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PART I: Introduction to Risk–Averse Optimization

Utility models

Mean–risk models

Measures of risk

Optimization of measures of risk

Stochastic dominance constraints

Introduction to risk–averse dynamic optimization
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Uncertain Outcomes and Risk

Why Probabilistic Models?

Wealth of results of probability theory

Connection to real data via statistics

Universal language (engineering, economics, medicine, . . . )

Probability space (Ω,F ,P)
Decision space X
Random outcome (e.g., cost) Zx(ω), Z : X × Ω→ R

Expected Value Model

min
x
E[Zx ] =

∫
Ω

Zx(ω) P(dω)

It optimizes the outcome on average (Law of Large Numbers?)

What is Risk?

Existence of unlikely and undesirable outcomes - high Zx(ω) for some ω
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Classical Utility Models

Expected Utility Models (von Neumann and Morgenstern, 1944)

min
x∈X

E

[
u(Zx)

] (
=

∫
Ω

u
(
Zx(ω)

)
dP(ω)

)
u : R→ R is a nondecreasing disutility function

Rank Dependent Utility (Distortion) Models (Quiggin, 1982; Yaari, 1987)

min
x∈X

∫ 1

0
F−1

Zx
(p) dw(p) F−1

Zx
(·) - quantile function

w : [0, 1]→ R is a nondecreasing rank dependent utility function

Existence of utility functions is derived from systems of axioms,
but in practice they are difficult to elicit
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Axioms of Expected Utility Theory (von Neumann 1944)

W is a lottery of Z and V with probabilities α ∈ (0, 1) and (1 − α), if the
probability measure µW induced by W on R is the corresponding convex
combination of the probability measures µZ and µV of Z and V :

µW = αµZ + (1 − α)µV .

We write the lottery symbolically as

W = αZ ⊕ (1 − α)V .

For law invariant preferences on the space of real random variables,
von Neumann introduced the axioms:
Independence Axiom: For all Z ,V ,W ∈ Z one has

Z C V =⇒ αZ ⊕ (1 − α)W C αV ⊕ (1 − α)W , ∀α ∈ (0, 1)

Archimedean Axiom: If Z C V C W , then α, β ∈ (0, 1) exist such that

αZ ⊕ (1 − α)W C V C βZ ⊕ (1 − β)W
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Expected Utility

Integral Representation

Suppose the total preorder E on Z is law invariant, and satisfies the
independence and Archimedean axioms. Then it has an “affine” numerical
representation U : Z → R:

U(αZ ⊕ (1 − α)V) = αU(Z) + (1 − α)U(V).

If E is weakly continuous, then a continuous and bounded function
u : R→ R exists, such that

U(Z) = E

[
u(Z)

]
=

∫
Ω

u
(
Z(ω)

)
P(dω).

New proof by separation theorem - Dentcheva & R. 2012

In a more general setting, we may consider only r.v. with finite moments,
and then the boundedness condition on u(·) can be relaxed.
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Risk-Averse Utility

U(Z) = E

[
u(Z)

]
=

∫
Ω

u
(
Z(ω)

)
P(dω)

Monotonicity

The total preorder E is monotonic with respect to the partial order ≤, if
Z ≤ V =⇒ Z E V .

We focus on Z containing integrable random vectors.

Risk Aversion

A preference relation E on Z is risk-averse, if E[Z |G] E Z , for every Z ∈ Z
and every σ-subalgebra G of F .

Nondecreasing Convex Disutility

Suppose a total preorder E on Z is weakly continuous, monotonic,
risk-averse, and satisfies the independence axiom. Then the utility function
u : R→ R is nondecreasing and convex.
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Axioms of Dual Utility Theory (Yaari 1987)

Real random variables Zi , i = 1, . . . , n, are comonotonic, if(
Zi(ω) − Zi(ω

′)
)(

Zj(ω) − Zj(ω
′)
)
≥ 0

for all ω,ω′ ∈ Ω and all i, j = 1, . . . , n.

Dual Independence Axiom: For all comonotonic random variables Z , V ,
and W in Z one has

Z C V =⇒ αZ + (1 − α)W C αV + (1 − α)W , ∀α ∈ (0, 1)

Dual Archimedean Axiom: For all comonotonic random variables Z , V , and
W in Z, satisfying the relations

Z C V C W ,

there exist α, β ∈ (0, 1) such that

αZ + (1 − α)W C V C βZ + (1 − β)W
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Dual Utility

Affine Representation

If the total preorder E on Z is law invariant, and satisfies the dual
independence and Archimedean axioms, then a numerical representation
U : Z → R of E exists, which satisfies for all comonotonic Z ,V ∈ Z and all
α, β ∈ R+ the equation

U(αZ + βV) = αU(Z) + βU(V).

Integral Representation

Suppose Z is the set of bounded random variables. If, additionally, E is
continuous in L1 and monotonic, then a bounded, nondecreasing, and
continuous function w : [0, 1]→ R+ exists, such that

U(Z) =

∫ 1

0
F−1

Z (p) dw(p), Z ∈ Z.

Proof by separation - Dentcheva & R. 2012
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Risk Averse Dual Utility

U(Z) =

∫ 1

0
F−1

Z (p) dw(p), Z ∈ Z (*)

Risk Aversion

A preference relation E on Z is risk-averse, if E[Z |G] E Z , for every Z ∈ Z
and every σ-subalgebra G of F .

