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PART I: Introduction to Risk—Averse Optimization
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Optimization of measures of risk

Stochastic dominance constraints

Introduction to risk—averse dynamic optimization
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Uncertain Outcomes and Risk

Why Probabilistic Models?
@ Wealth of results of probability theory
@ Connection to real data via statistics
@ Universal language (engineering, economics, medicine, . ..)

@ Probability space (2, F, P)
@ Decision space X
@ Random outcome (e.g., cost) Zx(w), Z:XxQ2 - R

Expected Value Model
min B[Z,] = f Z() P(dw)
Q

It optimizes the outcome on average (Law of Large Numbers?)

What is Risk?
Existence of unlikely and undesirable outcomes - high Z,(w) for some w
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Classical Utility Models

Expected Utility Models (von Neumann and Morgenstern, 1944)

mip BluZ)] (= fg (Z(w)) P(w))

u: R — R is a nondecreasing disutility function

Rank Dependent Utility (Distortion) Models (Quiggin, 1982; Yaari, 1987)

.
minf ng(p)dw(p) FZ(-)-quantiIefunction
0

xeX

w : [0,1] — R is a nondecreasing rank dependent utility function

Existence of utility functions is derived from systems of axioms,
but in practice they are difficult to elicit
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Axioms of Expected Utility Theory (von Neumann 1944)

W is a lottery of Z and V with probabilities @ € (0,1) and (1 — «), if the
probability measure uw induced by W on R is the corresponding convex
combination of the probability measures uz and uy of Z and V:

pw = auz + (1 - a)uy.
We write the lottery symbolically as
W=aZe®(1-a)V.

For law invariant preferences on the space of real random variables,
von Neumann introduced the axioms:
Independence Axiom: For all Z,V, W € Z one has

ZaV = aZo(1-a)W<aVe (1-a)W, VYae(0,1)
Archimedean Axiom: If Z < V < W, then «,8 € (0, 1) exist such that
aZd(1-a)W<VapZe(1-BW
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Expected Utility

Integral Representation

Suppose the total preorder < on Z is law invariant, and satisfies the
independence and Archimedean axioms. Then it has an “affine” numerical
representation U : Z — R:

UaZe (1-a)V)=aU(Z)+ (1 -a)U(V).

If < is weakly continuous, then a continuous and bounded function
u: R — R exists, such that

U(2) = Eu(2)] = f u(Z(w)) P(dw).

New proof by separation theorem - Dentcheva & R. 2012

In a more general setting, we may consider only r.v. with finite moments,
and then the boundedness condition on u(-) can be relaxed.
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Risk-Averse Utility

U(2) = E[u(2)| = fg u(Z(w)) P(dw)

Monotonicity

The total preorder < is monotonic with respect to the partial order <, if
Z<V = Z4V.

We focus on Z containing integrable random vectors.

Risk Aversion

A preference relation < on Z is risk-averse, if E[Z|G] < Z, forevery Z € Z
and every o-subalgebra G of F.

Nondecreasing Convex Disultility

Suppose a total preorder < on Z is weakly continuous, monotonic,
risk-averse, and satisfies the independence axiom. Then the utility function
u: R — R is nondecreasing and convex.
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Axioms of Dual Utility Theory (Yaari 1987)

Real random variables Z;, i = 1, ..., n, are comonotonic, if
(Z(w) - Zi(w))(Z(w) - Z(w")) 2 0
forall w,w’ € Qandalli,j=1,...,n.

Dual Independence Axiom: For all comonotonic random variables Z, V,
and W in Z one has

ZaV = aZ+(1-a)W<aV+(1-a)W, Vee(0,1)

Dual Archimedean Axiom: For all comonotonic random variables Z, V, and
W in Z, satisfying the relations

ZaVaW,
there exist @, 8 € (0, 1) such that

aZ+(1-a)W<VapZ+(1-pW
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Dual Utility

Affine Representation

If the total preorder < on Z is law invariant, and satisfies the dual
independence and Archimedean axioms, then a numerical representation
U: Z — R of < exists, which satisfies for all comonotonic Z, V € Z and all
a,f € R4 the equation

U(aZ + BV) = aU(Z) + BU(V).

Integral Representation

Suppose Z is the set of bounded random variables. If, additionally, < is
continuous in £y and monotonic, then a bounded, nondecreasing, and
continuous function w : [0, 1] — Rt exists, such that

u2) = [ F'(p) dwip). zez

Proof by separation - Dentcheva & R. 2012
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Risk Averse Dual Utility

uz) = [ ') awlp). zez ¢

Risk Aversion

A preference relation < on Z is risk-averse, if E[Z|G] < Z, forevery Z € Z
and every o-subalgebra G of F.

