Dynamic Risk-Averse Optimization

Andrzej Ruszczyński

University Paris Sud September 2014

- Utility models
- Mean–risk models
- Measures of risk
- Optimization of measures of risk
- Stochastic dominance constraints
- Introduction to risk-averse dynamic optimization

Why Probabilistic Models?

- Wealth of results of probability theory
- Connection to real data via statistics
- Universal language (engineering, economics, medicine, ...)
- Probability space (Ω, \mathcal{F}, P)
- Decision space X
- Random outcome (e.g., cost) $Z_x(\omega)$, $Z: X \times \Omega \to \mathbb{R}$

Expected Value Model

$$\min_{x} \mathbb{E}[Z_{x}] = \int_{\Omega} Z_{x}(\omega) P(d\omega)$$

It optimizes the outcome on average (Law of Large Numbers?)

What is Risk?

Existence of unlikely and undesirable outcomes - high $Z_x(\omega)$ for some ω

Andrzej Ruszczyński

Expected Utility Models (von Neumann and Morgenstern, 1944)

$$\min_{x\in X} \mathbb{E}\left[u(Z_x)\right] \qquad \left(=\int_{\Omega} u(Z_x(\omega)) dP(\omega)\right)$$

 $u: \mathbb{R} \to \mathbb{R}$ is a nondecreasing disutility function

Rank Dependent Utility (Distortion) Models (Quiggin, 1982; Yaari, 1987)

$$\min_{x \in X} \int_0^1 F_{Z_x}^{-1}(p) \, dw(p) \qquad F_{Z_x}^{-1}(\cdot) \text{ - quantile function}$$

 $\textbf{w}:[0,1] \rightarrow \mathbb{R}$ is a nondecreasing rank dependent utility function

Existence of utility functions is derived from systems of axioms, but in practice they are difficult to elicit

Axioms of Expected Utility Theory (von Neumann 1944)

W is a lottery of *Z* and *V* with probabilities $\alpha \in (0, 1)$ and $(1 - \alpha)$, if the probability measure μ_W induced by *W* on \mathbb{R} is the corresponding convex combination of the probability measures μ_Z and μ_V of *Z* and *V*:

$$\mu_W = \alpha \mu_Z + (1 - \alpha) \mu_V.$$

We write the lottery symbolically as

$$W = \alpha Z \oplus (1 - \alpha) V.$$

For law invariant preferences on the space of real random variables, von Neumann introduced the axioms:

Independence Axiom: For all $Z, V, W \in \mathcal{Z}$ one has

$$Z \triangleleft V \implies \alpha Z \oplus (1-\alpha)W \triangleleft \alpha V \oplus (1-\alpha)W, \quad \forall \alpha \in (0,1)$$

Archimedean Axiom: If $Z \triangleleft V \triangleleft W$, then $\alpha, \beta \in (0, 1)$ exist such that

$$\alpha Z \oplus (1-\alpha)W \triangleleft V \triangleleft \beta Z \oplus (1-\beta)W$$

Integral Representation

Suppose the total preorder \trianglelefteq on \mathcal{Z} is law invariant, and satisfies the independence and Archimedean axioms. Then it has an "affine" numerical representation $U : \mathcal{Z} \to \mathbb{R}$:

$$U(\alpha Z \oplus (1-\alpha)V) = \alpha U(Z) + (1-\alpha)U(V).$$

If \leq is weakly continuous, then a continuous and bounded function $u : \mathbb{R} \to \mathbb{R}$ exists, such that

$$U(Z) = \mathbb{E}[u(Z)] = \int_{\Omega} u(Z(\omega)) P(d\omega).$$

New proof by separation theorem - Dentcheva & R. 2012

In a more general setting, we may consider only r.v. with finite moments, and then the boundedness condition on $u(\cdot)$ can be relaxed.

$$U(Z) = \mathbb{E}ig[u(Z)ig] = \int_{arOmega} uig(Z(\omega)ig) \, \mathsf{P}(\mathsf{d}\omega)$$

Monotonicity

The total preorder \trianglelefteq is monotonic with respect to the partial order \le , if $Z \le V \implies Z \trianglelefteq V$.

We focus on \mathcal{Z} containing integrable random vectors.

Risk Aversion

A preference relation \trianglelefteq on \mathcal{Z} is *risk-averse*, if $\mathbb{E}[Z|\mathcal{G}] \trianglelefteq Z$, for every $Z \in \mathcal{Z}$ and every σ -subalgebra \mathcal{G} of \mathcal{F} .

Nondecreasing Convex Disutility

Suppose a total preorder \trianglelefteq on \mathcal{Z} is weakly continuous, monotonic, risk-averse, and satisfies the independence axiom. Then the utility function $u : \mathbb{R} \to \mathbb{R}$ is nondecreasing and convex.

Axioms of Dual Utility Theory (Yaari 1987)

Real random variables Z_i , i = 1, ..., n, are comonotonic, if

$$(Z_i(\omega) - Z_i(\omega'))(Z_j(\omega) - Z_j(\omega')) \ge 0$$

for all $\omega, \omega' \in \Omega$ and all $i, j = 1, \ldots, n$.

Dual Independence Axiom: For all comonotonic random variables Z, V, and W in \mathcal{Z} one has

$$Z \triangleleft V \implies \alpha Z + (1 - \alpha)W \triangleleft \alpha V + (1 - \alpha)W, \quad \forall \, \alpha \in (0, 1)$$

Dual Archimedean Axiom: For all comonotonic random variables Z, V, and W in \mathcal{Z} , satisfying the relations

$$Z \triangleleft V \triangleleft W,$$

there exist $\alpha, \beta \in (0, 1)$ such that

$$\alpha Z + (1-\alpha)W \triangleleft V \triangleleft \beta Z + (1-\beta)W$$

Affine Representation

If the total preorder \trianglelefteq on \mathcal{Z} is law invariant, and satisfies the dual independence and Archimedean axioms, then a numerical representation $U : \mathcal{Z} \to \mathbb{R}$ of \trianglelefteq exists, which satisfies for all comonotonic $Z, V \in \mathcal{Z}$ and all $\alpha, \beta \in \mathbb{R}_+$ the equation

$$U(\alpha Z + \beta V) = \alpha U(Z) + \beta U(V).$$

Integral Representation

Suppose \mathcal{Z} is the set of bounded random variables. If, additionally, \trianglelefteq is continuous in \mathcal{L}_1 and monotonic, then a bounded, nondecreasing, and continuous function $w : [0, 1] \rightarrow \mathbb{R}_+$ exists, such that

$$U(Z) = \int_0^1 F_Z^{-1}(p) dw(p), \quad Z \in \mathcal{Z}.$$

Proof by separation - Dentcheva & R. 2012

$$U(Z) = \int_0^1 F_Z^{-1}(p) \, dw(p), \quad Z \in \mathcal{Z}$$
 (*)

Risk Aversion

A preference relation \trianglelefteq on \mathcal{Z} is *risk-averse*, if $\mathbb{E}[Z|\mathcal{G}] \trianglelefteq Z$, for every $Z \in \mathcal{Z}$ and every σ -subalgebra \mathcal{G} of \mathcal{F} .