Convex Rank-Dependent Utility

Suppose a total preorder E onZ is continuous, monotonic, and satisfies the
dual independence axiom. Then it is risk-averse if and only if it has the
integral representation (*) with a nondecreasing and convex function
w : [0, 1]→ [0, 1] such that w(0) = 0 and w(1) = 1.
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Mean–Risk Models

Two Objectives

Minimize the expected outcome, the mean E[Zx ]

Minimize a scalar measure of uncertainty of Zx , the risk r[Zx ]

r[Z ] = Var[Z ] (Markowitz’ model)

σ+
p [Z ] =

(
E[(Z −EZ)p

+]
)1/p

(semideviation)

δ+
α [Z ] = min

η
E

[
max

(
η − Z ,

α

1 − α
(Z − η)

)]
(deviation from quantile)

Mean–Risk Optimization

min
x∈X

ρ
[
Zx

]
= E

[
Zx

]
+ κ r

[
Zx

]
, 0 ≤ κ ≤ κmax

r
[
Zx

]
is nonlinear w.r.t. probability and possibly nonconvex in x
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Example: Portfolio Optimization

R1,R2, . . . ,Rn - random return rates of securities
x1, x2, . . . , xn - fractions of the capital invested in the securities

Return rate of the portfolio (negative of)

Zx = −
(
R1x1 + R2x2 + · · ·+ Rnxn)

Risk Optimization with Fixed Mean

min
x

r
[
Zx

]
s.t. E

[
Zx

]
= µ (parameter)

x ∈ X0.

Combined Mean–Risk Optimization

min
x∈X0

ρ
[
Zx

]
= E

[
Zx

]
+ κ r

[
Zx

]
, 0 ≤ κ ≤ κmax

Interesting applications of parametric optimization
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Nonlinear Programming Formulations for Discrete Distributions

Suppose Z has finitely many realizations z1, z2, . . . , zS

with probabilities p1, p2, . . . , pS

ρ(Z) = E[Z ] + κσ+
m[Z ] = E[Z ] + κ

(
E[(Z −EZ)m

+]
)1/m

=
∑S

s=1 pszs + κ

(∑S
s=1 ps

(
zs −

∑S
j=1 pjzj

)m

+

)1/m

Equivalent Problem (for m = 1 - linear programming)

ρ(Z) = min
v ,µ

µ + κ

( S∑
s=1

psvm
s

)1/m

s.t. µ =
S∑

s=1

pszs

vs ≥ zs − µ, s = 1, . . . ,S

vs ≥ 0, s = 1, . . . ,S
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Application to Portfolios

Suppose the vector of return rates has S realizations
with probabilities p1, p2, . . . , pS

Rjs - return rate of asset j = 1, . . . , n in scenario s = 1, . . . ,S

Equivalent Problem (for m = 1 - linear programming)

min
x,z,v ,µ

µ + κ

( S∑
s=1

vm
s

)1/m

s.t. µ =
S∑

s=1

pszs

zs = −
n∑

j=1

Rsjxj , s = 1, . . . ,S

vs ≥ zs − µ, s = 1, . . . ,S

vs ≥ 0, s = 1, . . . ,S

x ∈ X0
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Mean–Semideviation Model (719 stocks); (with R. Vanderbei)
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Key Requirement: Monotonicity

ρ(Z) = E[Z ] + κ r[Z ]

Consistency with Stochastic Dominance (Ogryczak–R., 1997)

E[u(Z)] ≤ E[u(W)], ∀ nondecreasing and convex u(·)⇒ ρ[Z ] ≤ ρ[W ]

Consistency with Pointwise Order (Artzner et. al., 1999)

Z ≤ W a.s. ⇒ ρ[Z ] ≤ ρ[W ]

Mean–semideviation and mean–deviation from quantile models are
consistent for 0 ≤ κ ≤ 1, but not mean–variance.

Unique optimal solutions of consistent optimization models

min
x∈X

ρ(Zx)

cannot be strictly dominated (in the corresponding sense)
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Coherent Risk Measures

Space of uncertain outcomes Z = Lp(Ω,F ,P), p ∈ [1,∞]

A functional ρ : Z → R is a coherent risk measure if it satisfies the following
axioms

Convexity: ρ(λZ + (1 − λ)W) ≤ λρ(Z) + (1 − λ)ρ(W)
∀ λ ∈ (0, 1), Z ,W ∈ Z

Monotonicity: If Z ≤ W then ρ(Z) ≤ ρ(W), ∀ Z ,W ∈ Z

Translation Equivariance: ρ(Z + a) = ρ(Z) + a, ∀ Z ∈ Z, a ∈ R

Positive Homogeneity: ρ(τZ) = τρ(Z), ∀ Z ∈ Z, τ ≥ 0

Kijima-Ohnishi (1993) – no monotonicity
Artzner-Delbaen-Eber-Heath (1999–) - space L∞
R.-Shapiro (2005) – spaces Lp , . . .

Good news: E[Z ] is coherent
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Andrzej Ruszczyński Dynamic Risk-Averse Optimization



Coherent Risk Measures

Space of uncertain outcomes Z = Lp(Ω,F ,P), p ∈ [1,∞]

A functional ρ : Z → R is a coherent risk measure if it satisfies the following
axioms

Convexity: ρ(λZ + (1 − λ)W) ≤ λρ(Z) + (1 − λ)ρ(W)
∀ λ ∈ (0, 1), Z ,W ∈ Z

Monotonicity: If Z ≤ W then ρ(Z) ≤ ρ(W), ∀ Z ,W ∈ Z

Translation Equivariance: ρ(Z + a) = ρ(Z) + a, ∀ Z ∈ Z, a ∈ R

Positive Homogeneity: ρ(τZ) = τρ(Z), ∀ Z ∈ Z, τ ≥ 0

Kijima-Ohnishi (1993) – no monotonicity
Artzner-Delbaen-Eber-Heath (1999–) - space L∞
R.-Shapiro (2005) – spaces Lp , . . .