Convex Rank-Dependent Utility

Suppose a total preorder < on Z is continuous, monotonic, and satisfies the
dual independence axiom. Then it is risk-averse if and only if it has the
integral representation (*) with a nondecreasing and convex function

w : [0,1] — [0, 1] such that w(0) = 0 and w(1) = 1.
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Mean—Risk Models

Two Objectives
@ Minimize the expected outcome, the mean [E[Z;]
@ Minimize a scalar measure of uncertainty of Zy, the risk r[Z,]

rlZ] = Var[Z] (Markowitz’ model)

o}121 = (B[Z - E2)2]) " (semideviation)

67[Z] = min IEJ[ max (77 -Z, L(Z - 17))] (deviation from quantile)
n 1-«a

Mean—Risk Optimization

rpei)l? p[ZX] = IE[ZX] + KI’[ZX], 0 < k < Kmax

r[ZX] is nonlinear w.r.t. probability and possibly nonconvex in x
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Example: Portfolio Optimization

Ri, Ro, ..., Ry - random return rates of securities
X1, X2, ..., Xp - fractions of the capital invested in the securities

Return rate of the portfolio (negative of)
Zy = —(R1 X1 + Roxo + -+ + Rnxp)
Risk Optimization with Fixed Mean
min r[ZX]
X

s.t. E[ZX] =u (parameter)
x € Xp.

Combined Mean—Risk Optimization

min p|Z| = E[Z |+ xr|Z]. 0k < Kmax

XxeXp

Interesting applications of parametric optimization
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Nonlinear Programming Formulations for Discrete Distributions

Suppose Z has finitely many realizations z¢, zo, ..., zs
with probabilities p1, po, ..., ps

p(2Z) = E[Z] + koh[2] = ElZ] + ((E[(Z - E2)T)) "

1/m

m
= 2221 PsZs + K(Z§—1 ps(zs - 21821 pjzj)+)

Equivalent Problem (for m = 1 - linear programming)

S 1/m
p(Z)=min p+ K( Z psvg’)
S=

S
St /,l = Z psZs
s=1

VSZZS_#’ S:1,...,S
VsZO, S:1,,S
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Application to Portfolios

Suppose the vector of return rates has S realizations
with probabilities p1, po,. .., ps
Rjs - return rate of assetj=1,...,ninscenarios =1,...,S

Equivalent Problem (for m = 1 - linear programming)

S 1/m
min  u+ K( Z vg’)

X,Z,V,H 4
S=

st. u= Z PsZs
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Mean—Semideviation Model (719 stocks
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Key Requirement: Monotonicity
p(Z) = E[Z] +«r[Z]

Consistency with Stochastic Dominance (Ogryczak—R., 1997)

E[u(Z)] < E[u(W)], Y nondecreasing and convex u(-) = p[Z] < p[W]

Consistency with Pointwise Order (Artzner et. al., 1999)

Z < Was. = p[Z] <p[W]

Mean—semideviation and mean—deviation from quantile models are
consistent for 0 < « < 1, but not mean—variance.

Unique optimal solutions of consistent optimization models

mp #(2)

cannot be strictly dominated (in the corresponding sense)
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Coherent Risk Measures

Space of uncertain outcomes Z = L,(2,F,P), p € [1, ]

A functional p : Z — R is a coherent risk measure if it satisfies the following
axioms

@ Convexity: p(AZ + (1 = A)W) < 20(Z) + (1 — )p(W)
Vae(0,1), ZWeZ
@ Monotonicity: If Z < W then p(Z) < p(W), YZ,WeZ
@ Translation Equivariance: p(Z+ a) =p(Z)+a, YZeZ,acR
@ Positive Homogeneity: p(Z2) = 1p(Z), ¥YZeZ, 7>0

Kijima-Ohnishi (1993) — no monotonicity
Artzner-Delbaen-Eber-Heath (1999-) - space L.
R.-Shapiro (2005) — spaces £, ...

Good news: E[Z] is coherent
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Value at Risk

The Value at Risk at level a € (0, 1) of a random cost Z € Z:
VeR(Z) = inf{n: Fz(n) =1-a} = F;'(1 - )

Monotonicity: Z <V = VeR}(Z) < VeR} (V)

Translation: VeR}(Z + ¢) = VeR}(Z) + ¢, forallc € R
Positive Homogeneity: VeR[ (yZ) =y VeR] (Z), forally >0
However, it is not convex

Counterexample: Two independent variables
~J0 with probability 1 — p V— 0 with probability 1 —p
~ |1 with probability p ~ |1 with probability p
For p < @ < 1 we have VeR] (Z) = VeR} (V) =0

If p<a<1-(1-p)?, we have non-convexity

VeR; (AZ + (1= )V) > 0 = AVeR{ (Z) + (1 - 1) VeRF (V)
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Average Value at Risk

AVeR}(Z) = :—l fo VeR{ (Z) dB

If the (1 — @)-quantile of Z is unique

AVeR}(Z2) = 1f z dFz(z) = E[Z|Z 2 VeR(2)|
@ Jver:(z)

Extremal representation
1
AVeR T (Z) = inf —-E[(Z -
R, (2) UIQR{UJra [ n)+]}

The minimizer n = VeR,(2)

Connection to weighted deviation from a-quantile:

55(2) = AVeRY(2) - E[Z], a < [0.1].
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Linear Programming Representation of AVeR

Suppose Z has finitely many realizations z¢, zo, ..., zs
with probabilities p1, p2,. .., ps
1 8
min 7+ — PsVs
v.n (04
s=1
St VsZZs—T], S:1,...,S
VsZO, S:1,,S

For portfolios we have to add the constraints

n

zS:—Zstxj, s=1,...,S
=

X € Xo

and include z and x into the decision variables
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Conjugate Duality of Risk Measures

Pairing of a linear topological space Z with a linear topological space Y
of regular signed measures on Q with the bilinear form

(12) = Pul2) = | Z(w)u(dw)

We assume standard conditions on pairing and the polarity: (Z4)° = Y_
Dual Representation Theorem

If p: Z — Ris a lower semicontinuous* coherent risk measure, then

p(2) = max fQ Z(w)u(dw), VZeZ

with a convex closed A c P (set of probability measures in Y).

