subseteq L$

Travel times $t_1 \leq \ldots \leq t_n$ Frequencies μ_1, \ldots, μ_n

Common lines – uncongested (Chriqui-Robillard'75)

 $\begin{array}{ll} \text{Travel times} & t_1 \leq \ldots \leq t_n \\ \text{Frequencies} & \mu_1, \ldots, \mu_n \\ \text{Strategies} & s \subseteq L \end{array}$

$$T_{s} = W_{s} + \sum_{a \in s} t_{a} \pi_{s}^{a} = \frac{1 + \sum_{a \in s} t_{a} \mu_{a}}{\sum_{a \in s} \mu_{a}}$$
$$\tau = \min_{s \subseteq L} T_{s}$$

Common lines – uncongested (Chriqui-Robillard'75)

 $\begin{array}{ll} \text{Travel times} & t_1 \leq \ldots \leq t_n \\ \text{Frequencies} & \mu_1, \ldots, \mu_n \\ \text{Strategies} & s \subseteq L \end{array}$

$$T_{s} = W_{s} + \sum_{a \in s} t_{a} \pi_{s}^{a} = \frac{1 + \sum_{a \in s} t_{a} \mu_{a}}{\sum_{a \in s} \mu_{a}}$$
$$\tau = \min_{s \subseteq L} T_{s}$$

Theorem (Chriqui-Robillard'75)

Optimal strategy: $s^* = \{1, 2, ..., k^*\}$ take the k^* fastest lines.

 \Rightarrow linear time algorithm: $s^* = \{a : t_a \leq T_{s^*}\}$

Extension to networks

Spiess'1984, Gendreau'1984, Nguyen-Pallottino'1988, Spiess-Florian'1989, Fernández-De Cea'1989, Wu-Florian-Marcotte'1994, Bouzaiene-Gendreau-Nguyen'1995

Extension to networks

Spiess'1984, Gendreau'1984, Nguyen-Pallottino'1988, Spiess-Florian'1989, Fernández-De Cea'1989, Wu-Florian-Marcotte'1994, Bouzaiene-Gendreau-Nguyen'1995

These models overlook capacity effects.

- On-board: increased discomfort
- Bus stops: increased waiting times
- Boardings & alightings: increased travel times
- **X** Boarding probabilities: changes in flow distribution

Key point: estimate correctly the flows !

Denied boardings deferred to other services

R. Cominetti (UAI)

Optimization & Games in Transportation

Sydney

- "Sydney bus and train commuters say overcrowding is still their main public transport concern." http://www.abc.net.au/news/stories/2010/12/31/ 3104302.htm?site=sydney
- "Buses in Sydney on the busiest routes are often overcrowded and do not stop for passengers, with an extraordinary 22% of people missing their service."

http://www.2ue.com.au/blogs/2ueblog/crowded-buses-just-notstopping/20111130-106f1.html

Emma Freijinger, November 2013

Common lines with congestion

Split the demand $g = \sum_{s \subseteq L} x_s$ so that only optimal strategies are used $x_s > 0 \Rightarrow T_s \triangleq W_s + \sum_{a \in s} t_a \pi_s^a$ is minimal

$$\begin{cases} W_s = W_s(x) & ?\\ \pi_s^a = \pi_s^a(x) & ? & \dots \text{ queueing theory} \end{cases}$$

Bulk queues M|M|1

$$\mathbf{v} \longrightarrow \bigcirc \longrightarrow \mu, \mathbf{c}$$
 $(\lambda < \mu \mathbf{C})$

Little's formula yields the waiting time

$$W(v) = \frac{1}{v}\mathbb{E}(L) = \frac{1}{v}\frac{\rho}{1-\rho}$$

where $ho =
ho(
m v) \in [0,1]$ is the solution of

$$\mu(\rho+\rho^2+\cdots+\rho^c)=v.$$

Bulk queues M|M|1

$$v \longrightarrow \bigcirc \longrightarrow \mu, c$$
 ($\lambda < \mu C$)

Little's formula yields the waiting time

$$W(v) = rac{1}{v}\mathbb{E}(L) = rac{1}{v}rac{
ho}{1-
ho}$$

where $ho =
ho(
m{v}) \in [0,1]$ is the solution of

$$\mu(\rho+\rho^2+\cdots+\rho^c)=v.$$

Definition

Effective frequency is defined as $f(v) \triangleq \frac{1}{W(v)}$

REMARK: for light demand $v \sim 0$ we have $f(v) \sim \mu$.

Strategies with congestion

Let $s \subseteq L$ and denote $f_a(v_a)$ the effective frequency of each line $a \in L$.