Good news: E[Z ] is coherent
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Value at Risk

The Value at Risk at level α ∈ (0, 1) of a random cost Z ∈ Z:

V@R+
α (Z)

M
= inf {η : FZ (η) ≥ 1 − α} = F−1

Z (1 − α)

Monotonicity: Z ≤ V =⇒ V@R+
α (Z) ≤ V@R+

α (V)
Translation: V@R+

α (Z + c) = V@R+
α (Z) + c, for all c ∈ R

Positive Homogeneity: V@R+
α (γZ) = γV@R+

α (Z), for all γ ≥ 0
However, it is not convex

Counterexample: Two independent variables

Z =

0 with probability 1 − p

1 with probability p
V =

0 with probability 1 − p

1 with probability p

For p < α < 1 we have V@R+
α (Z) = V@R+

α (V) = 0
If p < α < 1 − (1 − p)2, we have non-convexity

V@R+
α

(
λZ + (1 − λ)V

)
> 0 = λV@R+

α (Z) + (1 − λ) V@R+
α (V)
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Average Value at Risk

AV@R+
α (Z)

M
=

1
α

∫ α

0
V@R+

β (Z) dβ

If the (1 − α)-quantile of Z is unique

AV@R+
α (Z) =

1
α

∫ ∞

V@R+
α (Z)

z dFZ (z) = E

[
Z |Z ≥ V@R+

α (Z)
]

Extremal representation

AV@R+
α (Z) = inf

η∈R

{
η +

1
α
E

[
(Z − η)+

]}
The minimizer η = V@Rα(Z)

Connection to weighted deviation from α-quantile:

δ+
α (Z) = AV@R+

α (Z) −E[Z ], α ∈ [0, 1].
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Linear Programming Representation of AV@R

Suppose Z has finitely many realizations z1, z2, . . . , zS

with probabilities p1, p2, . . . , pS

min
v ,η

η +
1
α

S∑
s=1

psvs

s.t. vs ≥ zs − η, s = 1, . . . ,S

vs ≥ 0, s = 1, . . . ,S

For portfolios we have to add the constraints

zs = −
n∑

j=1

Rsjxj , s = 1, . . . ,S

x ∈ X0

and include z and x into the decision variables
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Conjugate Duality of Risk Measures

Pairing of a linear topological space Z with a linear topological space Y
of regular signed measures on Ω with the bilinear form〈

µ,Z
〉

= Eµ[Z ] =

∫
Ω

Z(ω) µ(dω)

We assume standard conditions on pairing and the polarity: (Z+)◦ = Y−

Dual Representation Theorem

If ρ : Z → R is a lower semicontinuous∗ coherent risk measure, then

ρ(Z) = max
µ∈A

∫
Ω

Z(ω) µ(dω), ∀Z ∈ Z

with a convex closed A ⊂ P (set of probability measures in Y).

Delbaen (2001), Föllmer–Schied (2002), R.–Shapiro (2005),

Rockafellar–Uryasev–Zabarankin (2006), . . .
∗ Lower semicontinuity is automatic if ρ is finite and Z is a Banach lattice
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Universality of AV@R

Z ∼ V means that Z and V have the same distribution, µZ = µV .
ρ : Z → R is law invariant if Z ∼ V =⇒ ρ(Z) = ρ(V)

Kusuoka Theorem

If (Ω,F ,P) is atomless and ρ : L1(Ω,F ,P)→ R is law invariant and
coherent, then

ρ(Z) = sup
m∈M

∫ 1

0
AV@R+

α (Z) m(dα)

whereM is a convex set of probability measures on (0, 1].

Spectral measure

ρ(V) =

∫ 1

0
AV@R+

α (Z) m(dα)

Spectral measures have dual utility form:

ρ(Z) =

∫ 1

0
F−1

Z (β) dw(β)
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Optimization of Risk Measures

“Minimize” over x ∈ X a random outcome Zx(ω) = f(x, ω), ω ∈ Ω

Composite Optimization Problem

min
x∈X

ρ(Zx) (P)

Theorem

Let x 7→ Zx(ω) be convex and ρ(·) be coherent. Suppose x̂ ∈ X is an
optimal solution of (P) and ρ(·) is continuous at Zx̂ . Then there exists a
probability measure µ̂ ∈ ∂ρ(Zx̂) ⊆ A such that x̂ solves

min
x∈X

Eµ̂[Zx ] = min
x∈X

max
µ∈A

Eµ[Zx ]

We also have the duality relation:

min
x∈X

ρ(Zx) = max
µ∈A

inf
x∈X

Eµ[Zx ]
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Duality in Portfolio Optimization - Game Model

Suppose the vector of return rates of assets has S realizations
Rjs - return rate of asset j = 1, . . . , n in scenario s = 1, . . . ,S
Portfolio return (negative) in scenario s

Zs(x) = −
n∑

j=1

Rjsxj

Risk-Averse Portfolio Problem

min
x∈X

ρ
(
Z(x)

)
By homogeneity, we may assume that

∑n
j=1 xj = 1

Equivalent Matrix Game

max
x∈X

min
µ∈A

n∑
j=1

S∑
s=1

xjRjsµs

x - mixed strategy of the investor
µ - mixed strategy of the opponent (market)
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Stochastic Dominance Constraints (with Darinka Dentcheva, 2003–)

Zx - random outcome (e.g., cost)
Y - benchmark random outcome, e.g. Y(ω) = Zx̄(ω) for some x̄ ∈ X

New Model

min E[Zx ] (or some other objective)

subject to Zx �U Y (stochastic ordering constraint)

x ∈ X

Zx is preferred over Y by all decision makers having disutility functions in
the generatorU:

E[u(Zx)] ≤ E[u(Y)] ∀ u ∈ U

All nondecreasing u(·) - first order stochastic dominance �st

All nondecreasing convex u(·) - increasing convex order �icx
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Dominance Constrained Optimization (with Darinka Dentcheva)

min E[Zx ]

subject to Zx �icx Y

x ∈ X
X - convex set in X (separable locally convex Hausdorff vector space)
x 7→ Zx is a continuous operator from X to L1(Ω,F ,P)
x 7→ Zx(ω) is convex for P-almost all ω ∈ Ω

Primal: E[u(Zx)] ≤ E[u(Y)] for all convex nondecreasing u : R→ R

Inverse:
∫ 1

0 F−1
Zx

(p) dw(p) ≤
∫ 1

0 F−1
Y (p) dw(p) for all convex

nondecreasing w : [0, 1]→ R

Main Results
Utility functions u : R→ R and rank dependent utility functions
w : [0, 1]→ R play the roles of Lagrange multipliers