Delbaen (2001), Féllmer—Schied (2002), R.—Shapiro (2005),
Rockafellar-Uryasev—Zabarankin (2006), . ..
* Lower semicontinuity is automatic if p is finite and Z is a Banach lattice
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Universality of AVeR

Z ~ V means that Z and V have the same distribution, uz = uy.
p:Z - Rislawinvariantif Z ~ V = p(Z) = p(V)
Kusuoka Theorem
If (Q,F,P)is atomless and p : £L1(Q,F, P) — R is law invariant and
coherent, then 1
p(Z) = sup | AVeR!(Z) m(da)

meM JO

where M is a convex set of probability measures on (0, 1].

Spectral measure
)
(V) = f AVeR:(Z) m(da)
0

Spectral measures have dual utility form:

o(2) = [ ') awip)
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Optimization of Risk Measures

“Minimize” over x € X a random outcome Zy(w) = f(x,w), w € Q

Composite Optimization Problem

min p(Zx) (P)

Theorem

Let x — Zy(w) be convex and p(-) be coherent. Suppose X € X is an
optimal solution of (P) and p(-) is continuous at Z;. Then there exists a
probability measure ji € dp(Z;) € A such that X solves

xeX X xeX MEﬂ x

in p(Z,) = max inf B,[Z
T p(2x) = max inf By (2]
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Duality in Portfolio Optimization - Game Model

Suppose the vector of return rates of assets has S realizations
Rjs - return rate of assetj = 1,...,ninscenarios =1,...,S
Portfolio return (negative) in scenario s

n
Zs(x) == ) Rix,
j=1
Risk-Averse Portfolio Problem
i V4
min p(Z(x))

By homogeneity, we may assume that 27_1 xj=1
Equivalent Matrix Game

n S
max min Z Z XiR;
xeX peA JMjsHs

j=1s=1

X - mixed strategy of the investor
u - mixed strategy of the opponent (market)
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Stochastic Dominance Constraints

Zyx - random outcome (e.g., cost)
Y - benchmark random outcome, e.g. Y(w) = Zzx(w) for some x € X

New Model

min E[Z] (or some other objective)
subjectto Z, <, Y (stochastic ordering constraint)
xeX

Zy is preferred over Y by all decision makers having disutility functions in
the generator U:
Elu(Z)] < E[u(Y)] YuelU

All nondecreasing u(+) - first order stochastic dominance <g;
All nondecreasing convex u(-) - increasing convex order <ix

Andrzej Ruszczynski Dynamic Risk-Averse Optimization



Dominance Constrained Optimization

min E[Z]
subject to Z, Y

- ICX

xeX

X - convex set in X (separable locally convex Hausdorff vector space)
X — Zy is a continuous operator from X to £1(Q, ¥, P)
x - Zy(w) is convex for P-almost all w € Q

Primal: E[u(Zy)] < IE[u( )] for all convex nondecreasing u:R—-R

Inverse: f01 F;l(p fo (p) for all convex
nondecreasmg w [0 1] - R

Main Results
@ Ultility functions u : R — R and rank dependent utility functions
w : [0,1] — R play the roles of Lagrange multipliers

@ Expected utility models and rank dependent utility models are
Lagrangian relaxations of the problem
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Implied Utility Function

Lagrangian in Direct Form J

L(x,u) = E[Zy + u(Z) - u(Y)]

u(-) - convex function on R

Theorem

Assume Uniform Dominance Condition (a form of Slater constraint

qualification). If X is an optimal solution of the problem then there exists a
function & € U such that

L(%, o= min L(x, D) (1)
E|0(Z;)|= E[a(Y)] 2)

Conversely, if for some function &l € U4 an optimal solution X of (1) satisfies
the dominance constraint and (2), then X is optimal
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Implied Rank Utility (Distortion) Function

Lagrangian in Inverse Form

otxw) = [ Fl(p)dp+ w(e) - [ F(p)dw(p)

w(-) - convex function on [0, 1]

Theorem
Assume Uniform Dominance Condition (a form of Slater constraint

qualification). If X is an optimal solution of the problem, then there exists a

function w € W such that

If for some W € ‘W an optimal solution X of (3) satisfies the inverse
dominance constraint and (4), then X is optimal
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How to Measure Risk of Sequences?

