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Prophet Inequalities – Optimal Stopping
• Johannes Kepler 1613 (who found a wife after interviewing 11 candidates!)
“ Though all Christians start a wedding invitation by solemnly declaring their marriage is due to special Divine 
arrangement, I as a philosopher, would like to discourse with you, O wisest of men, in greater detail about this. 
Was it Divine Providence or my own moral guilt which, for two years or longer, tore me in so many different 
directions and made m consider the possibility of such different unions?”

• Arthur Cayley 1875 Even in the news!



Course Overview

1. Classic single-choice problems:
The classic prophet inequality, secretary problem, prophet secretary problem, etc

2. Data driven prophet inequalities:
How can limited amount of data be nearly as useful as full distributional knowledge

3. Combinatorial Prophet Inequalities
Many ideas for single choice problems, extend to combinatorial contexts such as k-

choice, Matching, hyper graph matching, and beyond

4. Online Combinatorial Auctions
General Model that encompasses many online selection/allocation problems



1. Classic single-choice problems



1 item

𝑛 agents  
independent valuations 
𝑣! ∼ 𝐹!

• We are given 𝐹", … , 𝐹#
• Agents arrive sequentially: we observe 𝑣" ∼ 𝐹", 𝑣$ ∼ 𝐹$, … one by one
• We (the Decision Maker) decide stop/continue
• We maximize 𝔼 𝑣%&'(
• Compare against a prophet that can see realizations in advance and thus gets 

the optimal social welfare  𝔼 max
!
𝑣!

The prophet inequality



1 item

𝑛 agents  
independent valuations 
𝑣! ∼ 𝐹!

• Optimal online algorithm: Backwards Induction

• Stop if current value exceeds the expectation of the future.

The prophet inequality

𝑉 𝑣", … , 𝑣# = 𝔼 max{𝑣", 𝑉 𝑣$, … , 𝑣# }

= 𝑉 𝑣$, … , 𝑣# + 𝔼[ 𝑣" − 𝑉 𝑣$, … , 𝑣#
)
]



1 item

𝑛 agents  
independent valuations 
𝑣! ∼ 𝐹!

• Example: 3 agents, 𝐹!=U[0,1]
DM:

• 𝑉(𝑣*)=1/2

• 𝑉(𝑣+, 𝑣*)=1/2 + 𝔼[ 𝑣+ −
"
$

)
] = 5/8

• 𝑉(𝑣$, 𝑣+, 𝑣*)=5/8 + 𝔼 𝑣$ −
,
-

)

= ,
-
+ +

-
∗ +
-
∗ "
$
= -.

"$-

The prophet inequality

Prophet:
• 𝔼(max 𝑣* )=1/2
• 𝔼 max 𝑣+, 𝑣* = $

+
• 𝔼 max 𝑣$, 𝑣+, 𝑣* = +

*



Theorem. [Krengel and  Sucheston ‘77] 𝑉 𝑣", … , 𝑣# ≥ "
$
max
!
𝑣!

We can get  ½ of the expected optimal welfare.

And ½ is the best possible constant:

The prophet inequality

𝑣$ =
"
/

𝑤. 𝑝. 𝜀,		and
0 𝑤. 𝑝. 1 − 𝜀

𝑣! = 1



Theorem. [Krengel and  Sucheston ‘77] 𝑉 𝑣", … , 𝑣# ≥ "
$
max
!
𝑣!

Many proofs and algorithms. 
Optimal algorithm by induction [Hill, Kertz ‘81]

Median:  𝑝 such that ℙ max
!
𝑣! ≤ 𝑝 = 1/2 [Samuel-Cahn ‘84] 

Half of expectation: 𝑝 = "
#
⋅ 𝔼 max

!
𝑣! [Kleinberg, Weinberg STOC’12] 

Max of samples: draw 𝑣!$ ∼ 𝐹! and post 𝑝 = max
!
𝑣!$ [Rubinstein, Wang, Weinberg ITCS’20] 

The prophet inequality



1 item

𝑛 agents  
arbitrary valuations 𝑣!
Random order

• Agents arrive sequentially: we observe 𝑣", 𝑣$, … one by one

• We (the Decision Maker) decide to stop/continue

• We maximize ℙ 𝑣%&'( = max
!
𝑣!