Expected utility models and rank dependent utility models are
Lagrangian relaxations of the problem
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Implied Utility Function (with Darinka Dentcheva)

Lagrangian in Direct Form

L(x, u) = E

[
Zx + u(Zx) − u(Y)

]
u(·) - convex function on R

Theorem
Assume Uniform Dominance Condition (a form of Slater constraint
qualification). If x̂ is an optimal solution of the problem then there exists a
function û ∈ U such that

L(x̂, û)= min
x∈X

L(x, û) (1)

E

[
û(Zx̂)

]
= E

[
û(Y)

]
(2)

Conversely, if for some function û ∈ U an optimal solution x̂ of (1) satisfies
the dominance constraint and (2), then x̂ is optimal
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Implied Rank Utility (Distortion) Function (with Darinka Dentcheva)

Lagrangian in Inverse Form

Φ(x,w) =

∫ 1

0
F−1

Zx
(p) d(p + w(p)) −

∫ 1

0
F−1

Y (p) dw(p)

w(·) - convex function on [0, 1]

Theorem
Assume Uniform Dominance Condition (a form of Slater constraint
qualification). If x̂ is an optimal solution of the problem, then there exists a
function ŵ ∈ W such that

Φ(x̂, ŵ) = min
x∈X

Φ(x, ŵ) (3)∫ 1

0
F−1

Zx̂
(p) dŵ(p) =

∫ 1

0
F−1

Y (p) dŵ(p) (4)

If for some ŵ ∈ W an optimal solution x̂ of (3) satisfies the inverse
dominance constraint and (4), then x̂ is optimal

Andrzej Ruszczyński Dynamic Risk-Averse Optimization



How to Measure Risk of Sequences?

Probability space (Ω,F ,P) with filtration F1 ⊂ · · · ⊂ FT ⊂ F

Adapted sequence of random variables (costs) Z1,Z2, . . . ,ZT

Spaces: Zt = Ls̄(Ω,Ft ,P), s̄ ∈ [1,∞), and Zt ,T = Zt × · · · × ZT

Conditional Risk Measure
A mapping ρt ,T : Zt ,T → Zt satisfying the monotonicity condition:

ρt ,T (Z) ≤ ρt ,T (W) for all Z ,W ∈ Zt ,T such that Z ≤ W

Dynamic Risk Measure

A sequence of conditional risk measures ρt ,T : Zt ,T → Zt , t = 1, . . . ,T

ρ1,T (Z1,Z2,Z3, . . . ,ZT ) ∈ Z1 = R

ρ2,T (Z2,Z3, . . . ,ZT ) ∈ Z2

ρ3,T (Z3, . . . ,ZT ) ∈ Z3
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Evaluating Risk on a Scenario Tree
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Evaluating Risk on a Scenario Tree
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Evaluating Risk on a Scenario Tree
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PART II: Optimization of Dynamic Risk Measures

Dynamic measures of risk

Time consistency and local property

Interchangeability

Risk optimization on a tree

Application to Markov models

Stochastic conditional time-consistency

Markov risk measures

Dynamic programming

Solution methods

Examples
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How to Measure Risk of Sequences?

Probability space (Ω,F ,P) with filtration F1 ⊂ · · · ⊂ FT ⊂ F

Adapted sequence of random variables (costs) Z1,Z2, . . . ,ZT

Spaces: Zt = Ls̄(Ω,Ft ,P), s̄ ∈ [1,∞), and Zt ,T = Zt × · · · × ZT

Conditional Risk Measure
A mapping ρt ,T : Zt ,T → Zt satisfying the monotonicity condition:

ρt ,T (Z) ≤ ρt ,T (W) for all Z ,W ∈ Zt ,T such that Z ≤ W

Dynamic Risk Measure

A sequence of conditional risk measures ρt ,T : Zt ,T → Zt , t = 1, . . . ,T

ρ1,T (Z1,Z2,Z3, . . . ,ZT ) ∈ Z1 = R

ρ2,T (Z2,Z3, . . . ,ZT ) ∈ Z2

ρ3,T (Z3, . . . ,ZT ) ∈ Z3

...
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Evaluating Risk on a Scenario Tree
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Evaluating Risk on a Scenario Tree
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Evaluating Risk on a Scenario Tree
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Time Consistency of Dynamic Risk Measures

A dynamic risk measure
{
ρt ,T

}T

t=1
is time-consistent if for all τ < θ

Zk = Wk , k = τ, . . . , θ − 1 and ρθ,T (Zθ, . . . ,ZT ) ≤ ρθ,T (Wθ, . . . ,WT )

imply that ρτ,T (Zτ, . . . ,ZT ) ≤ ρτ,T (Wτ, . . . ,WT )

Define ρt (Zt+1) = ρt ,T (0,Zt+1, 0, . . . , 0)

Nested Decomposition Theorem

Suppose a dynamic risk measure
{
ρt ,T

}T

t=1
is time-consistent and

ρt ,T (Zt ,Zt+1, . . . ,ZT ) = Zt + ρt ,T (0,Zt+1, . . . ,ZT )

Then for all t we have the representation

ρt ,T (Zt , . . . ,ZT ) = Zt + ρt

(
Zt+1 + ρt+1

(
Zt+2 + · · ·+ ρT−1(ZT )

)
· · ·

))
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Coherent One-Step Conditional Risk Measures

Stronger assumptions about one-step measures ρt : Zt+1 → Zt :

Convexity: ρt (λZ + (1 − λ)W) ≤ λρt (Z) + (1 − λ)ρt (W)
∀ λ ∈ (0, 1), Z ,W ∈ Zt+1

Monotonicity: If Z ≤ W then ρt (Z) ≤ ρt (W), ∀ Z ,W ∈ Zt+1

Predictable Translation Equivariance:
ρt (Z + W) = Z + ρt (W), ∀ Z ∈ Zt , W ∈ Zt+1