Probability space (2, F, P) with filtration ¥y c --- c Fr Cc F
Adapted sequence of random variables (costs) Zy, 2o, ..., 27
Spaces: Z; = L5(Q,F1,P),5e€[1,0),and Zi7=Zt X+ X Z1
Conditional Risk Measure

A mapping p:.1 : Zt.1 — < satisfying the monotonicity condition:

ot7(Z) < pr.7(W) forall Z, W € Z; 1 such that Z < W

Dynamic Risk Measure
A sequence of conditional risk measures p; 17 : Zi11 — Zt, t=1,..., T

p1,7(Z41,22,23,...,21) € Z1 =R
p2.7(22,23,....21) € Z>
p3.7(Zs,...,21) € Z3
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Evaluating Risk on a Scenario Tree

Andrzej Ruszczynski Dynamic Risk-Averse Optimization



Evaluating Risk on a Scenario Tree

p14(Z1,22,23, 2Z4)
Z4
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Evaluating Risk on a Scenario Tree

93,4(22- Z3,24)
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PART II: Optimization of Dynamic Risk Measures

Dynamic measures of risk

Time consistency and local property
Interchangeability

Risk optimization on a tree

Application to Markov models
Stochastic conditional time-consistency
Markov risk measures

Dynamic programming

Solution methods

Examples
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Evaluating Risk on a Scenario Tree
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Time Consistency of Dynamic Risk Measures

T
A dynamic risk measure {pt,r}t:1 is time-consistent if for all T < 0

Zk =Wg, k=1,...,0—1 and pg,T(Zg,...,ZT)Spg,T(Wg,...,WT)

imply that  pr7(Z,....2Z7) < pr,7(Ws, ..., WT)

Define /)t(Zt+1 ) = pt,T(O, ZH—1 , 0, ceey 0)

Nested Decomposition Theorem

T
Suppose a dynamic risk measure {pt,T}t:1 is time-consistent and

p117(Zt: Zts1, .., Z1) = Zt + p1.7(0, Zt 41, . . .. ZT)

Then for all t we have the representation

pt7(Zts ... 21) =24 —I-pt(Zt+1 +pt+1(Zt+2 +- -+ o7 (ZT)) o ))
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Coherent One-Step Conditional Risk Measures

Stronger assumptions about one-step measures p; : Zir1 — Zt:
@ Convexity: p(AZ + (1 = )W) < 20:(Z) + (1 — )p:(W)
YAe(0,1), Z,We Ziiq
@ Monotonicity: If Z < W then pi(Z) < pt(W), ¥ Z,W € Zi4+

@ Predictable Translation Equivariance:
p(Z+ W) =2Z+p (W), ¥ ZeZt, We Ziiq
@ Positive Homogeneity: pi(7Z) = 1p1(Z2), ¥ Z € Zt41, 7> 0

Scandolo ('03), Riedel ('04), R.-Shapiro ('06), Cheridito-Delbaen-Kupper ('06),
Folimer-Penner ('06), Artzner-Delbaen-Eber-Heath-Ku ('07), Pflug-Rémisch ('07)

Example: Conditional Mean—Semideviation

1
pt(zt+1) = E[Zt+1 |ﬁ] + KE[(ZH_1 = E[Zt+1|?}])i|?}:ls
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Coherent One-Step Conditional Risk Measures
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@ Positive Homogeneity: pi(7Z) = 1p1(Z2), ¥ Z € Zt41, 7> 0

Scandolo ('03), Riedel ('04), R.-Shapiro ('06), Cheridito-Delbaen-Kupper ('06),
Folimer-Penner ('06), Artzner-Delbaen-Eber-Heath-Ku ('07), Pflug-Rémisch ('07)

Example: Conditional Mean—Semideviation

1
pt(zt+1) = E[Zt+1 |ﬁ] + KE[(ZH_1 = E[Zt+1|?}])i|?}:ls

Here s € [1,5] and « € [0, 1] may be #;-measurable

Andrzej Ruszczynski Dynamic Risk-Averse Optimization



Coherent One-Step Conditional Risk Measures

Stronger assumptions about one-step measures p; : Zir1 — Zt:
@ Convexity: p(AZ + (1 = )W) < 20:(Z) + (1 — )p:(W)
YAe(0,1), Z,We Ziiq
@ Monotonicity: If Z < W then pi(Z) < pt(W), ¥ Z,W € Zi4+

@ Predictable Translation Equivariance:
p(Z+ W) =2Z+p (W), ¥ ZeZt, We Ziiq
@ Positive Homogeneity: pi(7Z) = 1p1(Z2), ¥ Z € Zt41, 7> 0

Scandolo ('03), Riedel ('04), R.-Shapiro ('06), Cheridito-Delbaen-Kupper ('06),
Folimer-Penner ('06), Artzner-Delbaen-Eber-Heath-Ku ('07), Pflug-Rémisch ('07)

Example: Conditional Mean—Semideviation

1
pt(zt+1) = E[Zt+1 |ﬁ] + KE[(ZH_1 = E[Zt+1|?}])i|?}:ls

Here s € [1,5] and « € [0, 1] may be #;-measurable

Andrzej Ruszczynski Dynamic Risk-Averse Optimization



Coherent One-Step Conditional Risk Measures

Stronger assumptions about one-step measures p; : Zir1 — Zt:
@ Convexity: p(AZ + (1 = )W) < 20:(Z) + (1 — )p:(W)
YAe(0,1), Z,We Ziiq
@ Monotonicity: If Z < W then pi(Z) < pt(W), ¥ Z,W € Zi4+
@ Predictable Translation Equivariance:
p(Z+ W) =2Z+p (W), ¥ ZeZt, We Ziiq
@ Positive Homogeneity: pi(7Z) = 1p1(Z2), ¥ Z € Zt41, 7> 0