The secretary problem



Secretary Prophet



1 item

𝑛 agents  
arbitrary valuations 𝑣!
Random order

Theorem [Lindley, 1961] The 𝑛/𝑒 -threshold strategy is optimal and picks the 
maximum value with probability 1/𝑒.

The secretary problem



𝑛/𝑒 -threshold strategy:

1. Discard the 𝑛/𝑒 first values but remember the maximum 𝑀 in this segment.
2. Keep the first value that exceeds 𝑀. 

The secretary problem



Single selection Optimal Stopping

GOAL

ORDER INFO
Fixed, 
Random, 
Selected by DM

Adversarial, 
Full distribution, 
Data-driven

maximize 𝔼, 
maximize ℙ, 
minimize Rank



Zoo of Optimal Stopping problems
• Classic Secretary Problem: Pick the best, Random order, Adversarial values [Gardner 60]

SOLVED: Best algorithms gets 1/e. [Lindley 61, Ferguson 89]
• Full information secretary: Pick the best, (Random order), i.i.d. values with known distribution [Gilbert 

and Mosteller 66]
SOLVED: Best algorithm gets 0.58 [Samuels 82]

• Min rank Secretary problem: Minimize expected ranking, Random order
SOLVED: Best expected ranking is 3.87 [Chow, Moriguti, Robbins, Samuels 64] 

• Full information min rank: Minimize expected ranking, Random order, i.i.d. values with known 
distribution 

OPEN: Best expected ranking is close to 2 but unknown (This is known as Robbins problem)
• Secretary with general objective: Minimize a function of the ranking, Random order

SOLVED: Optimal algorithm for arbitrary objective [Mucci 73]



Zoo of Optimal Stopping problems
• Classic Prophet Inequality: Max expectation, Adversarial order, independent values with known 

distribution [Krengel and Sucheston 77]
SOLVED: Best algorithm gets ½ of the prophet [KS and Garling 78]

• IID prophet: : Max expectation, (Random order), i.i.d. values with known distribution [Hill and Kertz 82]
SOLVED: Best algorithm gets 0.745 of the prophet [Kertz 86] [Correa et al EC 2017]

• Free order prophet: Max expectation, DM selects the order, independent values with known 
distribution [Hill 83]

OPEN: Best known algorithm gets 0.725 of the prophet [Peng and Tang FOCS 2022]
• Prophet Secretary: Max expectation, Random order, independent values with known distribution 

[Esfandiari et al ESA 2015]
OPEN: Best known algorithm gets 0.669 of the prophet [C. Saona, Ziliotto SODA 2019]

No possible to go above 0.725 [Bubna, Chiplunkar 2023+, Mallman-Trenn, Saona 2023+]



Some proofs
• Proof for the Secretary Problem 

[Bruss 84]
• Three proofs of the prophet inequality
• Induction 

[Hill and Kertz 81]
• Balanced prices

[Samuel-Cahn 84]
• Stochastic dominance 

[Kleinberg and Weinberg STOC 2012]
• Proof for single threshold prophet secretary 

[Eshani et al SODA 2018]
[C. Saona, Ziliotto SODA 2019]



Secretary

𝑥 𝑡

1. Assign uniform [0,1] random times to the elements
2. ALG: Do nothing until time 𝑥. Then accept first value larger than what you have seen

ℙ 𝑆𝑇𝑂𝑃 ≤ 𝑡 = 1 − 𝑥/𝑡 (STOP by 𝑡 if and only if max is after 𝑥)

ℙ 𝐴𝐿𝐺 = max | 𝑆𝑇𝑂𝑃 𝑎𝑡 𝑡 = 𝑡

ℙ 𝐴𝐿𝐺 = max = ∫0
" 0
1!
𝑡𝑑𝑡 = −𝑥ln 𝑥 = 1/𝑒 ( at 𝑥 = "

2
)



Prophet Inequality: Induction
• Consider an instance 𝑣", … , 𝑣#and call 𝑉(𝑣", … , 𝑣#) the optimal value for the DM (Gambler)

Goal: Lower Bound 

• Two steps in the proof:
1. Instance 𝑣", … , 𝑣# has a larger ratio than instance 𝜆, 𝑣$, … , 𝑣# for some constant 𝜆.
2. Instance 𝜆, 𝑣$, … , 𝑣# has a larger ratio than instance 𝜆, 𝑣$, … , 𝑣#3$, 𝐿, for some “Long-

Shot” 𝐿. 