Positive Homogeneity: ρt (τZ) = τρt (Z), ∀ Z ∈ Zt+1, τ ≥ 0

Scandolo (’03), Riedel (’04), R.-Shapiro (’06), Cheridito-Delbaen-Kupper (’06),

Föllmer-Penner (’06), Artzner-Delbaen-Eber-Heath-Ku (’07), Pflug-Römisch (’07)

Example: Conditional Mean–Semideviation

ρt (Zt+1) = E[Zt+1|Ft ] + κE
[(

Zt+1 −E[Zt+1|Ft ]
)s

+

∣∣∣Ft

] 1
s

Here s ∈ [1, s̄] and κ ∈ [0, 1] may be Ft -measurable
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Andrzej Ruszczyński Dynamic Risk-Averse Optimization



Coherent One-Step Conditional Risk Measures

Stronger assumptions about one-step measures ρt : Zt+1 → Zt :

Convexity: ρt (λZ + (1 − λ)W) ≤ λρt (Z) + (1 − λ)ρt (W)
∀ λ ∈ (0, 1), Z ,W ∈ Zt+1

Monotonicity: If Z ≤ W then ρt (Z) ≤ ρt (W), ∀ Z ,W ∈ Zt+1

Predictable Translation Equivariance:
ρt (Z + W) = Z + ρt (W), ∀ Z ∈ Zt , W ∈ Zt+1

Positive Homogeneity: ρt (τZ) = τρt (Z), ∀ Z ∈ Zt+1, τ ≥ 0

Scandolo (’03), Riedel (’04), R.-Shapiro (’06), Cheridito-Delbaen-Kupper (’06),

Föllmer-Penner (’06), Artzner-Delbaen-Eber-Heath-Ku (’07), Pflug-Römisch (’07)

Example: Conditional Mean–Semideviation

ρt (Zt+1) = E[Zt+1|Ft ] + κE
[(

Zt+1 −E[Zt+1|Ft ]
)s

+

∣∣∣Ft

] 1
s

Here s ∈ [1, s̄] and κ ∈ [0, 1] may be Ft -measurable
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Local Property

A conditional risk measure ρt ,T : Zt ,T → Zt has the local property, if for
every event A ∈ Ft we have the equation

ρt ,T (1A Zt ,1A Zt+1, . . . ,1A ZT ) = 1A ρt ,T (Zt ,Zt+1, . . . ,ZT )
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Automatic for coherent conditional risk measures
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Multistage Risk-Averse Optimization Problems

Probability Space: (Ω,F ,P) with filtration F1 ⊂ · · · ⊂ FT ⊂ F

Decision Variables: xt (ω), ω ∈ Ω, t = 1, . . . ,T
Nonanticipativity: Each xt is Ft -measurable
Cost per Stage: Zt (xt ) with realizations Zt (xt (ω), ω), ω ∈ Ω
Objective Function: Time-consistent dynamic measure of risk

Interchangeability for Time-Consistent Measures

min
x1,x2(·),...,xT (·)

Z1(x1) + ρ1

(
Z2(x2) + ρ2

(
Z3(x3) + . . .

· · ·+ ρT−2

(
ZT−1(xT1 + ρT−1(ZT (xT ))

)
· · ·

))
= min

x1

Z1(x1) + ρ1

[
min

x2

(
Z2(x2) + ρ2

[
min

x3

(
Z3(x3) + . . .

· · ·+ ρT−2

[
min
xT−1

(
ZT−1(xT1) + ρT−1(min

xT
ZT (xT ))

)]
· · ·

)])]
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Interchangeability on a Scenario Tree
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Interchangeability on a Scenario Tree
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x1 ,x2(·),x3(·),x4(·)

ρ1,4(Z1,Z2,Z3,Z4)
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Interchangeability on a Scenario Tree
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min
x1

(
Z1 + ρ1(· · · )

)

min
x2

2

(
Z2

2 + ρ2(· · · )
)

min
x1

2

(
Z1

2 + ρ2(· · · )
)

min
x5

3

(·)min
x4

3

(·)min
x3

3

(·)min
x2

3

(·)min
x1

3

(·)

min
x8

4

(·)min
x7

4

(·)min
x6

4

(·)min
x5

4

(·)min
x4

4

(·)min
x3

4

(·)min
x2

4

(·)min
x1

4

(·)
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Linear Risk-Averse Multistage Optimization

(Ω,F ,P) - probability space with filtration {∅, Ω} = F1 ⊂ F2 ⊂ · · · ⊂ FT = F .
A random x = (x1, . . . , xT ) is a policy.
If each xt is Ft -measurable, policy x is implementable (belongs to I).
A policy x is feasible (belongs to F), if it satisfies the conditions:

A1x1 = b1

B2x1 + A2x2 = b2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BT xT−1 + AT xT = bT

x1 ∈ X1, x2 ∈ X2, . . . xT ∈ XT

Each set Xt is an Ft -measurable convex and closed polyhedron.
Suppose ct , t = 1, . . . ,T , is an adapted sequence of random cost vectors.
A policy x results in a cost sequence Zt = 〈ct , xt 〉, t = 1, . . . ,T .

Risk-averse multistage stochastic optimization problem

min
x∈I∩F

%(Z1,Z2, . . . ,ZT ) (% - dynamic measure of risk)
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Risk Evaluation on a Tree

Scenario tree
Nodes n ∈ N , organized in levels Ωt corresponding to stages 1, . . . ,T .
At level t = 1 - only one root node n = 1
Node n at level t is connected to an ancestor node a(n) at level t − 1
Node n at level t is connected to a set C(n) of children nodes at t + 1

Value Function
Qn

(
xa(n)

)
- the best value of a subproblem rooted at node n, given xa(n)

QC vector of value functions at nodes in the set C

Dynamic Programming Equations

Qn

(
xa(n)

)
= min

xn

{
〈cn, xn〉 : Bnxa(n) + Anxn = bn, xn ∈ Xn

}
, n ∈ ΩT ,

Qn

(
xa(n)

)
= min

xn

{
〈cn, xn〉+ ρn

(
QC(n)

(
xn

))
:

Bnxa(n) + Anxn = bn, xn ∈ Xn

}
, n ∈ Ωt , t = T − 1, . . . , 1

The optimal value functions Qn(·) are convex.
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Controlled Markov Models

State space X (Borel)

Control spaceU (Borel)

Feasible control set U : X⇒ U, t = 1, 2, . . .

