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Setting

Consider:

a brownian motion (Wt)t∈[0,T ] and its filtration (Ft)t∈[0,T ]

the control space U : all the square-integrable Ft -measurable
stochastic processes (νt)t∈[0,T ] with value in U ⊂ R

m

the state variable (Xt)t∈[0,T ] driven by the SDE:

{

dXt = f (Xt , νt) dt + σ(Xt , νt) dWt ,

Xt0 = x ,

with solution X
t0,x ,ν
t .
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Setting

The stochastic optimal control problem is

V (t, x) = min
ν∈U

{

E

[

∫ T

t

ℓ(X t,x ,ν
s , νs) ds + φ(X t,x ,ν

T )
]}

.

Assumptions: ∃K ≥ 0 such that for all (t, x , y , u),

|f (x , u)− f (y , u)|+ |σ(x , u)− σ(y , u)| ≤ K |x − y |
|f (x , u)|+ |σ(x , u)| ≤ K (1 + |x |+ |u|)
|ℓ(x , u)| + |φ(x)| ≤ K (1 + |u|+ |x |2).
f , σ, ℓ, and φ are continuous.
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Discretization

Consider:

a time discretization 0 = t0 < t1 < ... < tN = T , with
∆k = tk+1 − tk

a sequence of i.i.d. random values ξ1, ..., ξN with value 1 or
−1 with probability 1/2

a measurable control process (νk)k=0,...,N−1 in Ũ
the state variable (X̃t)t∈[0,T ] with the dynamic

{

X̃k+1 = X̃k + f (yk , νk)∆k + σ(yk , νk)ξk+1

√
∆k ,

X̃k0 = x ,

with the solution X̃
k0,x ,ν
k .
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Dynamic programming

The discretized problem

Ṽ (k , x) = min
ν∈Ũ

{

E

[

N
∑

s=k

ℓ(X k,x ,ν
s , νs) + φ(X k,x ,ν

N )
]}

can be solved with the dynamic programming principle (DPP):

{

Ṽ (N, x) = φ(x),

Ṽ (k , x) = minu∈U

{

ℓ(x , u) + E
[

Ṽ
(

k + 1,X k,x ,u
k+1

)]

}

.

By backward recursion, for k = N, ..., 0, we can compute V (k , ·).
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HJB equation (1)

In continuous time, the DPP writes, for any stopping time τ ≥ t,

{

V (T , x) = φ(x)

V (t, x) = minν∈U

{

E
[ ∫ τ

t
ℓ(X t,x ,ν

s , νs) ds + V (τ,X t,x ,ν
τ )

]

}

.

Formally, considering a constant control νt = u and τ = t +dt, we
obtain with Itō’s formula:

E

[

∫ τ
t
ℓ(X t,x ,ν

s , νs) ds + V (τ,X t,x ,ν
τ )

]

= E

[

ℓ(x , u) dt + ∂tV (t, x) dt + Vx(t, x)f (x , u) dt

+ Vx(t, x)σ(t, x) dWt +
1
2Vxx(t, x)σ(t, x)

2 dt
]

.
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HJB equation (2)

This leads to the HJB equation:

{

V (T , x) = φ(x),

−∂tV (t, x) = H(x ,Vx (t, x),Vxx(t, x)),

where the Hamiltonian is defined by

H(x , p, q) = inf
u∈U

{

ℓ(x , u) + pT f (x , u) +
1

2
σ(x , u)T qσ(x , u)

}

.

We compute from backward the functions V (t, ·).
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Generalities

The probability constraint (PC)

P
[

Φ(XT ) ≥ 0
]

≥ p

can be seen as an expectancy constraint:

E
[

1{Φ(XT )≥0}

]

≥ p

and more general formulations can be considered,

E
[

Φ̃(XT )
]

≥ p̃.

In general, dealing with probability constraint is hard: example of a
two-stage stochastic linear problem with a discrete probability
distribution.
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Characterization

Lemma

For all ν ∈ U , the PC holds if and only if there exist a

square-integrable process α and a martingale Z satisfying

1 the following dynamic:

{

dZt = αt dWt ,

Z0 = p,

2 for all t, Zt ∈ [0, 1] a.s.