• Conclusion then follows easily. 
• Inductively we reduce to two random variables.

!(#4,…,#5)
𝔼 '()

6
#6

Long-shot: random variable that is very large with tiny probability and zero otherwise

𝑉(𝑣*, 𝑣+)
𝔼 max(𝑣*, 𝑣+)

≥
max(𝔼(𝑣*), 𝔼(𝑣+))
𝔼 𝑣* +𝔼 𝑣+

≥
1
2



Tight Instance

𝑣$ = U
1
𝜀

w. p. 𝜀

0 w. p. 1 − 𝜀

The proof shows that the worst case occurs with two values. 

The first is deterministic 𝑣" = 1

And the second is a long-shot

The DM gets 1 while the prophet gets 𝜀 "
/
+ 1 − 𝜀 ≈ 2



Prophet Inequality: “Balanced prices”
Pick a threshold 𝑇 and accept first value above it.
Let r be the index of the first 𝑣! above 𝑇
𝑝 = ℙ(max 𝑣! > 𝑇)

DM = 𝔼 𝑣7 = Revenue + Utility = 𝑝𝑇 + 𝔼 𝑣7 − 𝑇 )

𝔼 𝑣7 − 𝑇 ) =[
!8"

#

𝔼 𝑣! − 𝑇 )| 𝑟 = 𝑖 ℙ 𝑟 = 𝑖

= [
!8"

#

𝔼 𝑣! − 𝑇 | 𝑣! > 𝑇 ℙ 𝑣! > 𝑇 ^
9:!

ℙ 𝑣9 ≤ 𝑇

≥ 1 − 𝑝 [
!8"

#

𝔼 𝑣! − 𝑇 ) ≥ 1 − 𝑝 𝔼 max 𝑣! − 𝑇 )

Utility



Prophet Inequality: “Balanced prices”
Pick a threshold 𝑇 and accept first value above it.
Let r be the index of the first 𝑣! above 𝑇
𝑝 = ℙ(max 𝑣! > 𝑇)

DM gets 𝔼 𝑣7 = Revenue + Utility

= 𝑝𝑇 + 1 − 𝑝 𝔼 max 𝑣! − 𝑇 )

≥ 𝑝𝑇 + 1 − 𝑝 𝔼 max 𝑣! − 𝑇

≥
𝔼 max 𝑣!

2

𝑇 = 𝔼 <=> ?"
$

or	𝑇 = 𝑚𝑒𝑑𝑖𝑎𝑛



Prophet Inequality: Stochastic dominance
Again pick a threshold 𝑇 and accept first value above it.
Let r be the index of the first 𝑣! above 𝑇
𝑝 = ℙ(max 𝑣! > 𝑇)

Note that:

ℙ 𝑣7 > 𝑥 ≥ b
𝑝 𝑥 ≤ 𝑇
1 − 𝑝 ℙ max 𝑣! > 𝑥 𝑥 > 𝑇

ℙ 𝑣7 > 𝑥 =[
!8"

#

ℙ 𝑣! > 𝑥 ^
9:!

ℙ 𝑣9 ≤ 𝑇

≥ 1 − 𝑝 ∑!8"
# ℙ 𝑣! > 𝑥 ≥ 1 − 𝑝 ℙ(max 𝑣! > 𝑥)



Prophet Inequality: Stochastic dominance
Again pick a threshold 𝑇 and accept first value above it.
Let r be the index of the first 𝑣! above 𝑇
𝑝 = ℙ(max 𝑣! > 𝑇)

𝔼 𝑣7 = d
@

A

ℙ 𝑣7 > 𝑥 ≥ d
@

B

𝑝𝑑𝑥 + d
B

A

1 − 𝑝 ℙ max 𝑣! > 𝑥

𝔼 max 𝑣! = d
@

A

ℙ max 𝑣! > 𝑥 ≤ 𝑇 + d
B

A

ℙ max 𝑣! > 𝑥

≥ 𝑝𝑇 + 1 − 𝑝 𝔼 max 𝑣! − 𝑇 ≥
𝔼 max 𝑣!