Controlled transition kernel Q : graph(U)→ P(X), t = 1, 2, . . .
P(X) - set of probability measures on X

Cost functions c : X ×U → R, t = 1, 2, . . .

State history ht = (x1, . . . , xt ) ∈ X
t (up to time t = 1, 2, . . . )

Policy πt : Xt →U, t = 1, 2, . . . (always supported in U(xt ))

Markov policy πt : X → U, t = 1, 2, . . .
(stationary if πt = π1 for all t)

xt −→ ut = πt (xt )

(xt , ut ) −→ xt+1 ∼ Q(xt , ut )
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Risk-Neutral Total Cost Problem

Infinite horizon expected cost problem:

min
π1,π2,...

E
Π

 ∞∑
t=1

αt−1ct (xt , ut )

 , α ∈ (0, 1]

with controls ut = πt (x1, . . . , xt )

Two Cases:
Discounted models (with α < 1) and transient models (with α = 1)

Standard Results:
A deterministic Markov policy is optimal

Optimal policy can be found by dynamic programming equations

Our Intention
Introduce risk aversion to the problem by replacing
the expected value by dynamic risk measures
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Using Dynamic Risk Measures for Markov Decision Processes

Controlled Markov process xΠt , t = 1, . . . ,T

Policy Π = {π1, π2, . . . , πT } with ut = πt (xt ) implies measure PΠ

Cost sequence ZΠ
t = c(xΠt , πt (xΠt )), Zt ∈ Zt , t = 1, . . . ,T ,

Dynamic time-consistent risk measure

JT (Π) = ZΠ
1 + ρΠ1

(
ZΠ

2 + · · ·+ ρΠT−1(ZΠ
T ) · · ·

))
Risk-averse optimal control problem

min
Π

lim
T→∞

JT (Π)

Difficulties

Probability measure PΠ , processes xΠt and ZΠ
t depend on policy Π

The risk measures ρΠt (·) depend on Π and may depend on history; no
Markov policies
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Controlled Processes

State space X (Borel)

Control spaceU (Borel)

State history ht = (x1, . . . , xT ) ∈ Xt (up to time t = 1, 2, . . . )

Controlled transition kernels Qt : Xt ×U → P(X),
P(X) - set of probability measures on X

Feasible control sets Ut : Xt ⇒ U, t = 1, 2, . . .

Cost functions ct : X ×U → R, t = 1, 2, . . .

Policy πt : Xt →U, t = 1, 2, . . . (always supported in Ut (ht ))

ht −→ ut = πt (ht )

(ht , ut ) −→ xt+1 ∼ Qt (ht , ut ) = QΠ
t (ht )

We only need to evaluate risk of processes ZΠ
t (ht ) = c(xt , πt (ht )),

t = 1, . . . ,T , which are measurable functions of the history ht
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Stochastic Conditional Time-Consistency (with Jingnan Fan)

History ht = (x1, . . . , xt ). Process ZΠ
t (ht ) = c(xt , πt (ht )), t = 1, . . . ,T

A family of conditional risk measures {ρΠt ,T }
π∈Π
t=1,...,T is stochastically

conditionally time-consistent if for all feasible policies Π,Π ′, all
1 ≤ t ≤ T − 1, and for all histories ht , h′t ∈ X

t , the relations

ZΠ
t (ht ) = ZΠ ′

t (h′t )(
ρΠt+1,T (ZΠ

t+1, . . . ,Z
Π
T )

∣∣∣HΠ
t = ht

)
�st

(
ρΠ

′

t+1,T (ZΠ ′

t+1, . . . ,Z
Π ′

T )
∣∣∣HΠ ′

t = h′t
)

imply
ρΠt ,T (ZΠ

t , . . . ,Z
Π
T )(ht ) ≤ ρ

Π ′

t ,T (ZΠ ′

t , . . . ,ZΠ ′

T )(h′t ).

The conditional stochastic order �st:

QΠ
t (ht )

(
{y : ZΠ

t (ht ) + ρΠt+1,T (ZΠ
t+1, . . . ,Z

Π
T )(ht , y) > η}

)
≤ QΠ ′

t (h′t )
(
{y : ZΠ ′

t (h′t ) + ρΠ
′

t+1,T (ZΠ ′

t+1, . . . ,Z
Π ′

T )(h′t , y) > η}
)
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Structure of Process-Based Risk Measures (with Jingnan Fan)

The processes evaluated are ZΠ
t (ht ) = c(xt , πt (ht )), t = 1, . . . ,T

A family of dynamic risk measures {(ρΠt ,T )t=1,...,T : Π ∈ Π} is
translation-invariant and stochastically conditionally time-consistent
if and only if there exist functionals

σt : V × (∪Π∈ΠGraph(QΠ
t ))→ R, t = 1 . . .T − 1,

whereV is the set of measurable functions on (X,B(X)), and

ρΠt ,T (ZΠ
t , . . . ,Z

Π
T )(ht ) = ZΠ

t (ht ) + σt

(
ρΠt+1,T (ZΠ

t+1, . . . ,Z
Π
T )(ht , ·), ht ,QΠ

t (ht )
)

For all Π ∈ Π, ht ∈ X
t , the function σt

(
·, ht ,QΠ

t (ht )
)

is a law-invariant risk
measure on (X,B(X),QΠ

t (ht )).