3 the inequality: Z
0,p,α
T ≤ 1

{Φ(X 0,x,ν
T

)≥0}
.

The martingale Zt stands for the level of probability ensured at
time t.
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Proof

(⇐=) Let (α,Z , ν) such that (1-3) hold. Since Z is a martingale,

E
[

1{Φ(XT )≥0}

]

≥ E
[

ZT

]

= p.

(=⇒) Let ν be such that the PC holds. Set p0 = P[Φ(XT ) ≥ 0].
Note that p0 ≥ p. Define the martingale

Zt = E
[

1Φ(XT )≥0|Ft

]

.

Since ZT ≤ 1 a.s., then for all t, Zt ≤ 1. Set Z 1 = Z − (p0 − p).
Let τ be the stopping time defined by

τ = inf
{

t ∈ [0,T ], Z 1
t ≤ 0

}

.

Finally, Z 2
t = Z 1

t 1{t≤τ} satisfies (2-3). The control α is obtained
by the martingale representation theorem.
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Application

Consequence of the lemma: the problem with probability
constraint can be solved by dynamic programming!

Add a state variable Z controlled by α,

add to the final-cost function

φ̃(x , z) =

{

0 if z ≤ 1{Φ(x)≥0}

+∞ otherwise.

Note that α is not bounded.



Stochastic optimal control Probability constraints Minimum wealth Convexity properties Example Conclusion

1 Elements of stochastic optimal control

2 Probability constraints

3 Minimum wealth

4 Convexity properties

5 Discussion of an example

6 Conclusion



Stochastic optimal control Probability constraints Minimum wealth Convexity properties Example Conclusion

Setting

Consider the dynamics:

{

dXt = f1(Xt , νt) dt + σ1(Xt , νt) dWt ,

dYt = f2(Xt ,Yt , νt) dt + σ2(Xt ,Yt , νt) dWt

and the problem of minimum wealth

v(t, x) = min
{

y , ∃ν such that Φ(X t,x ,ν
T ,Y t,x ,y ,ν

T ) ≥ 0, a.s.
}

.

We assume that for all y ≥ v(t, x), there exists ν such that

Φ(X t,x ,ν
T ,Y t,x ,y ,ν

T ) ≥ 0, a.s.
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Dynamic programming

In discrete time, with 0 = t0 < t1 < ...tN = T , the DPP writes:

{

ṽ(N, x) = inf {y , Φ(x , y) ≥ 0}
ṽ(k , x) = inf

{

y , ∃u such that Ỹ k,x ,y ,u
k+1 ≥ v(k + 1, X̃ k,x ,u

k+1 ), a.s.
}

.

In continuous time, the inequality Ỹ
k,x ,y ,u
k+1 ≥ v(k + 1, X̃ k,x ,u

k+1 )
writes

y + f2(x , y , u) dt + σ2(x , y , u) dWt

≥ y + ∂tv(t, x) dt + vx(t, x)f1(x , u) dt + vx(t, x)σ1(x , u) dWt

+ 1
2vxx(t, x)σ1(x , u)

2 dt.

and implies that the diffusions of the r.h.s. and the l.h.s. are equal:

σ2(x , y , u) = vx(t, x)σ1(x , u).
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HJB equation

We obtain the following HJB equation:

{

v(T , x) = inf {y , Φ(x , y) ≥ 0}
−∂tv(t, x) = H(x , v(t, x), vx (t, x), vxx(t, x))

with the Hamiltonian defined by

H(x , v , p, q) =

{

minu∈U

{

pf1(x , u) − f2(x , v , u) +
1
2vxxσ1(x , u)

2
}

such that σ2(x , v , u) = vx(t, x)σ1(x , u).
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An example

Consider the dynamic

{

dXt = αt dWt

X0 = x ,

where the volatility α is not bounded, and the following problem:

V (t, x) = min
α

{

E
[

φ(X t,x ,α
T )

]

}

.