Lemma (C-Correa'2001)

Assume Poisson arrivals with rate x_s . Then the expected flows v_a on the lines $a \in s$ are the unique solution of the system

(E)
$$v_a = x_s \frac{f_a(v_a)}{\sum_{b \in s} f_b(v_b)}$$

Moreover, setting $f_a = f_a(v_a)$ we have

$$\begin{array}{rcl} W_{s} & = & 1/\sum_{b \in s} f_{b} \\ \pi_{s}^{a} & = & f_{a}/\sum_{b \in s} f_{b} \\ T_{s} & = & \frac{1+\sum_{a \in s} t_{a} f_{a}}{\sum_{a \in s} f_{a}} \end{array}$$

Strategies with congestion

Let $s \subseteq L$ and denote $f_a(v_a)$ the effective frequency of each line $a \in L$.

Lemma (C-Correa'2001)

Assume Poisson arrivals with rate x_s . Then the expected flows v_a on the lines $a \in s$ are the unique solution of the system

(E)
$$v_a = x_s \frac{f_a(v_a)}{\sum_{b \in s} f_b(v_b)}$$

Moreover, setting $f_a = f_a(v_a)$ we have

$$\begin{array}{rcl} W_s &=& 1/\sum_{b \in s} f_b \\ \pi^a_s &=& f_a/\sum_{b \in s} f_b \\ T_s &=& \frac{1+\sum_{a \in s} t_a f_a}{\sum_{a \in s} f_a} \end{array}$$

When there are several x_s 's we have $v_a = v_a(x)$, $f_a = f_a(x)$,... No analytic expressions available... yet !

Common lines - Equilibrium model

We postulate $f_a = f_a(v_a)$ as a decreasing function of the line's load, and we denote v = v(x) the unique solution of the system

(E)
$$v_a = \sum_s x_s \pi_s^a = \sum_{s \ni a} x_s \frac{f_a(v_a)}{\sum_{b \in s} f_b(v_b)}$$

Common lines - Equilibrium model

We postulate $f_a = f_a(v_a)$ as a decreasing function of the line's load, and we denote v = v(x) the unique solution of the system

(E)
$$v_a = \sum_s x_s \pi_s^a = \sum_{s \ni a} x_s \frac{f_a(v_a)}{\sum_{b \in s} f_b(v_b)}$$

Equilibrium: Split the demand $g = \sum_{s} x_{s}$ with $x_{s} \ge 0$ so that

$$(W) x_s > 0 \Rightarrow T_s(v) = \tau(v)$$

where

$$T_{s}(v) = \frac{1 + \sum_{a \in s} t_{a} f_{a}(v_{a})}{\sum_{a \in s} f_{a}(v_{a})}$$

$$\tau(v) = \min_{s \subseteq L} T_{s}(v)$$

Characterization & Existence

Theorem (C-Correa'2001)

Let $\bar{v}_a(\alpha)$ be the inverse function of $v_a \mapsto \frac{v_a}{f_a(v_a)}$ and denote $\tau_{\alpha} \triangleq \tau(\bar{v}(\alpha))$. Then the equilibrium flows v_a are the optimal solutions of

$$\min_{(\alpha,\nu)} \sum_{a\in L} \left[t_a v_a + \int_0^\alpha [\tau_\xi - t_a]_+ \bar{v}'_a(\xi) \, d\xi \right]$$
$$\sum_{a\in L} v_a = g$$
$$0 \le v_a \le \bar{v}_a(\alpha).$$

In particular, there exists an equilibrium.

REMARK: Once α is known, the flows v are easily obtained.

Characterization & Existence

Theorem (C-Correa'2001)

Let α be the unique solution of $\sum_{t_a < \tau_\alpha} \bar{v}_a(\alpha) \le g \le \sum_{t_a \le \tau_\alpha} \bar{v}_a(\alpha)$. Then v is an equilibrium iff $\sum_{a \in L} v_a = g$ with

$$\frac{v_{a}}{f_{a}(v_{a})} \begin{cases} = \alpha & \text{if } t_{a} < \tau_{\alpha} \\ \leq \alpha & \text{if } t_{a} = \tau_{\alpha} \\ = 0 & \text{if } t_{a} > \tau_{\alpha} \end{cases}$$

Comments

- Existence + characterization + conditions for uniqueness
- Constant time for some ranges of demand
- Co-existence of multiple equilibrium strategies
- Inefficient equilibria... Braess-type paradox
- Model consistent with simulations

Network Transit Equilibrium

Family of common line problems coupled by flow conservation.

Network Transit Equilibrium

Family of common line problems coupled by flow conservation.

Generalized Bellman Equations:

$$\tau_d^d = 0 \ ; \ \tau_i^d = \min_{s \subseteq A_i^+} \frac{1 + \sum_{a \in s} [t_a(v) + \tau_{j(a)}^d] f_a(v)}{\sum_{a \in s} f_a(v)}$$

Flow Conservation:

$$x_i^d \triangleq g_i^d + \sum_{A_i^-} v_a^d = \sum_{A_i^+} v_a^d$$

Existence of equilibria: Kakutani's Fixed Point Theorem

Characterization

Theorem (Cepeda-C-Florian'2006)