Convex Rank-Dependent Utility

Suppose a total preorder \leq on Z is continuous, monotonic, and satisfies the dual independence axiom. Then it is risk-averse if and only if it has the integral representation (*) with a nondecreasing and convex function $w : [0, 1] \rightarrow [0, 1]$ such that w(0) = 0 and w(1) = 1.

Two Objectives

- Minimize the expected outcome, the mean $\mathbb{E}[Z_x]$
- Minimize a scalar measure of uncertainty of Z_x , the risk $r[Z_x]$

$$\begin{split} r[Z] &= \mathbb{V}\mathrm{ar}[Z] \qquad (\mathsf{Markowitz' model}) \\ \sigma_p^+[Z] &= \left(\mathbb{E}[(Z - \mathbb{E}Z)_+^p]\right)^{1/p} \qquad (\mathsf{semideviation}) \\ \delta_\alpha^+[Z] &= \min_\eta \mathbb{E}\Big[\max\Big(\eta - Z, \frac{\alpha}{1 - \alpha}(Z - \eta)\Big)\Big] \qquad (\mathsf{deviation from quantile}) \end{split}$$

Mean–Risk Optimization

$$\min_{x\in X} \rho[Z_x] = \mathbb{E}[Z_x] + \kappa r[Z_x], \qquad 0 \le \kappa \le \kappa_{\max}$$

 $r Z_x$ is nonlinear w.r.t. probability and possibly nonconvex in x

Example: Portfolio Optimization

 R_1, R_2, \ldots, R_n - random return rates of securities x_1, x_2, \ldots, x_n - fractions of the capital invested in the securities

Return rate of the portfolio (negative of)

$$Z_x = -(R_1x_1 + R_2x_2 + \cdots + R_nx_n)$$

Risk Optimization with Fixed Mean

$$\min_{x} r[Z_{x}]$$
s.t. $\mathbb{E}[Z_{x}] = \mu$ (parameter)
 $x \in X_{0}.$

Combined Mean–Risk Optimization

$$\min_{x \in X_0} \rho[Z_x] = \mathbb{E}[Z_x] + \kappa r[Z_x], \qquad 0 \le \kappa \le \kappa_{\max}$$

Interesting applications of parametric optimization

Andrzej Ruszczyński

RUTGERS

Nonlinear Programming Formulations for Discrete Distributions

Suppose *Z* has finitely many realizations $z_1, z_2, ..., z_S$ with probabilities $p_1, p_2, ..., p_S$

$$\rho(Z) = \mathbb{E}[Z] + \kappa \sigma_m^+[Z] = \mathbb{E}[Z] + \kappa \left(\mathbb{E}[(Z - \mathbb{E}Z)_+^m]\right)^{1/m}$$
$$= \sum_{s=1}^S p_s z_s + \kappa \left(\sum_{s=1}^S p_s \left(z_s - \sum_{j=1}^S p_j z_j\right)_+^m\right)^{1/m}$$

Equivalent Problem (for m = 1 - linear programming)

$$p(Z) = \min_{v,\mu} \quad \mu + \kappa \left(\sum_{s=1}^{S} p_s v_s^m\right)^{1/m}$$

s.t.
$$\mu = \sum_{s=1}^{S} p_s z_s$$
$$v_s \ge z_s - \mu, \quad s = 1, \dots, S$$
$$v_s \ge 0, \qquad s = 1, \dots, S$$

Andrzej Ruszczyński

KUTGERS

Dynamic Risk-Averse Optimization

Application to Portfolios

Suppose the vector of return rates has *S* realizations with probabilities p_1, p_2, \ldots, p_S

 R_{js} - return rate of asset j = 1, ..., n in scenario s = 1, ..., S

Equivalent Problem (for m = 1 - linear programming)

х.

$$\min_{z,v,\mu} \quad \mu + \kappa \left(\sum_{s=1}^{S} v_s^m\right)^{1/m}$$
s.t.
$$\mu = \sum_{s=1}^{S} p_s z_s$$

$$z_s = -\sum_{j=1}^{n} R_{sj} x_j, \quad s = 1, \dots, S$$

$$v_s \ge z_s - \mu, \qquad s = 1, \dots, S$$

$$v_s \ge 0, \qquad s = 1, \dots, S$$

$$x \in X_0$$

Andrzej Ruszczyński

Mean–Semideviation Model (719 stocks);

Andrzej Ruszczyński

RUTGERS

Dynamic Risk-Averse Optimization

$$\rho(Z) = \mathbb{E}[Z] + \kappa \, r[Z]$$

Consistency with Stochastic Dominance (Ogryczak-R., 1997)

 $\mathbb{E}[u(Z)] \leq \mathbb{E}[u(W)], \ \forall \text{ nondecreasing and convex } u(\cdot) \Rightarrow \ \rho[Z] \leq \rho[W]$

Consistency with Pointwise Order (Artzner et. al., 1999)

$$Z \leq W$$
 a.s. $\Rightarrow \rho[Z] \leq \rho[W]$

Mean–semideviation and mean–deviation from quantile models are consistent for $0 \le \kappa \le 1$, but not mean–variance.

Unique optimal solutions of consistent optimization models

 $\min_{x\in X} \rho(Z_x)$

cannot be strictly dominated (in the corresponding sense)

Andrze	i Ruszcz	vńsk
Anuize	I NUSZUZ	.yiisr

Rutgers

A functional $\rho : \mathbb{Z} \to \overline{\mathbb{R}}$ is a coherent risk measure if it satisfies the following axioms

- Convexity: $\rho(\lambda Z + (1 \lambda)W) \le \lambda \rho(Z) + (1 \lambda)\rho(W)$ $\forall \lambda \in (0, 1), Z, W \in \mathbb{Z}$
- Monotonicity: If $Z \leq W$ then $\rho(Z) \leq \rho(W)$, $\forall Z, W \in \mathcal{Z}$
- Translation Equivariance: $\rho(Z + a) = \rho(Z) + a$, $\forall Z \in \mathbb{Z}, a \in \mathbb{R}$
- Positive Homogeneity: $\rho(\tau Z) = \tau \rho(Z), \quad \forall Z \in \mathcal{Z}, \ \tau \geq 0$

Kijima-Ohnishi (1993) – no monotonicity Artzner-Delbaen-Eber-Heath (1999–) - space \mathcal{L}_{∞} R.-Shapiro (2005) – spaces \mathcal{L}_{n}, \ldots

A functional $\rho : \mathbb{Z} \to \overline{\mathbb{R}}$ is a coherent risk measure if it satisfies the following axioms