The mapping σt does not depend on Π : the policy only affects the equation
through the next state’s distribution QΠ

t (ht ).
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Markov Risk Measures (with Jingnan Fan)

A family of process-based dynamic risk measures
{
ρΠt ,T

}Π∈Π
t=1,...,T

for a Markov
decision problem is Markov if for all Markov policies Π ∈ Π, for any
measurable c1, . . . , cT : X ×U → R, and for all ht = (x1, . . . , xt ) and
h′t = (x′1, . . . , x

′
t ) such that xt = x′t , we have

ρΠt ,T

(
ct (Xt , πt (Xt )), . . . , cT (XT , πT (XT ))

)
(ht )

= ρΠt ,T

(
ct (Xt , πt (Xt )), . . . , cT (XT , πT (XT ))

)
(h′t ).

If the current state xt is the same, and the same Markov policy Π is used,
then the risk is the same.
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Structure of Markov Risk Measures (with Jingnan Fan)

For a fixed history-dependent policy Π and every ht ∈ X
t , we write

vc,Π
t (ht ) = ρΠt ,T

(
ct (Xt , πt (Ht )), . . . , cT (XT , πT (HT ))

)
(ht )

If a family of process-based dynamic risk measures
{
ρΠt ,T

}Π∈Π
t=1,...,T

is Markov,
translation-invariant, and stochastically conditionally time-consistent, then
there exist transition risk mappings

σt : V ×
{(

x,Qt (x, u)
)

: u ∈ U(x), x ∈ X
}
→ R, t = 1, . . . ,T − 1

such that for all Π ∈ Π, for all t = 1, . . . ,T − 1, and all ht ∈ X
t , the functional

σt

(
·, xt ,Qt (xt , πt (ht ))

)
is a law-invariant risk measure on(

X,B(X),Qt (xt , πt (ht ))
)
. Moreover, for any c = {ct }t=1...T , we have

vc,Π
t (ht ) = ct (xt , πt (ht )) + σt

(
vc,Π

t+1(ht , ·), xt ,Qt (xt , πt (ht ))
)
, t = 1, . . . ,T − 1
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Dual Representation

From now on we assume that σt (·, x,m) is a coherent risk measure
onV = Lp(X,B,P0).

Dual representation of transition risk mappings

σ(v , x,m) = max
µ∈A(x,m)

∫
X

v(y) µ(dy)

Example: Mean–Semideviation

σ(v , x,m) =

∫
v dm + κ(x)

( ∫ (
v −

∫
v dm

)p

+
dm

) 1
p

For p > 1 we obtain

A(x,m) =
{
g = m

(
1 + h −

∫
h dm

)
:
∥∥∥h

∥∥∥
Lq(X,B,m)

≤ κ(x), h ≥ 0
}
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General Assumptions for Markov Models

G0. For all x ∈ X, u ∈ Ut (x) the measure Qt (x, u) is an element ofV′;
G1. The transition kernel Qt (·, ·) is setwise continuous;
G2. The multifunctions At (·, ·) ≡ ∂ϕσt (0, ·, ·) are lower semicontinuous;
G3. The functions ct (·, ·) are measurable, w-bounded, and lower

semicontinuous;
G4. The multifunctions Ut (·) are measurable and compact-valued.
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Finite Horizon Risk-Averse Control Problem

Consider a controlled Markov process {xt } with ut = πt (x1, . . . , xt ).

Risk-averse optimal control problem:

min
Π

JT (Π, x1) = c1(x1, u1) + ρΠ1

(
c2(x2, u2) + · · ·

+ ρΠT−1

(
cT (xT , uT ) + ρT

(
cT+1(xT+1)

)
· · ·

))
.

Theorem

If the conditional measures ρΠt are Markov (+ general conditions), then the
optimal solution is given by the dynamic programming equations:

vT+1(x) = cT+1(x), x ∈ X

vt (x) = min
u∈U(x)

{
ct (x, u) + σt

(
vt+1, x,Qt (x, u)

)}
, x ∈ X, t = T , . . . , 1.

Optimal Markov policy Π̂ = {π̂1, . . . , π̂T } - the minimizers above
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Finite Horizon Risk-Averse Control Problem

Consider a controlled Markov process {xt } with ut = πt (x1, . . . , xt ).

Risk-averse optimal control problem:

min
Π

JT (Π, x1) = c1(x1, u1) + ρΠ1

(
c2(x2, u2) + · · ·

+ ρΠT−1

(
cT (xT , uT ) + ρT

(
cT+1(xT+1)

)
· · ·

))
.

Theorem

If the conditional measures ρΠt are Markov (+ general conditions), then the
optimal solution is given by the dynamic programming equations:

vT+1(x) = cT+1(x), x ∈ X

vt (x) = min
u∈U(x)

{
ct (x, u) + max

µ∈At (x,Qt (x,u))
Eµ

[
vt+1

]}
, x ∈ X, t = T , . . . , 1.

Optimal Markov policy Π̂ = {π̂1, . . . , π̂T } - the minimizers above
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Infinite Horizon Risk (for stationary models)

Discounted risk measure (0 < α < 1)

JαT (Π, x) = ZΠ
1 + ρΠ1

(
αZΠ

2 + · · ·+ ρΠT−1

(
αT−1ZΠ

T

)
· · ·

)
Optimal cost: J∗(x) = inf

Π
lim

T→∞
JαT (Π, x)

Assume that the model is stationary, the conditional risk measures ρt ,
t = 1, . . . ,T , are Markov (+ technical conditions). Then a bounded function
v : X → R satisfies the dynamic programming equations

v(x) = min
u∈U(x)

{
c(x, u) + ασ

(
v , x,Q(x, u)

)}
, x ∈ X,

if and only if v(·) ≡ J∗(·). Moreover, the minimizer π∗(x), x ∈ X, on the right
hand side exists and defines an optimal Markov policy Π∗ = {π∗, π∗, . . . }.