 (v_a^d) are equilibrium flows iff there exist (α_i^d) such that

$$\frac{v_a^d}{f_a(v)} \begin{cases} = \alpha_i^d & \text{if } t_a(v) + \tau_{j(a)}^d(v) < \tau_i^d(v) \\ \le \alpha_i^d & \text{if } t_a(v) + \tau_{j(a)}^d(v) = \tau_i^d(v) \\ = 0 & \text{if } t_a(v) + \tau_{j(a)}^d(v) > \tau_i^d(v) \end{cases}$$

These are precisely the optimal solutions of

$$\min_{\substack{(v_a^d)}} \sum_d \left[\sum_{a \in A} t_a(v) v_a^d + \sum_{i \in V} \max_{a \in A_i^+} \frac{v_a^d}{f_a(v)} - \sum_{i \in V} g_i^d \tau_i^d(v) \right]$$
s.t. $g_i^d + \sum_{A_i^-} v_a^d = \sum_{A_i^+} v_a^d$

Applications

Model implemented as a macro within EMME software (INRO).

Has been used in

- 2005: Sao Paulo
- 2010: San Francisco, Bangkok
- 2011: Sidney, Mexico City, Los Angeles,
- 2012: Santiago
- 2013: Brisbane, Rio de Janeiro
- 2014: Stockholm
- 2016: Toronto

Source: Michael Florian (INRO)

Application: Santiago (developed by SECTRA, 2012)

Emme Model – Model Construction

Feeder Routes (2011 coverage)

Gobierno de Chile | Ministerio de Transportes y Telecom unicaciones

Regular nodes:	20,093
Stops and stations:	12,500
Centroids:	2,916
Regular links:	60,528
Connectors:	24,714

(software size and license)

Trunk routes: 390 service-direction / 3,700 vehicles / 7,800 km

Feeder routes: 430 service-direction / 2,200 vehicles / 5,100 km Source: SECTRA

Metro: 150 vehicles (trains) / 5 lines / 200 km

Optimization & Games in Transportation

Flows on all transit modes

Assigned vs. metro counts segment volume

Emma Freijinger, November 2013

Optimization & Games in Transportation

Research opportunities

- Adaptive dynamics
- Dynamic equilibrium
- TCP/IP multipath routing

Adaptive dynamics

- Are drivers fully rational? Do they have full information?
- Do myopic adaptive dynamics support equilibrium?
- Recent results by C-Melo-Sorin'2010 and Bravo'2011 provide partial answers and lead to other notions of equilibria

Adaptive dynamics

- Are drivers fully rational? Do they have full information?
- Do myopic adaptive dynamics support equilibrium?
- Recent results by C-Melo-Sorin'2010 and Bravo'2011 provide partial answers and lead to other notions of equilibria
- Many open questions remain !
 - almost sure convergence under small noise
 - speeds of convergence of stochastic adaptive dynamics
 - multiplicity and bifurcations of equilibria
 - large population asymptotics
 - more realistic adaptive dynamics
 - robustness under model specification

Dynamic equilibrium

- Traffic equilibrium under automated guidance software tools
- Dynamic equilibrium more appropriate than static equilibrium
- - characterization & computation of equilibria: Koch-Skutella'2010
 - characterization & existence of equilibria: C-Correa-Larré'2015
 - long-term behavior of equilibria: C-Correa-Olver'2017

Dynamic equilibrium

- Traffic equilibrium under automated guidance software tools
- Dynamic equilibrium more appropriate than static equilibrium
- Recent progress for fluid queuing networks:
 "derivatives of equilibria
 normalized thin flows with resetting"
 - characterization & computation of equilibria: Koch-Skutella'2010
 - characterization & existence of equilibria: C-Correa-Larré'2015
 - long-term behavior of equilibria: C-Correa-Olver'2017
- Many open questions remain !
 - finite convergence of reconstruction algorithm
 - efficient computation of NTFR's and equilibria
 - multiple origin-destination networks
 - other link dynamics: LWR, spillbacks

TCP/IP multipath routing

- Each source $s \in S$ transmits packets from o_s to d_s
- TCP = At which rate? / IP = Along which route?
- Random delays $\tilde{t}_a =$ queuing + transmission + propagation
- Finite queuing buffers \Rightarrow packet loss probabilities p_a

 Congestion control – TCP Reno/Tahoe/Vegas Sources adjust transmission rates in response to congestion. Feedback mechanism: *higher congestion ⇔ smaller rates*.

Congestion control and multipath routing

• Kelly et al. 1998: Steady states of TCP protocols are

- Equilibria for an associated potential game
- TCP reverse-engineered as a decentralized asynchronous algorithm that solves a network optimization problem

Congestion control and multipath routing

• Kelly et al. 1998: Steady states of TCP protocols are

- Equilibria for an associated potential game
- TCP reverse-engineered as a decentralized asynchronous algorithm that solves a network optimization problem
- Many open questions remain !
 - Convergence analysis accounting for stochastics & delays
 - Increase transmission rates: multi-path routing
 - Combine NUM with MTE (C-Guzmán'2014)
 - Design stable packet-level protocols

Thanks!

Reprints available at

https://sites.google.com/site/cominettiroberto/