- Convexity: $\rho(\lambda Z + (1 \lambda)W) \le \lambda \rho(Z) + (1 \lambda)\rho(W)$ $\forall \lambda \in (0, 1), Z, W \in \mathbb{Z}$
- Monotonicity: If $Z \leq W$ then $\rho(Z) \leq \rho(W)$, $\forall Z, W \in \mathcal{Z}$
- Translation Equivariance: $\rho(Z + a) = \rho(Z) + a$, $\forall Z \in \mathbb{Z}, a \in \mathbb{R}$
- Positive Homogeneity: $\rho(\tau Z) = \tau \rho(Z), \quad \forall Z \in \mathcal{Z}, \ \tau \geq 0$

Kijima-Ohnishi (1993) – no monotonicity Artzner-Delbaen-Eber-Heath (1999–) - space \mathcal{L}_{∞} R.-Shapiro (2005) – spaces \mathcal{L}_{n}, \ldots

A functional $\rho : \mathbb{Z} \to \overline{\mathbb{R}}$ is a coherent risk measure if it satisfies the following axioms

- Convexity: $\rho(\lambda Z + (1 \lambda)W) \le \lambda \rho(Z) + (1 \lambda)\rho(W)$ $\forall \lambda \in (0, 1), Z, W \in \mathbb{Z}$
- Monotonicity: If $Z \leq W$ then $\rho(Z) \leq \rho(W)$, $\forall Z, W \in \mathcal{Z}$
- Translation Equivariance: $\rho(Z + a) = \rho(Z) + a$, $\forall Z \in \mathbb{Z}, a \in \mathbb{R}$
- Positive Homogeneity: $\rho(\tau Z) = \tau \rho(Z), \quad \forall Z \in \mathcal{Z}, \ \tau \geq 0$

Kijima-Ohnishi (1993) – no monotonicity Artzner-Delbaen-Eber-Heath (1999–) - space \mathcal{L}_{∞} R.-Shapiro (2005) – spaces \mathcal{L}_{n}, \ldots

A functional $\rho : \mathbb{Z} \to \overline{\mathbb{R}}$ is a coherent risk measure if it satisfies the following axioms

- Convexity: $\rho(\lambda Z + (1 \lambda)W) \le \lambda \rho(Z) + (1 \lambda)\rho(W)$ $\forall \lambda \in (0, 1), Z, W \in \mathbb{Z}$
- Monotonicity: If $Z \leq W$ then $\rho(Z) \leq \rho(W)$, $\forall Z, W \in \mathcal{Z}$
- Translation Equivariance: $\rho(Z + a) = \rho(Z) + a$, $\forall Z \in \mathbb{Z}, a \in \mathbb{R}$
- Positive Homogeneity: $\rho(\tau Z) = \tau \rho(Z), \quad \forall Z \in \mathcal{Z}, \ \tau \geq 0$

Kijima-Ohnishi (1993) – no monotonicity Artzner-Delbaen-Eber-Heath (1999–) - space \mathcal{L}_{∞} R.-Shapiro (2005) – spaces \mathcal{L}_{n}, \ldots

A functional $\rho : \mathbb{Z} \to \overline{\mathbb{R}}$ is a coherent risk measure if it satisfies the following axioms

- Convexity: $\rho(\lambda Z + (1 \lambda)W) \le \lambda \rho(Z) + (1 \lambda)\rho(W)$ $\forall \lambda \in (0, 1), Z, W \in \mathbb{Z}$
- Monotonicity: If $Z \leq W$ then $\rho(Z) \leq \rho(W)$, $\forall Z, W \in \mathcal{Z}$
- Translation Equivariance: $\rho(Z + a) = \rho(Z) + a$, $\forall Z \in \mathbb{Z}, a \in \mathbb{R}$
- Positive Homogeneity: $\rho(\tau Z) = \tau \rho(Z), \quad \forall Z \in \mathcal{Z}, \ \tau \ge 0$

Kijima-Ohnishi (1993) – no monotonicity Artzner-Delbaen-Eber-Heath (1999–) - space \mathcal{L}_{∞} R.-Shapiro (2005) – spaces \mathcal{L}_{n}, \ldots

A functional $\rho : \mathbb{Z} \to \overline{\mathbb{R}}$ is a coherent risk measure if it satisfies the following axioms

- Convexity: $\rho(\lambda Z + (1 \lambda)W) \le \lambda \rho(Z) + (1 \lambda)\rho(W)$ $\forall \lambda \in (0, 1), Z, W \in \mathbb{Z}$
- Monotonicity: If $Z \leq W$ then $\rho(Z) \leq \rho(W)$, $\forall Z, W \in \mathcal{Z}$
- Translation Equivariance: $\rho(Z + a) = \rho(Z) + a$, $\forall Z \in \mathbb{Z}, a \in \mathbb{R}$
- Positive Homogeneity: $\rho(\tau Z) = \tau \rho(Z), \quad \forall Z \in \mathcal{Z}, \ \tau \geq 0$

Kijima-Ohnishi (1993) – no monotonicity Artzner-Delbaen-Eber-Heath (1999–) - space \mathcal{L}_{∞} R.-Shapiro (2005) – spaces \mathcal{L}_{p}, \dots

Value at Risk

The Value at Risk at level $\alpha \in (0, 1)$ of a random cost $Z \in \mathcal{Z}$:

$$\operatorname{VeR}^+_{\alpha}(Z) \stackrel{\scriptscriptstyle \Delta}{=} \inf \{\eta : F_Z(\eta) \ge 1 - \alpha\} = F_Z^{-1}(1 - \alpha)$$

Monotonicity: $Z \leq V \Longrightarrow \operatorname{VeR}^+_{\alpha}(Z) \leq \operatorname{VeR}^+_{\alpha}(V)$ Translation: $\operatorname{VeR}^+_{\alpha}(Z+c) = \operatorname{VeR}^+_{\alpha}(Z) + c$, for all $c \in \mathbb{R}$ Positive Homogeneity: $\operatorname{VeR}^+_{\alpha}(\gamma Z) = \gamma \operatorname{VeR}^+_{\alpha}(Z)$, for all $\gamma \geq 0$ However, it is not convex

Counterexample: Two independent variables

$$Z = \begin{cases} 0 & \text{with probability } 1 - p \\ 1 & \text{with probability } p \end{cases} \qquad V = \begin{cases} 0 & \text{with probability } 1 - p \\ 1 & \text{with probability } p \end{cases}$$

For $p < \alpha < 1$ we have $\operatorname{VeR}^+_{\alpha}(Z) = \operatorname{VeR}^+_{\alpha}(V) = 0$ If $p < \alpha < 1 - (1 - p)^2$, we have non-convexity

$$\operatorname{VeR}^+_{\alpha}\left(\lambda Z + (1-\lambda)V\right) > 0 = \lambda \operatorname{VeR}^+_{\alpha}(Z) + (1-\lambda)\operatorname{VeR}^+_{\alpha}(V)$$

Average Value at Risk

$$\mathsf{AVeR}^+_lpha(Z) riangleq rac{1}{lpha} \int_0^lpha \mathsf{VeR}^+_eta(Z) \, \mathsf{d}eta$$