If α = 1 additional conditions of risk transient models
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Infinite Horizon Risk (for stationary models)

Discounted risk measure (0 < α < 1)

JαT (Π, x) = ZΠ
1 + ρΠ1

(
αZΠ

2 + · · ·+ ρΠT−1

(
αT−1ZΠ

T

)
· · ·

)
Optimal cost: J∗(x) = inf

Π
lim

T→∞
JαT (Π, x)

Assume that the model is stationary, the conditional risk measures ρt ,
t = 1, . . . ,T , are Markov (+ technical conditions). Then a bounded function
v : X → R satisfies the dynamic programming equations

v(x) = min
u∈U(x)

{
c(x, u) + α max

µ∈A(x,Q(x,u))
Eµ[v]

}
, x ∈ X,

if and only if v(·) ≡ J∗(·). Moreover, the minimizer π∗(x), x ∈ X, on the right
hand side exists and defines an optimal Markov policy Π∗ = {π∗, π∗, . . . }.

If α = 1 additional conditions of risk transient models
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Risk Transient Models (with Özlem Çavuş)

For every x we define the set of probability measures:

M
π(x) = A

(
x,Q(x, π(x))

)
, x ∈ X

The multifunctionMπ : X⇒ P(X) is a risk multikernel, associated with the
risk transition mapping σ(·, ·, ·), the kernel Q , and decision rule π.

Key formula for Markov policy Π = {π, π, . . . }

ρΠt
(
v(xt+1)

)
= max

M∈Mπ (xt )

∫
X

v(y) M(dy)

A Markov model is risk-transient if

∥∥∥M
∥∥∥

w ≤ K for all M l
T∑

j=1

(
M̃

π
)j

and all T ≥ 0
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Solution Methods

Value iteration

vk+1(x) = min
u∈U(x)

{
c(x, u) + ασ

(
vk , x,Q(x, u)

)
, x ∈ X, k = 1, 2, . . .

Policy iteration

For k = 0, 1, 2, . . . , given a stationary Markov policy {πk , πk , . . . }, find
the value function vk by solving (by a specialized Newton method) the
nonsmooth equation

v(x) = c(x, πk (x)) + ασ
(
v , x,Q(x, πk (x))

)
, x ∈ X

Find the next policy πk+1(·) by one-step optimization

πk+1(x) = argmin
u∈U(x)

{
c(x, u) + ασ

(
vk , x,Q(x, u)

)}
, x ∈ X

For α = 1 additional conditions of risk transient models
+ positive or negative c(·, ·) for the value iteration method
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Optimal Stopping - Asset Selling Example (with Özlem Çavuş)

Offers Yt arriving in time periods t = 1, 2, . . . are i.i.d. integrable random
variables. At each time we may accept the highest offer so far, or wait, at
cost c0.
The expected value solution: accept the first offer greater than or equal to
the solution x̂ of the equation

E

[
(Y − x̂)+

]
= c0.

Risk-averse DP equation:

v(x) = min
{
− x, c0 + σ

(
v , x,Q(x)

)}
, x ∈ R+

Suppose σ is law invariant and does not depend on the second argument.
Risk-averse solution: accept any offer that is greater or equal to the solution
x∗ of the equation

c0 = min
µ∈A

Eµ

[
(Y − x∗)+

]
(A - subdifferential of σ).

If x < x∗, then wait.
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Example: Organ Transplantation (with Özlem Çavuş)

High probability, if Transplant 

Very low probability, if Wait 
or 

Low probability, if Transplant 
 

High probability, if Wait 

Reward=1 

 

 

2. Life with 

new organ 

1. Patient 

requires new 

organ 

 

3. Dead 

 

  Random Reward 

Reward,3,.)=1, 

r(2,.) 

      Reward = 0 
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Example: Organ Transplantation

Expected Total Reward:

The optimal policy is to wait

Mean Semi-Deviation with Deterministic Policies:

The optimal policy is to transplant

Mean Semi-Deviation with Randomized Policies:

Wait with probability 0.993983 and transplant with probability 0.006017
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Credit Card Example (with Özlem Çavuş)

q(1,l),(1,m)(m) 

q(3,m),(3,h)(h) 

q(1,l),(2,l)(l) 

r((1,l),l) 

q(1,l),(1,l)(l) 
r((1,l),l) 

 
r((1,l),m) 

q(3,h),(3,h)(h) 

 r((3,h),h) r((3,m),h) 

q(1,l),D(.) 

 d((1,l),D) 

 

qD,D(.)=1 

 r(D,.)=0 
d(D,D)=0 

 

q(3,h),(2,h)(h) 

 r((3,h),h) 

qC,C(.)=1 

 r(C,.)=0 
d(C,C)=0 

 

q(3,h),C(.) 

 d((3,h),C) 

 

 

 

 

 

  

 

 

 

 

  

 

 

  

1,l 1,m 1,h 

2,l 

3,l 

2,m 

3,m 

2,h 

3,h 

  D 

C 
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Optimal Policy

κ (1,l) (1,m) (1,h) (2,l) (2,m) (2,h) (3,l) (3,m) (3,h)

0.025 m h h m h h m m h
0.1 l h h m h h m m h
0.2 l h h m h h m m h
0.3 l h h m h h m m h
0.4 l h h m h h m m h
0.5 l h h m h h m m h
0.6 l h h m h h m m h
0.7 l h h m h h m m h
0.8 l m h l h h m m h
0.9 l m h l m h m m h
1 l m h l m h m m h

κ - risk aversion coefficient

Andrzej Ruszczyński Dynamic Risk-Averse Optimization



Comparison of Methods

κ # of Value Iterations # of Policy Iterations # of Newton Iterations

0.025 869 3 4,3,3
0.1 797 4 3,3,2,3
0.2 746 4 3,3,2,2
0.3 689 4 4,2,2,2
0.4 658 4 4,2,2,2
0.5 661 4 4,2,2,2
0.6 761 3 4,3,3
0.7 893 3 4,2,3
0.8 525 3 4,3,2
0.9 1354 3 5,2,3
1 1231 3 6,2,3
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Profit Distribution
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• Ö. Çavuş and A. Ruszczyński, Computational methods for risk-averse
undiscounted transient Markov models, Operations Research, 62 (2), 2014,
401–417.
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