Scandolo ('03), Riedel ('04), R.-Shapiro ('06), Cheridito-Delbaen-Kupper ('06),
Folimer-Penner ('06), Artzner-Delbaen-Eber-Heath-Ku ('07), Pflug-Rémisch ('07)

Example: Conditional Mean—Semideviation

1
pt(zt+1) = E[Zt+1 |ﬁ] + KE[(ZH_1 = E[Zt+1|?}])i|?}:ls

Here s € [1,5] and « € [0, 1] may be #;-measurable

Andrzej Ruszczynski Dynamic Risk-Averse Optimization



Coherent One-Step Conditional Risk Measures

Stronger assumptions about one-step measures p; : Zir1 — Zt:
@ Convexity: p(AZ + (1 = )W) < 20:(Z) + (1 — )p:(W)
YAe(0,1), Z,We Ziiq
@ Monotonicity: If Z < W then pi(Z) < pt(W), ¥ Z,W € Zi4+

@ Predictable Translation Equivariance:
p(Z+ W) =2Z+p (W), ¥ ZeZt, We Ziiq
@ Positive Homogeneity: pi(7Z) = 1p1(2),¥Y Z € Zi41, 7= 0

Scandolo ('03), Riedel ('04), R.-Shapiro ('06), Cheridito-Delbaen-Kupper ('06),
Folimer-Penner ('06), Artzner-Delbaen-Eber-Heath-Ku ('07), Pflug-Rémisch ('07)

Example: Conditional Mean—Semideviation

1
pt(zt+1) = E[Zt+1 |ﬁ] + KE[(ZH_1 = E[Zt+1|?}])i|?}:ls

Here s € [1,5] and « € [0, 1] may be #;-measurable

Andrzej Ruszczynski Dynamic Risk-Averse Optimization



Coherent One-Step Conditional Risk Measures

Stronger assumptions about one-step measures p; : Zir1 — Zt:
@ Convexity: p(AZ + (1 = )W) < 20:(Z) + (1 — )p:(W)
YAe(0,1), Z,We Ziiq
@ Monotonicity: If Z < W then pi(Z) < pt(W), ¥ Z,W € Zi4+

@ Predictable Translation Equivariance:
p(Z+ W) =2Z+p (W), ¥ ZeZt, We Ziiq
@ Positive Homogeneity: pi(7Z) = 1p1(Z2), ¥ Z € Zt41, 7> 0

Scandolo ('03), Riedel ('04), R.-Shapiro ('06), Cheridito-Delbaen-Kupper ('06),
Folimer-Penner ('06), Artzner-Delbaen-Eber-Heath-Ku ('07), Pflug-Rémisch ('07)

Example: Conditional Mean—Semideviation

1
pt(zt+1) = E[Zt+1 |ﬁ] + KE[(ZH_1 = E[Zt+1|?}])i|?}:ls

Here s € [1,5] and « € [0, 1] may be #;-measurable

Andrzej Ruszczynski Dynamic Risk-Averse Optimization



Local Property

A conditional risk measure p; 1 : Zt 1 — Zt has the local property, if for
every event A € 7; we have the equation

ptT(LaZ, 1aZis1, ..., 0aZ7) = Lapr7(Zt, Zipas ..., Z7)

Z
t=1
/)3.4(22,23,24)
t=2
t=3
1
t=4 Z4 4 4 4 4 4 4

Automatic for coherent conditional risk measures
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A conditional risk measure p; 1 : Zt 1 — Zt has the local property, if for
every event A € 7; we have the equation

ptT(LaZ, 1aZis1, ..., 0aZ7) = Lapr7(Zt, Zipas ..., Z7)

Z

/)3.4(22, Zg, 24)

Automatic for coherent conditional risk measures
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Multistage Risk-Averse Optimization Problems

Probability Space: (2, F, P) with filtration 7y c --- c Fr c ¥
Decision Variables: x;(w), we Q,t=1,..., T
Nonanticipativity: Each x; is #;-measurable

Cost per Stage: Z;(x;) with realizations Z;(x;(w), w), w € Q
Objective Function: Time-consistent dynamic measure of risk

Interchangeability for Time-Consistent Measures

min (.){21 (X1) + o1 (Zz(XQ) = ,02(23(X3) T aoa
e +PT—2(ZT—1 (x1, + P71 (ZT(XT))) e ))}

= r’r)](in{Z1 (x1) + o1 |:rT;I(in(Zz(X2) + pz[rr)](in(Zg,(xs) +...

e prz[&r;ij](ZTq (x7y) + P11 (TT)(ITn ZT(XT)))] .. )])]
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Interchangeability on a Scenario Tree
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Interchangeability on a Scenario Tree

min p1.4(Z1, 22,23, 24)

x1.x%2().x3(+).xa ()

Z
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Interchangeability on a Scenario Tree

n)w(zn (Z1 —+ p1 ( o ))

t=1
min(Zg +pa(--- mi2n(222+p2(-“))
t=2 2 "2
t=3
min i
t=4 '« ( X X X x g X x
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Linear Risk-Averse Multistage Optimization

(Q,F, P) - probability space with filtration {0, 2} = F1 c FoCc---CcFr =F.
A random x = (x4, ..., x7) is a policy.