If the $(1 - \alpha)$ -quantile of Z is unique

$$\mathsf{AVeR}^+_{\alpha}(Z) = \frac{1}{\alpha} \int_{\mathsf{VeR}^+_{\alpha}(Z)}^{\infty} z \, \mathsf{d}F_Z(z) = \mathbb{E}\Big[Z \,|\, Z \ge \mathsf{VeR}^+_{\alpha}(Z)\Big]$$

Extremal representation

$$\mathsf{AVeR}^+_lpha(Z) = \inf_{\eta \in \mathbb{R}} \left\{ \eta + rac{1}{lpha} \mathbb{E}ig[(Z - \eta)_+ig]
ight\}$$

The minimizer $\eta = V_{@}R_{\alpha}(Z)$

Connection to weighted deviation from α -quantile:

$$\delta^+_{lpha}(Z) = \mathsf{AVeR}^+_{lpha}(Z) - \mathbb{E}[Z], \quad lpha \in [0,1].$$

Linear Programming Representation of AV@R

Suppose *Z* has finitely many realizations $z_1, z_2, ..., z_S$ with probabilities $p_1, p_2, ..., p_S$

$$\min_{\mathbf{v},\eta} \quad \eta + \frac{1}{\alpha} \sum_{s=1}^{S} p_s \mathbf{v}_s$$
s.t. $\mathbf{v}_s \ge \mathbf{z}_s - \eta, \quad \mathbf{s} = 1, \dots, S$
 $\mathbf{v}_s \ge \mathbf{0}, \qquad \mathbf{s} = 1, \dots, S$

For portfolios we have to add the constraints

$$z_s = -\sum_{j=1}^n R_{sj} x_j, \quad s = 1, \dots, S$$
$$x \in X_0$$

and include z and x into the decision variables

Andrzej Ruszczyński

Conjugate Duality of Risk Measures

Pairing of a linear topological space Z with a linear topological space Y of regular signed measures on Ω with the bilinear form

$$ig \langle \mu, Z ig
angle = \mathbb{E}_{\mu}[Z] = \int_{\Omega} Z(\omega) \, \mu(\mathsf{d}\omega)$$

We assume standard conditions on pairing and the polarity: $(\mathcal{Z}_+)^\circ = \mathcal{Y}_-$

Dual Representation Theorem

If $\rho : \mathbb{Z} \to \overline{\mathbb{R}}$ is a lower semicontinuous^{*} coherent risk measure, then $\rho(\mathbb{Z}) = \max_{\mu \in \mathcal{R}} \int_{\Omega} \mathbb{Z}(\omega) \mu(d\omega), \quad \forall \mathbb{Z} \in \mathbb{Z}$

with a convex closed $\mathcal{A} \subset \mathcal{P}$ (set of probability measures in \mathcal{Y}).

Delbaen (2001), Föllmer-Schied (2002), R.-Shapiro (2005),

Rockafellar–Uryasev–Zabarankin (2006), ...

 * Lower semicontinuity is automatic if ho is finite and $\mathcal Z$ is a Banach lattice

Universality of AV_@R

 $Z \sim V$ means that Z and V have the same distribution, $\mu_Z = \mu_V$. $\rho : \mathcal{Z} \rightarrow \mathbb{R}$ is law invariant if $Z \sim V \Longrightarrow \rho(Z) = \rho(V)$

Kusuoka Theorem

If (Ω, \mathcal{F}, P) is atomless and $\rho : \mathcal{L}_1(\Omega, \mathcal{F}, P) \to \mathbb{R}$ is law invariant and coherent, then

$$ho(Z) = \sup_{m \in \mathcal{M}} \int_0^1 \mathsf{AVeR}^+_lpha(Z) \ m(dlpha)$$

where \mathcal{M} is a convex set of probability measures on (0, 1].

Spectral measure

$$\rho(V) = \int_0^1 \mathsf{AVeR}^+_\alpha(Z) \ \mathsf{m}(\mathsf{d}\alpha)$$

Spectral measures have dual utility form:

$$\rho(Z) = \int_0^1 F_Z^{-1}(\beta) \, dw(\beta)$$

Optimization of Risk Measures

"Minimize" over $x \in X$ a random outcome $Z_x(\omega) = f(x, \omega), \omega \in \Omega$

Composite Optimization Problem

$$\min_{x \in X} \rho(Z_x) \tag{P}$$

Theorem

Let $x \mapsto Z_x(\omega)$ be convex and $\rho(\cdot)$ be coherent. Suppose $\hat{x} \in X$ is an optimal solution of (P) and $\rho(\cdot)$ is continuous at $Z_{\hat{x}}$. Then there exists a probability measure $\hat{\mu} \in \partial \rho(Z_{\hat{x}}) \subseteq \mathcal{A}$ such that \hat{x} solves

$$\min_{x\in X} \mathbb{E}_{\hat{\mu}}[Z_x] = \min_{x\in X} \max_{\mu\in\mathcal{A}} \mathbb{E}_{\mu}[Z_x]$$

We also have the duality relation:

$$\min_{x\in X} \rho(Z_x) = \max_{\mu\in\mathcal{A}} \inf_{x\in X} \mathbb{E}_{\mu}[Z_x]$$

Andrzej Ruszczyński

Duality in Portfolio Optimization - Game Model

Suppose the vector of return rates of assets has *S* realizations R_{js} - return rate of asset j = 1, ..., n in scenario s = 1, ..., S Portfolio return (negative) in scenario *s*

$$Z_s(x) = -\sum_{j=1}^n R_{js} x_j$$

Risk-Averse Portfolio Problem

$$\min_{x\in X} \rho(Z(x))$$

By homogeneity, we may assume that $\sum_{j=1}^{n} x_j = 1$

Equivalent Matrix Game

$$\max_{x \in \mathcal{X}} \min_{\mu \in \mathcal{R}} \sum_{j=1}^{n} \sum_{s=1}^{S} x_j R_{js} \mu_s$$

- x mixed strategy of the investor
- μ mixed strategy of the opponent (market)

 Z_x - random outcome (*e.g.*, cost)

Y - benchmark random outcome, e.g. $Y(\omega) = Z_{\bar{x}}(\omega)$ for some $\bar{x} \in X$

New Model

 $\begin{array}{ll} \min \mathbb{E}[Z_{X}] & (\text{or some other objective}) \\ \text{subject to } Z_{X} \leq_{\mathcal{U}} Y & (\text{stochastic ordering constraint}) \\ & x \in X \end{array}$

 Z_x is preferred over Y by all decision makers having disutility functions in the generator \mathcal{U} :

$\mathbb{E}[u(Z_x)] \leq \mathbb{E}[u(Y)] \quad \forall \ u \in \mathcal{U}$

All nondecreasing $u(\cdot)$ - first order stochastic dominance \leq_{st} All nondecreasing convex $u(\cdot)$ - increasing convex order \leq_{icx} $\begin{array}{l} \min \mathbb{E}[Z_x] \\ \text{subject to } Z_X \leq_{icx} Y \\ x \in X \end{array}$