Then, the value function function is given by

V (t, x) = φconv(x),

where φconv is the convex hull of φ.
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Proof (1)

V (t, x) ≥ φconv(x). Let α, then by Jensens’ inequality,

E(φ(X t,x ,α
T ) ≥ φconv(EX t,x ,α

T ) = φconv(x).

V (t, x) ≤ φconv(x). Let x ∈ R, let x0, x1 ∈ R and λ ∈ [0, 1]
be such that

x = λx0 + (1− λ)x1 and φconv(x) = λφ(x0) + (1− λ)φ(x1).
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Proof (2)

Let K > 0, set νt = K and define the stopping time τ by

τ = inf
{

s ≥ t,X t,x ,s
s /∈ [x0, x1] }

and the control ν ′t = K1t≤τ . We can show that, when K → ∞,

P[X t,x ,ν′

T = x0] → λ,

P[X t,x ,ν′

T = x1] → (1− λ),

P[X t,x ,ν′

T ∈ (x0, x1)] → 0.

Thus, E[φ(X t,x ,ν′

T )] → φconv(x).
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Remarks

Note that in this special case,

the Hamiltonian is given by

H(q) = min
α∈R

{

qα2
}

=

{

0 if q ≥ 0

−∞ otherwise.

in the HJB equation, the final cost has been convexified

the minimum in the HJB equation does not provide the
optimal control.
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Application

For our problem,

the value function is convex w.r.t. to Z (and to any state
variable with an unbounded volatility, dominating the drift)

a convex hull must be computed at each step (in general)

we may try and develop a cutting-plane method: a convex
function is represented with the supremum of affine functions

we may compute the HJB equation satisfied by the Legendre
transform of V .
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Setting

Consider a risky asset of price St and a non-risky asset of price Bt

with the dynamic:

dSt
St

= µdt + σdWt ,
dBt

Bt
= rdt.

The dynamics of the wealth At and the liability Lt is given by:











dLt = Lt(µ
′dt + σ′dWt)

dAt = At(θt
dSt
St

+ (1− θt)
dBt

Bt
) + ct dt

=
[

θtAt(µ− r) + r + ct
]

dt + θtAtσdWt ,

where the controls θt and ct satisfy:

θt ∈ [0, 1] and ct ≥ 0.
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Setting

The probability constraint P
[

AT/LT ≥ 1
]

≥ p is taken into
account with the variable Z satisfying

{

dZt = αtdWt

Z0 = p.

We set

φ(a, l , z) =

{

0 if z ≤ 1{a/l≥1}

+∞ otherwise.

The problem is the following:

V (t, a, l , z) = min
θ,c,α

{

E

[

∫ T

t

e−βscs ds + φ(AT , LT ,ZT )
]}
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Minimum wealth

The problem of minimum wealth necessary to ensure the PC
without adding money is given by

v(t, l , z) = min
{

a,∃(θ, α) such that ZT ≤ 1{AT /LT≥1}, c = 0
}

.

In this situation the algebraic constraint on the controls is given by

θaσ = lσvl(t, l , z) + αvz(t, l , z)

and the Hamiltonian by H
(

t, (l , z), v ,Dv ,D2v
)

=

min
θ∈[0,1]

{

lµ′vl − [θv(µ− r) + r ] + 1
2D

2v(lσ′, α(θ))2
}

.
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Value function

For the initial problem, the value function V (t, a, l , z) is

convex w.r.t. z

ր w.r.t. z , l

ց w.r.t. a.

Note that for all a ≥ v(t, l , z), V (t, a, l , z) = 0.

We minimize c and (θ, α) independently in the Hamiltonian. For
c , we minimize (e−βt − Va)c , then

Va > −e−βt =⇒ c = 0

Va = −e−βt =⇒ c = ?

Va < −e−βt =⇒ c = +∞.

For (θ, α), we minimize

DVa

[

θa(µ− r) + r
]

+ 1
2D

2V (θaσ, lσ′, α)2.
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Future work

Theoretical issues:

Well-posedness of HJB equation

Proof of convergence of numerical schemes

Numerical issues:

Convexification operations

Implementation

General issue:

More general risk constraints.
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