If each x; is F;-measurable, policy x is implementable (belongs to /).

A policy x is feasible (belongs to F), if it satisfies the conditions:

AiXq = by
Boxy +  Acxo = b
Brxr—1 + Arxy = br

X1EX1, X2€X2, XTEXT

Each set X; is an F;-measurable convex and closed polyhedron.
Suppose ¢, t = 1,..., T, is an adapted sequence of random cost vectors.
A policy x results in a cost sequence Z; = (¢;, x¢), t =1,..., T.

min o(Z1, 2o, ...,271) (0 - dynamic measure of risk)

Risk-averse multistage stochastic optimization problem
xelnF J

Andrzej Ruszczynski Dynamic Risk-Averse Optimization



Risk Evaluation on a Tree

Scenario tree

Nodes n € N, organized in levels ©; corresponding to stages 1,..., T.
At level t = 1 - only one root node n = 1

Node n at level t is connected to an ancestor node a(n) at level t — 1
Node n at level t is connected to a set C(n) of children nodes at t + 1

Value Function

Qn(xa(n)) - the best value of a subproblem rooted at node n, given X,y
Q¢ vector of value functions at nodes in the set C

Dynamic Programming Equations

Qn(xa(n)) = I’T;l(:]n {(Cna Xn) : Bnxaz(n) + AnXn = bn, Xn € Xn}’ ne Qr,

Qn(Xa(n)) = ”}(lnn {(Cn, Xn) +pn(QC(n)(Xn)) :

ana(n)+Aan:bn, XnEXn}, nth, t:T_1,...,1

The optimal value functions Q,(-) are convex.
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Controlled Markov Models

@ State space X (Borel)
@ Control space U (Borel)
@ Feasiblecontrolset U: X =3 U, t=1,2,...

Controlled transition kernel Q : graph(U) —» P(X), t=1,2,...
P(X) - set of probability measures on X

Cost functionsc: X xU - R, t=1,2,...
State history hy = (Xy,...,x) € X! (uptotimet=1,2,...)
Policy 7y : X! — U, t =1,2,... (always supported in U(x;))

Markov policy r; : X -» U, t =1,2,...
(stationary if 7y = w4 for all t)

Xt — Uy = ﬂt(Xt)
(Xt’ Ut) —> X1 ~ O(Xh Ut)
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Risk-Neutral Total Cost Problem

Infinite horizon expected cost problem:

Za/ Xt,Utl a € (0,1]

with controls us = m(x4, ..., Xt)

min E’
T T2,

Two Cases:
Discounted models (with @ < 1) and transient models (with @ = 1)

Standard Results:
@ A deterministic Markov policy is optimal
@ Optimal policy can be found by dynamic programming equations

Our Intention

Introduce risk aversion to the problem by replacing
the expected value by dynamic risk measures
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Using Dynamic Risk Measures for Markov Decision Processes

@ Controlled Markov process xt”, t=1,...,T

@ Policy IT = {r1, 72, ..., n7} With u; = m;(x;) implies measure P
@ Costsequence Z!" = c(x',m(x!")), Zt € Zt, t =1,..., T,

@ Dynamic time-consistent risk measure

Jr(IT) = ZI +p§7(zg+...+p¥_1(zg)...))

Risk-averse optimal control problem

min Jon (1)
Difficulties
@ Probability measure P/, processes x/’ and Z/" depend on policy /7

@ The risk measures p{/(-) depend on /7 and may depend on history; no
Markov policies

Andrzej Ruszczynski Dynamic Risk-Averse Optimization



Controlled Processes

@ State space X (Borel)
@ Control space U (Borel)
State history h; = (xy,...,x7) € X! (up to time t = 1,2,...)

Controlled transition kernels Q; : X! x U — P(X),
P(X) - set of probability measures on X

Feasible control sets U; : X! =3 U, t =1,2,...
Cost functions ¢t : X xU - R, t=1,2,...
Policy 7r; : X! — U, t =1,2,... (always supported in U;(h;))

he — up = mi(hy)
(ht, Ut) — Xt41 ~ Qt(ht, Ut) = Qtn(ht)

We only need to evaluate risk of processes Z/’(h;) = ¢(x;, mit(ht)),
t=1,..., T, which are measurable functions of the history h;
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Stochastic Conditional Time-Consistency

History h; = (x1,...,X:). Process Z(h;) = c(xt, mi(hy)), t =1,.... T

A family of conditional risk measures {p?T}’[j' 7 Is stochastically

.....

conditionally time-consistent if for all feasible policies /7, IT’, all
1<t < T-1,and forall histories h;, h; € X!, the relations

Z" (h) = Z" (h)
(pﬁLT(ZtI—Y&-P e ’ZITY)|H{7 = ht)ﬁst (pﬁ:LT(ZtH—&-/P e ZIT7)|H{7 = h;)

imply

Pl (20, 2 () < plT (2. ZH) ().