X - convex set in *X* (separable locally convex Hausdorff vector space) $x \mapsto Z_x$ is a continuous operator from *X* to $\mathcal{L}_1(\Omega, \mathcal{F}, P)$ $x \mapsto Z_x(\omega)$ is convex for *P*-almost all $\omega \in \Omega$

Primal: $\mathbb{E}[u(Z_x)] \leq \mathbb{E}[u(Y)]$ for all convex nondecreasing $u : \mathbb{R} \to \mathbb{R}$ Inverse: $\int_0^1 F_{Z_x}^{-1}(p) dw(p) \leq \int_0^1 F_Y^{-1}(p) dw(p)$ for all convex nondecreasing $w : [0, 1] \to \mathbb{R}$

Main Results

- Utility functions *u* : ℝ → ℝ and rank dependent utility functions
 w : [0, 1] → ℝ play the roles of Lagrange multipliers
- Expected utility models and rank dependent utility models are Lagrangian relaxations of the problem

Lagrangian in Direct Form

$$L(x, u) = \mathbb{E} \Big[Z_x + u(Z_x) - u(Y) \Big]$$

 $u(\cdot)$ - convex function on $\mathbb R$

Theorem

Assume Uniform Dominance Condition (a form of Slater constraint qualification). If \hat{x} is an optimal solution of the problem then there exists a function $\hat{u} \in \mathcal{U}$ such that

$$L(\hat{x}, \hat{u}) = \min_{x \in X} L(x, \hat{u})$$
(1)
$$\mathbb{E}[\hat{u}(Z_{\hat{x}})] = \mathbb{E}[\hat{u}(Y)]$$
(2)

Conversely, if for some function $\hat{u} \in \mathcal{U}$ an optimal solution \hat{x} of (1) satisfies the dominance constraint and (2), then \hat{x} is optimal

Lagrangian in Inverse Form

$$\Phi(x, w) = \int_0^1 F_{Z_x}^{-1}(p) d(p + w(p)) - \int_0^1 F_Y^{-1}(p) dw(p)$$

 $\mathbf{w}(\cdot)$ - convex function on [0, 1]

Theorem

Assume Uniform Dominance Condition (a form of Slater constraint qualification). If \hat{x} is an optimal solution of the problem, then there exists a function $\hat{w} \in \mathcal{W}$ such that

$$\Phi(\hat{x}, \hat{w}) = \min_{x \in X} \Phi(x, \hat{w})$$
(3)

$$\int_0^1 F_{Z_{\hat{x}}}^{-1}(p) \, d\hat{w}(p) = \int_0^1 F_Y^{-1}(p) \, d\hat{w}(p) \tag{4}$$

If for some $\hat{w} \in W$ an optimal solution \hat{x} of (3) satisfies the inverse dominance constraint and (4), then \hat{x} is optimal

How to Measure Risk of Sequences?

Probability space (Ω, \mathcal{F}, P) with filtration $\mathcal{F}_1 \subset \cdots \subset \mathcal{F}_T \subset \mathcal{F}$ Adapted sequence of random variables (costs) Z_1, Z_2, \ldots, Z_T Spaces: $\mathcal{Z}_t = \mathcal{L}_{\bar{s}}(\Omega, \mathcal{F}_t, P), \ \bar{s} \in [1, \infty)$, and $\mathcal{Z}_{t,T} = \mathcal{Z}_t \times \cdots \times \mathcal{Z}_T$

Conditional Risk Measure

A mapping $\rho_{t,T} : \mathcal{Z}_{t,T} \to \mathcal{Z}_t$ satisfying the monotonicity condition:

 $\rho_{t,T}(Z) \leq \rho_{t,T}(W)$ for all $Z, W \in \mathbb{Z}_{t,T}$ such that $Z \leq W$

Dynamic Risk Measure

A sequence of conditional risk measures $\rho_{t,T} : \mathcal{Z}_{t,T} \to \mathcal{Z}_t, t = 1, \dots, T$

$$\rho_{1,T}(Z_1, Z_2, Z_3, \dots, Z_T) \in \mathbb{Z}_1 = \mathbb{R}$$
$$\rho_{2,T}(Z_2, Z_3, \dots, Z_T) \in \mathbb{Z}_2$$
$$\rho_{3,T}(Z_3, \dots, Z_T) \in \mathbb{Z}_3$$

٠

Evaluating Risk on a Scenario Tree

- D. Dentcheva, A. Ruszczyński, Common mathematical foundations of expected utility and dual utility theories, *SIAM Jornal on Optimization* 23 (2013), No. 1, 381–405.
- W. Ogryczak and A. Ruszczyński, Dual stochastic dominance and related mean-risk models, *SIAM Journal on Optimization* 13 (2002) 60–78.
- W. Ogryczak and A. Ruszczyński, From stochastic dominance to mean-risk models: Semideviations as risk measures, *European Journal of Operational Research* 116 (1999) 33–50
- A. Ruszczyński and R.J. Vanderbei, Frontiers of stochastically non-dominated portfolios, *Econometrica* 71 (2003) 1287–1297.
- A. Ruszczyński and A. Shapiro, Optimization of convex risk functions, *Mathematics of Operations Research* 31 (2006) 433–452.
- D. Dentcheva and A. Ruszczyński, Optimization with stochastic dominance constraints, *SIAM Journal on Optimization* 14 (2003) 548–566.
- D. Dentcheva and A. Ruszczyński, Inverse stochastic dominance constraints and rank dependent expected utility theory, *Mathematical Programming* 108 (2006) 297–311.

PART II: Optimization of Dynamic Risk Measures

- Dynamic measures of risk
- Time consistency and local property
- Interchangeability
- Risk optimization on a tree
- Application to Markov models
- Stochastic conditional time-consistency
- Markov risk measures
- Dynamic programming
- Solution methods
- Examples

How to Measure Risk of Sequences?

Probability space (Ω, \mathcal{F}, P) with filtration $\mathcal{F}_1 \subset \cdots \subset \mathcal{F}_T \subset \mathcal{F}$ Adapted sequence of random variables (costs) Z_1, Z_2, \ldots, Z_T Spaces: $\mathcal{Z}_t = \mathcal{L}_{\bar{s}}(\Omega, \mathcal{F}_t, P), \ \bar{s} \in [1, \infty)$, and $\mathcal{Z}_{t,T} = \mathcal{Z}_t \times \cdots \times \mathcal{Z}_T$

Conditional Risk Measure

A mapping $\rho_{t,T} : \mathcal{Z}_{t,T} \to \mathcal{Z}_t$ satisfying the monotonicity condition:

 $\rho_{t,T}(Z) \leq \rho_{t,T}(W)$ for all $Z, W \in \mathbb{Z}_{t,T}$ such that $Z \leq W$