2

𝑇 = 𝔼 <=> ?"
$

or	𝑇 = 𝑚𝑒𝑑𝑖𝑎𝑛



1 item

𝑛 agents  
independent valuations 
𝑣! ∼ 𝐹!

• Arrival order is random and unknown to the DM
• Optimal online algorithm: Large Dynamic program (unknown complexity!)
• Best possible prophet inequality also open.

• Constant cannot be better than 0.7251.

Prophet Secretary

𝔼 Best online algorithm ≥ 0.669 𝔼 max{𝑣", … , 𝑣#}



Prophet Secretary: Sinlge Threshold

• Consider 𝑛 random variables.
• 𝑛 − 1 are deterministic equal to 1.
• The other gives 𝑛 with probability 1/𝑛 and 0 otherwise. 

• Now fix a threshold 𝑇.

• If 𝑇 < 1, DM gets 𝑛 w.p. 1/𝑛$ , and 1 otherwise. So 𝔼 𝐷𝑀 ≈ 1
• If 𝑇 > 1, DM gets 𝑛 w.p. 1/𝑛 . So 𝔼 𝐷𝑀 ≈ 1

• So ½ is best possible.

𝔼 max{𝑣", … , 𝑣#} = 𝑛×
1
𝑛
+ 1× 1 −

1
𝑛

≈ 2



Prophet Secretary: Single Threshold
• Consider 𝑛 random variables.
• 𝑛 − 1 are deterministic equal to 1.
• The other gives 𝑛 with probability 1/𝑛 and 0 otherwise. 

• To beat  ½ RANDOM threshold 𝑇.
• Set 𝑇 = 1, and break ties at random. Accept a 1 w.p. 1/𝑛

ℙ DM gets something = 1 − 1 − "
#

#
≈ 1 − "

2

𝔼 DM | DM gets something = 𝑛× "
#
+ 1× 1 − "

#
≈ 2

𝔼 max{𝑣", … , 𝑣#} = 𝑛×
1
𝑛
+ 1× 1 −

1
𝑛

≈ 2

𝔼 DM ≈ 2× 1 −
1
𝑒

≈ 1 − "
2
𝔼 max𝑣!

⟹



Prophet Secretary: Single Threshold
• Can get 1 − 1/𝑒 in general
• Proof for continuous and strictly increasing distributions
• Set 𝑇 such that ℙ max 𝑣! > 𝑇 = 1 − "

2
• Let r be the index of the first 𝑣! above 𝑇

• Theorem: 

• We prove that ℙ 𝑣7 > 𝑥 ≥ (1 − 1/𝑒)ℙ max 𝑣! > 𝑥

• Then conclude by integrating.

• Note that if 𝑥 ≤ 𝑇, ℙ 𝑣7 > 𝑥 = ℙ 𝑣7 > 𝑇 ≥ ℙ max 𝑣! > 𝑇 = 1 − 1/𝑒

𝔼 𝑣7 ≥ 1 −
1
𝑒
𝔼 max𝑣!



Prophet Secretary: Single Threshold
• Take 𝑥 > 𝑇, and let 𝜎 be a random permutation.  𝑣! comes at time 𝜎(𝑖).

ℙ 𝑟 = 𝜎 𝑖
ℙ 𝑣! > 𝑇

= ℙ(𝑟 = 𝜎 𝑖 𝑣! > 𝑇 = [
C⊂ # ∖!

1
1 + 𝑆

^
9∈C

(1 − 𝐹9(𝑇)) ^
9∉C,!I!

𝐹9(𝑇)

≥ 1 −
1
𝑒

Schur-convex function

ℙ 𝑣7 > 𝑥 =[
!8"

#

ℙ 𝑣! > 𝑥| 𝑟 = 𝜎(𝑖) ℙ 𝑟 = 𝜎(𝑖)

≥ [
!8"

#

ℙ 𝑣! > 𝑥|𝑣! > 𝑇 1 −
1
𝑒
ℙ 𝑣! > 𝑇 = 1 −

1
𝑒
[
!8"

#
ℙ(𝑣! > 𝑥)
ℙ(𝑣! > 𝑇)

ℙ 𝑣! > 𝑇

≥ 1 −
1
𝑒
ℙ max 𝑣! > 𝑥