The conditional stochastic order <g:

O (h)(ty = 2" (h) + piq 1(ZHL s 28 ) (e y) > mi)
< Q" (h)(ty - Z" () + oty 725, 28 ) (M. y) > )
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Structure of Process-Based Risk Measures

The processes evaluated are Z//(h;) = c(x;, mi(hy)), t=1,..., T

A family of dynamic risk measures {(pt )t=1...7 [T €MN}is
translation-invariant and stochastically conditionally time-consistent
if and only if there exist functionals

ot VX (UgenGraph(Q7)) - R, t=1...T-1,
where V is the set of measurable functions on (X, B(X)), and
ot (2l 2 () = 20 (he) + oo(pf 7(ZFs - ZE) (P ). b, QFF ()

For all I7 € N, h; € X!, the function m(«, hy, Qf(h,)) is a law-invariant risk
measure on (X, B(X), Q" (h;)).

The mapping o does not depend on /7: the policy only affects the equation
through the next state’s distribution Q7 (hy).
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Markov Risk Measures

en
A family of process-based dynamic risk measures {pr}t; . for a Markov
decision problem is Markov if for all Markov policies 17 € n, for any
measurable ¢y, ...,cr : X X U — R, and for all hy = (x4, ..., X;) and

h{ = (x{,...,x{) such that x; = x{, we have

P (cl(Xesme(X0)), - (X, mr(X7)) ) ()
= o (ce(Xe m(X0)). . .., cr(Xr. 7 (X)) ().

v

If the current state x; is the same, and the same Markov policy /7 is used,
then the risk is the same.
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Structure of Markov Risk Measures

For a fixed history-dependent policy /7 and every h; € X!, we write

vo (he) = pi'r(ci(Xe i (HR)), - .. er(Xr wr(Hr)) ) (h)

fen
If a family of process-based dynamic risk measures {pr}; T is Markov,

.....

translation-invariant, and stochastically conditionally time-consistent, then
there exist transition risk mappings

o-t:(Vx{(x,Qt(x,u)) :u e U(x), xeX}—>]R, t=1,...,T—-1

such thatforall 77 e M, forall t =1,..., T — 1, and all h; € X!, the functional
(J't(-, Xt, Qt(xt,nt(ht))) is a law-invariant risk measure on

(X, B(X), Qt(xt,m(ht))). Moreover, for any ¢ = {c;}i—1..T, we have

Vf’n(ht) = Ct(Xt,ﬂ't(ht)) + O't( t+1 (ht, ) Xt, Qt(Xt,ﬂ't(ht))), t=1,...,T -1
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Dual Representation

From now on we assume that o(-, x, m) is a coherent risk measure
onV = Ly(X, 8B, P).

Dual representation of transition risk mappings

(v, x,m) = max fX V() u(dy)

HEA(X,m)

Example: Mean—Semideviation

a(v,x,m):fvdm-i-K(x)(f(v—fvdm)i dm)fl’

For p > 1 we obtain

A m) = {g=m(1+h= [rdm) : [|hll, 5,my < (). >0}
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General Assumptions for Markov Models

GO. Forall x € X, u € Ui(x) the measure Q:(x, u) is an element of V’;

G1. The transition kernel Q(-, ) is setwise continuous;

G2. The multifunctions Ay(-, ) = d,07+(0, -, -) are lower semicontinuous;

G3. The functions c;(-, -) are measurable, w-bounded, and lower
semicontinuous;

G4. The multifunctions U;(-) are measurable and compact-valued.

Andrzej Ruszczynski Dynamic Risk-Averse Optimization



Finite Horizon Risk-Averse Control Problem

Consider a controlled Markov process {x;} with u; = m(x1, ..., X;).

Risk-averse optimal control problem:

mI;n Jr(I1, x1) = c1(x1, uy) +pﬂ7(cz(X2,U2) +o

+po (CT(XT, ur) + pT(CT+1 (X741 )) e ))

Theorem

If the conditional measures pf are Markov (+ general conditions), then the
optimal solution is given by the dynamic programming equations:

vi41(x) = crri(x), xeX

vi(x) = min {ct(x,u)+at(vt+1,x,Qt(x,u))}, xeX, t=T,...,1.

ueU(x)

Optimal Markov policy IT = {#y, ..., 7T} - the minimizers above
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Finite Horizon Risk-Averse Control Problem

Consider a controlled Markov process {x;} with u; = m(x1, ..., X;).

Risk-averse optimal control problem:

mI;n Jr(I1, x1) = c1(x1, uy) +pﬂ7(cz(X2,U2) +o

+po (CT(XT, ur) + pT(CT+1 (X741 )) e ))

Theorem

If the conditional measures pf are Markov (+ general conditions), then the
optimal solution is given by the dynamic programming equations:

vi41(x) = crri(x), xeX

= min {ct(x, ma E } X, t=T,...,1.
Vt(x) ueUI(x) { t(X U) +peﬂt(x,02((x,u)) 'M[Vt—H] X<

Optimal Markov policy i1 = {t1,..., 77} - the minimizers above
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Infinite Horizon Risk (for stationary models)

Discounted risk measure (0 < a < 1)
U x) = 21+ (02l 4+ (o720 )
Optimal cost: J*(x) = ilr}f Tlim J7 (17, x)

Assume that the model is stationary, the conditional risk measures p;,
t=1,..., T, are Markov (+ technical conditions). Then a bounded function
v : X — R satisfies the dynamic programming equations

v(x) = min {c(x, u) + aa-(v, x, Q(x, u))} xeX,

ueU(x)

if and only if v(-) = J*(-). Moreover, the minimizer 7*(x), x € X, on the right
hand side exists and defines an optimal Markov policy I7* = {n*,7*,...}.