Dynamic Risk Measure

A sequence of conditional risk measures $\rho_{t,T} : \mathcal{Z}_{t,T} \to \mathcal{Z}_t, t = 1, \dots, T$

$$\rho_{1,T}(Z_1, Z_2, Z_3, \dots, Z_T) \in \mathbb{Z}_1 = \mathbb{R}$$
$$\rho_{2,T}(Z_2, Z_3, \dots, Z_T) \in \mathbb{Z}_2$$
$$\rho_{3,T}(Z_3, \dots, Z_T) \in \mathbb{Z}_3$$

٠

Evaluating Risk on a Scenario Tree

Time Consistency of Dynamic Risk Measures

A dynamic risk measure $\{\rho_{t,T}\}_{t=1}^{T}$ is time-consistent if for all $\tau < \theta$

 $Z_k = W_k, \ k = \tau, \dots, \theta - 1$ and $\rho_{\theta,T}(Z_{\theta}, \dots, Z_T) \le \rho_{\theta,T}(W_{\theta}, \dots, W_T)$

imply that $\rho_{\tau,T}(Z_{\tau},\ldots,Z_{T}) \leq \rho_{\tau,T}(W_{\tau},\ldots,W_{T})$

Define
$$\rho_t(Z_{t+1}) = \rho_{t,T}(0, Z_{t+1}, 0, ..., 0)$$

Nested Decomposition Theorem

Suppose a dynamic risk measure $\{\rho_{t,T}\}_{t=1}^{T}$ is time-consistent and

$$\rho_{t,T}(Z_t, Z_{t+1}, \ldots, Z_T) = Z_t + \rho_{t,T}(0, Z_{t+1}, \ldots, Z_T)$$

Then for all t we have the representation

$$\rho_{t,T}(Z_t,...,Z_T) = Z_t + \rho_t \bigg(Z_{t+1} + \rho_{t+1} \bigg(Z_{t+2} + \cdots + \rho_{T-1}(Z_T) \bigg) \cdots \bigg) \bigg)$$

Stronger assumptions about one-step measures $\rho_t : \mathcal{Z}_{t+1} \to \mathcal{Z}_t$:

- Convexity: $\rho_t(\lambda Z + (1 \lambda)W) \le \lambda \rho_t(Z) + (1 \lambda)\rho_t(W)$ $\forall \lambda \in (0, 1), Z, W \in \mathbb{Z}_{t+1}$
- Monotonicity: If $Z \leq W$ then $\rho_t(Z) \leq \rho_t(W), \forall Z, W \in \mathcal{Z}_{t+1}$
- Predictable Translation Equivariance: $\rho_t(Z + W) = Z + \rho_t(W), \forall Z \in \mathcal{Z}_t, W \in \mathcal{Z}_{t+1}$
- Positive Homogeneity: $\rho_t(\tau Z) = \tau \rho_t(Z), \forall Z \in \mathcal{Z}_{t+1}, \tau \ge 0$

Scandolo ('03), Riedel ('04), R.-Shapiro ('06), Cheridito-Delbaen-Kupper ('06), Föllmer-Penner ('06), Artzner-Delbaen-Eber-Heath-Ku ('07), Pflug-Römisch ('07)

Example: Conditional Mean–Semideviation

$$\rho_t(Z_{t+1}) = \mathbb{E}[Z_{t+1}|\mathcal{F}_t] + \kappa \mathbb{E}\left[\left(Z_{t+1} - \mathbb{E}[Z_{t+1}|\mathcal{F}_t]\right)_+^s |\mathcal{F}_t|\right]^{\frac{1}{s}}$$

Stronger assumptions about one-step measures $\rho_t : \mathcal{Z}_{t+1} \to \mathcal{Z}_t$:

- Convexity: $\rho_t(\lambda Z + (1 \lambda)W) \le \lambda \rho_t(Z) + (1 \lambda)\rho_t(W)$ $\forall \lambda \in (0, 1), Z, W \in \mathbb{Z}_{t+1}$
- Monotonicity: If $Z \leq W$ then $\rho_t(Z) \leq \rho_t(W), \forall Z, W \in \mathcal{Z}_{t+1}$
- Predictable Translation Equivariance: $\rho_t(Z + W) = Z + \rho_t(W), \forall Z \in \mathcal{Z}_t, W \in \mathcal{Z}_{t+1}$
- Positive Homogeneity: $\rho_t(\tau Z) = \tau \rho_t(Z), \forall Z \in \mathcal{Z}_{t+1}, \tau \ge 0$

Scandolo ('03), Riedel ('04), R.-Shapiro ('06), Cheridito-Delbaen-Kupper ('06), Föllmer-Penner ('06), Artzner-Delbaen-Eber-Heath-Ku ('07), Pflug-Römisch ('07)

Example: Conditional Mean–Semideviation

$$\rho_t(Z_{t+1}) = \mathbb{E}[Z_{t+1}|\mathcal{F}_t] + \kappa \mathbb{E}\left[\left(Z_{t+1} - \mathbb{E}[Z_{t+1}|\mathcal{F}_t]\right)_+^s |\mathcal{F}_t|\right]^{\frac{1}{s}}$$

Stronger assumptions about one-step measures $\rho_t : \mathcal{Z}_{t+1} \to \mathcal{Z}_t$:

- Convexity: $\rho_t(\lambda Z + (1 \lambda)W) \le \lambda \rho_t(Z) + (1 \lambda)\rho_t(W)$ $\forall \lambda \in (0, 1), Z, W \in \mathbb{Z}_{t+1}$
- Monotonicity: If $Z \leq W$ then $\rho_t(Z) \leq \rho_t(W), \forall Z, W \in \mathbb{Z}_{t+1}$
- Predictable Translation Equivariance: $\rho_t(Z + W) = Z + \rho_t(W), \forall Z \in \mathcal{Z}_t, W \in \mathcal{Z}_{t+1}$
- Positive Homogeneity: $\rho_t(\tau Z) = \tau \rho_t(Z), \forall Z \in \mathcal{Z}_{t+1}, \tau \ge 0$

Scandolo ('03), Riedel ('04), R.-Shapiro ('06), Cheridito-Delbaen-Kupper ('06), Föllmer-Penner ('06), Artzner-Delbaen-Eber-Heath-Ku ('07), Pflug-Römisch ('07)

Example: Conditional Mean–Semideviation

$$\rho_t(Z_{t+1}) = \mathbb{E}[Z_{t+1}|\mathcal{F}_t] + \kappa \mathbb{E}\left[\left(Z_{t+1} - \mathbb{E}[Z_{t+1}|\mathcal{F}_t]\right)_+^s |\mathcal{F}_t|\right]^{\frac{1}{s}}$$

Stronger assumptions about one-step measures $\rho_t : \mathcal{Z}_{t+1} \to \mathcal{Z}_t$:

- Convexity: $\rho_t(\lambda Z + (1 \lambda)W) \le \lambda \rho_t(Z) + (1 \lambda)\rho_t(W)$ $\forall \lambda \in (0, 1), Z, W \in \mathbb{Z}_{t+1}$
- Monotonicity: If $Z \leq W$ then $\rho_t(Z) \leq \rho_t(W), \forall Z, W \in \mathcal{Z}_{t+1}$
- Predictable Translation Equivariance: $\rho_t(Z + W) = Z + \rho_t(W), \ \forall Z \in \mathcal{Z}_t, \ W \in \mathcal{Z}_{t+1}$
- Positive Homogeneity: $\rho_t(\tau Z) = \tau \rho_t(Z), \forall Z \in \mathcal{Z}_{t+1}, \tau \ge 0$

Scandolo ('03), Riedel ('04), R.-Shapiro ('06), Cheridito-Delbaen-Kupper ('06), Föllmer-Penner ('06), Artzner-Delbaen-Eber-Heath-Ku ('07), Pflug-Römisch ('07)

Example: Conditional Mean–Semideviation

$$\rho_t(Z_{t+1}) = \mathbb{E}[Z_{t+1}|\mathcal{F}_t] + \kappa \mathbb{E}\left[\left(Z_{t+1} - \mathbb{E}[Z_{t+1}|\mathcal{F}_t]\right)_+^s |\mathcal{F}_t|\right]^{\frac{1}{s}}$$

Stronger assumptions about one-step measures $\rho_t : \mathcal{Z}_{t+1} \to \mathcal{Z}_t$:

- Convexity: $\rho_t(\lambda Z + (1 \lambda)W) \le \lambda \rho_t(Z) + (1 \lambda)\rho_t(W)$ $\forall \lambda \in (0, 1), Z, W \in \mathbb{Z}_{t+1}$
- Monotonicity: If $Z \leq W$ then $\rho_t(Z) \leq \rho_t(W), \forall Z, W \in \mathcal{Z}_{t+1}$
- Predictable Translation Equivariance: $\rho_t(Z + W) = Z + \rho_t(W), \forall Z \in \mathcal{Z}_t, W \in \mathcal{Z}_{t+1}$
- Positive Homogeneity: $\rho_t(\tau Z) = \tau \rho_t(Z), \forall Z \in \mathcal{Z}_{t+1}, \tau \ge 0$

Scandolo ('03), Riedel ('04), R.-Shapiro ('06), Cheridito-Delbaen-Kupper ('06), Föllmer-Penner ('06), Artzner-Delbaen-Eber-Heath-Ku ('07), Pflug-Römisch ('07)

Example: Conditional Mean–Semideviation

$$\rho_t(Z_{t+1}) = \mathbb{E}[Z_{t+1}|\mathcal{F}_t] + \kappa \mathbb{E}\left[\left(Z_{t+1} - \mathbb{E}[Z_{t+1}|\mathcal{F}_t]\right)_+^s |\mathcal{F}_t|\right]^{\frac{1}{s}}$$

Stronger assumptions about one-step measures $\rho_t : \mathcal{Z}_{t+1} \to \mathcal{Z}_t$:

- Convexity: $\rho_t(\lambda Z + (1 \lambda)W) \le \lambda \rho_t(Z) + (1 \lambda)\rho_t(W)$ $\forall \lambda \in (0, 1), Z, W \in \mathbb{Z}_{t+1}$
- Monotonicity: If $Z \leq W$ then $\rho_t(Z) \leq \rho_t(W), \forall Z, W \in \mathcal{Z}_{t+1}$
- Predictable Translation Equivariance: $\rho_t(Z + W) = Z + \rho_t(W), \forall Z \in \mathcal{Z}_t, W \in \mathcal{Z}_{t+1}$
- Positive Homogeneity: $\rho_t(\tau Z) = \tau \rho_t(Z), \forall Z \in \mathcal{Z}_{t+1}, \tau \ge 0$

Scandolo ('03), Riedel ('04), R.-Shapiro ('06), Cheridito-Delbaen-Kupper ('06), Föllmer-Penner ('06), Artzner-Delbaen-Eber-Heath-Ku ('07), Pflug-Römisch ('07)

Example: Conditional Mean–Semideviation

$$\rho_t(Z_{t+1}) = \mathbb{E}[Z_{t+1}|\mathcal{F}_t] + \kappa \mathbb{E}\left[\left(Z_{t+1} - \mathbb{E}[Z_{t+1}|\mathcal{F}_t]\right)_+^s |\mathcal{F}_t|\right]^{\frac{1}{s}}$$

Local Property

A conditional risk measure $\rho_{t,T} : \mathcal{Z}_{t,T} \to \mathcal{Z}_t$ has the local property, if for every event $A \in \mathcal{F}_t$ we have the equation

$$\rho_{t,T}(\mathbb{1}_{A}Z_{t},\mathbb{1}_{A}Z_{t+1},\ldots,\mathbb{1}_{A}Z_{T})=\mathbb{1}_{A}\rho_{t,T}(Z_{t},Z_{t+1},\ldots,Z_{T})$$

Automatic for coherent conditional risk measures

Local Property

A conditional risk measure $\rho_{t,T} : \mathcal{Z}_{t,T} \to \mathcal{Z}_t$ has the local property, if for every event $A \in \mathcal{F}_t$ we have the equation

$$\rho_{t,T}(\mathbb{1}_{A}Z_{t},\mathbb{1}_{A}Z_{t+1},\ldots,\mathbb{1}_{A}Z_{T})=\mathbb{1}_{A}\rho_{t,T}(Z_{t},Z_{t+1},\ldots,Z_{T})$$

Automatic for coherent conditional risk measures

Multistage Risk-Averse Optimization Problems

Probability Space: (Ω, \mathcal{F}, P) with filtration $\mathcal{F}_1 \subset \cdots \subset \mathcal{F}_T \subset \mathcal{F}$ Decision Variables: $x_t(\omega), \omega \in \Omega, t = 1, \dots, T$ Nonanticipativity: Each x_t is \mathcal{F}_t -measurable Cost per Stage: $Z_t(x_t)$ with realizations $Z_t(x_t(\omega), \omega), \omega \in \Omega$ Objective Function: Time-consistent dynamic measure of risk

Interchangeability for Time-Consistent Measures

$$\min_{x_1, x_2(\cdot), \dots, x_T(\cdot)} \left\{ Z_1(x_1) + \rho_1 \left(Z_2(x_2) + \rho_2 \left(Z_3(x_3) + \dots + \rho_{T-2} \left(Z_{T-1}(x_{T_1} + \rho_{T-1}(Z_T(x_T))) \cdots \right) \right) \right\}$$

$$= \min_{x_1} \left\{ Z_1(x_1) + \rho_1 \bigg| \min_{x_2} \bigg(Z_2(x_2) + \rho_2 \bigg[\min_{x_3} \bigg(Z_3(x_3) + \ldots \bigg) \bigg] \right\}$$

$$\cdots + \rho_{T-2} \Big[\min_{x_{T-1}} \Big(Z_{T-1}(x_{T_1}) + \rho_{T-1} (\min_{x_T} Z_T(x_T)) \Big) \Big] \cdots \Big) \Big] \Big) \Big|$$

`г)

Interchangeability on a Scenario Tree

Interchangeability on a Scenario Tree

Interchangeability on a Scenario Tree

Linear Risk-Averse Multistage Optimization

 (Ω, \mathcal{F}, P) - probability space with filtration $\{\emptyset, \Omega\} = \mathcal{F}_1 \subset \mathcal{F}_2 \subset \cdots \subset \mathcal{F}_T = \mathcal{F}$. A random $x = (x_1, \dots, x_T)$ is a policy.