If @ = 1 additional conditions of risk transient models
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Infinite Horizon Risk (for stationary models)

Discounted risk measure (0 < @ < 1)
JUIT,x) = ZT +p§7(a2§7 oot pll (T2 )
Optimal cost: J*(x) = ilr}f Tlim JS(I1, x)

Assume that the model is stationary, the conditional risk measures p;,
t=1,..., T, are Markov (+ technical conditions). Then a bounded function
v : X — R satisfies the dynamic programming equations

- i b ]E }7 X7
v(x) u.renul&) {c(x u) +aﬂ€ﬂ(mx,g>(<x’u)) ulvlp, Xxe€

if and only if v(-) = J*(-). Moreover, the minimizer 7*(x), x € X, on the right
hand side exists and defines an optimal Markov policy IT* = {n*,x*,...}.

If « = 1 additional conditions of risk transient models
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Risk Transient Models

For every x we define the set of probability measures:
MW (x) = A(x, Q(x,7(x))). xe€X

The multifunction M™ : X =3 P(X) is a risk multikernel, associated with the
risk transition mapping o (-, -, -), the kernel Q, and decision rule .

Key formula for Markov policy /1 = {x,«, ...}

A Markov model is risk-transient if

T .
M|, <K foral M<) (W) andall T=20
j=1
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Solution Methods

Value iteration

vkt (x) = min {c(x, u) + ozo-(vk,x, Q(x, u)), xeX, k=1,2,...
ueU(x)

Policy iteration

@ Fork=0,1,2,..., glven a stationary Markov policy =k, 7k, ..., find
the value function v¥ by solving (by a specialized Newton method) the
nonsmooth equation

v(x) = c(x,7%(x)) + a/a'(v, X, Q(x, nk(x))), xeX
@ Find the next policy 7%+ (-) by one-step optimization

*+1(x) = argmin {c(x, u) + cw(vk,x, Q(x, u))}, xeX
ueU(x)

For @ = 1 additional conditions of risk transient models
+ positive or negative c(-, -) for the value iteration method
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Optimal Stopping - Asset Selling Example

Offers Y; arriving in time periods t = 1,2, ... are i.i.d. integrable random
variables. At each time we may accept the highest offer so far, or wait, at
cost ¢y.

The expected value solution: accept the first offer greater than or equal to
the solution X of the equation

E[(Y - %)+] = co.
Risk-averse DP equation:
v(x) = min { - X,Co + o-(v, X, Q(x))}, xeRy

Suppose o is law invariant and does not depend on the second argument.
Risk-averse solution: accept any offer that is greater or equal to the solution
x* of the equation

Co = min E#[(Y - x*)+] (A - subdifferential of o).
HEA

If x < x*, then wait.
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Example: Organ Transplantation

2. Life with
new organ

High probability, if Transplant

1. Patient
Random Reward requires new > High probability, if Wait

organ Reward=1

Very low probability, if Wait

or
Low probability, if Transplant

3. Dead

"4

Reward =0
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Example: Organ Transplantation

@ Expected Total Reward:
The optimal policy is to wait

@ Mean Semi-Deviation with Deterministic Policies:
The optimal policy is to transplant

@ Mean Semi-Deviation with Randomized Policies:
Wait with probability 0.993983 and transplant with probability 0.006017
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Credit Card Example

danol) 1 -
d((1,),0) .-~~~ 1 Tl
A an(l) s (m) m ”
AL 11 A, m) 1,m 1h
r((1,1),m)
4@@ ) -
dane(l)
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y | fl—ﬂ vl
( 2 2,m ,: 2,h>
damenh)
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Qsmam(h) dinen(h)
3 3m r([(3,)n['|)’:‘h) 3,h H(3,h)h)

P ‘q‘(;m,((-)
d((3,h),C)
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Optimal Policy

K (1, (,m) (1,h) (2,5) (2,m) (2,h) (3,I) (3,m) (3,h)
0.025| m h h m h h m m h
0.1 I h h m h h m m h
0.2 I h h m h h m m h
0.3 | h h m h h m m h
0.4 | h h m h h m m h
0.5 I h h m h h m m h
0.6 I h h m h h m m h
0.7 I h h m h h m m h
0.8 | m h I h h m m h
0.9 | m h I m h m m h
1 I m h I m h m m h

k - risk aversion coefficient
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Comparison of Methods

K # of Value lterations | # of Policy lterations  # of Newton lterations
0.025 869 3 4,3,3
0.1 797 4 3,3,2,3
0.2 746 4 3,3,2,2
0.3 689 4 4,222
0.4 658 4 4222
0.5 661 4 4,222
0.6 761 3 4,3,3
0.7 893 3 4,23
0.8 525 3 4,3,2
0.9 1354 3 5,2,3
1 1231 3 6,2,3
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Profit Distribution

State (2,1)

-

98-
Z

3

2--0:6

2

Q.

4 .

2 ——Risk-Neutral
'_; Risk-Averse
E--6:4-

=3

o

-15000 5000 25000 45000 65000 85000 105000 125000 145000
Total Profit
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