If each x_t is \mathcal{F}_t -measurable, policy x is implementable (belongs to I). A policy x is feasible (belongs to F), if it satisfies the conditions:

$$\begin{array}{rcl} A_{1}x_{1} & = & b_{1} \\ B_{2}x_{1} & + & A_{2}x_{2} & = & b_{2} \\ & & & & \\ & & & \\ & & & & \\ x_{1} \in X_{1}, & & x_{2} \in X_{2}, & & \\ & & & & & \\ & & & & & x_{T} \in X_{T} \end{array}$$

Each set X_t is an \mathcal{F}_t -measurable convex and closed polyhedron. Suppose c_t , t = 1, ..., T, is an adapted sequence of random cost vectors. A policy *x* results in a cost sequence $Z_t = \langle c_t, x_t \rangle$, t = 1, ..., T.

Risk-averse multistage stochastic optimization problem

 $\min_{x \in I \cap F} \varrho(Z_1, Z_2, \dots, Z_T) \qquad (\varrho \text{ - dynamic measure of risk})$

Andrzej Ruszczyński

Risk Evaluation on a Tree

Scenario tree

Nodes $n \in N$, organized in levels Ω_t corresponding to stages 1,..., *T*. At level t = 1 - only one root node n = 1Node *n* at level *t* is connected to an ancestor node a(n) at level t - 1Node *n* at level *t* is connected to a set C(n) of children nodes at t + 1

Value Function

 $Q_n(x_{a(n)})$ - the best value of a subproblem rooted at node *n*, given $x_{a(n)}$ Q_C vector of value functions at nodes in the set *C*

Dynamic Programming Equations

$$Q_n(x_{a(n)}) = \min_{x_n} \{ \langle c_n, x_n \rangle : B_n x_{a(n)} + A_n x_n = b_n, x_n \in X_n \}, \quad n \in \Omega_T,$$

$$Q_n(x_{a(n)}) = \min_{x_n} \{ \langle c_n, x_n \rangle + \rho_n (Q_{C(n)}(x_n)) :$$

$$B_n x_{a(n)} + A_n x_n = b_n, x_n \in X_n \}, \quad n \in \Omega_t, \quad t = T - 1, \dots, 1$$

The optimal value functions $Q_n(\cdot)$ are convex.

- State space X (Borel)
- Control space \mathcal{U} (Borel)
- Feasible control set $U : X \Rightarrow U, t = 1, 2, ...$
- Controlled transition kernel Q : graph $(U) \rightarrow \mathcal{P}(X)$, t = 1, 2, ... $\mathcal{P}(X)$ - set of probability measures on X
- Cost functions $c : X \times \mathcal{U} \to \mathbb{R}, t = 1, 2, ...$
- State history $h_t = (x_1, \ldots, x_t) \in \mathcal{X}^t$ (up to time $t = 1, 2, \ldots$)
- Policy $\pi_t : X^t \to U, t = 1, 2, ...$ (always supported in $U(x_t)$)
- Markov policy $\pi_t : X \to U, t = 1, 2, ...$ (stationary if $\pi_t = \pi_1$ for all t)

$$x_t \longrightarrow u_t = \pi_t(x_t)$$

 $(x_t, u_t) \longrightarrow x_{t+1} \sim Q(x_t, u_t)$

Infinite horizon expected cost problem:

$$\min_{\pi_1,\pi_2,\ldots} \mathbb{E}^{II}\left[\sum_{t=1}^{\infty} \alpha^{t-1} c_t(x_t, u_t)\right], \quad \alpha \in (0, 1]$$

with controls $u_t = \pi_t(x_1, \ldots, x_t)$

Two Cases:

Discounted models (with α < 1) and transient models (with α = 1)

Standard Results:

- A deterministic Markov policy is optimal
- Optimal policy can be found by dynamic programming equations

Our Intention

Introduce risk aversion to the problem by replacing the expected value by dynamic risk measures

Andrzej Ruszczyński

Using Dynamic Risk Measures for Markov Decision Processes

• Controlled Markov process
$$x_t^{\Pi}$$
, $t = 1, ..., T$

- Policy $\Pi = \{\pi_1, \pi_2, \dots, \pi_T\}$ with $u_t = \pi_t(x_t)$ implies measure P^{Π}
- Cost sequence $Z_t^{\Pi} = c(x_t^{\Pi}, \pi_t(x_t^{\Pi})), Z_t \in \mathcal{Z}_t, t = 1, \dots, T,$
- Dynamic time-consistent risk measure

$$J_{T}(\Pi) = Z_{1}^{\Pi} + \rho_{1}^{\Pi} \Big(Z_{2}^{\Pi} + \dots + \rho_{T-1}^{\Pi} (Z_{T}^{\Pi}) \cdots \Big) \Big)$$

Risk-averse optimal control problem

$$\min_{\Pi} \lim_{T \to \infty} J_T(\Pi)$$

Difficulties

- Probability measure P^{Π} , processes x_t^{Π} and Z_t^{Π} depend on policy Π
- The risk measures $\rho_t^\Pi(\cdot)$ depend on Π and may depend on history; no Markov policies

Andrzej Ruszczyński

- State space X (Borel)
- Control space \mathcal{U} (Borel)
- State history $h_t = (x_1, \ldots, x_T) \in X^t$ (up to time $t = 1, 2, \ldots$)
- Controlled transition kernels Q_t : X^t × U → P(X),
 P(X) set of probability measures on X
- Feasible control sets $U_t : X^t \Rightarrow U, t = 1, 2, ...$
- Cost functions $c_t : X \times \mathcal{U} \to \mathbb{R}, t = 1, 2, ...$
- Policy $\pi_t : X^t \to U, t = 1, 2, ...$ (always supported in $U_t(h_t)$)

$$h_t \longrightarrow u_t = \pi_t(h_t)$$
$$(h_t, u_t) \longrightarrow x_{t+1} \sim Q_t(h_t, u_t) = Q_t^{II}(h_t)$$

We only need to evaluate risk of processes $Z_t^{\Pi}(h_t) = c(x_t, \pi_t(h_t))$, t = 1, ..., T, which are measurable functions of the history h_t

History
$$h_t = (x_1, \dots, x_t)$$
. Process $Z_t^{II}(h_t) = c(x_t, \pi_t(h_t)), t = 1, \dots, T$

A family of conditional risk measures $\{\rho_{t,T}^{\Pi}\}_{t=1,\dots,T}^{\pi\in\Pi}$ is stochastically conditionally time-consistent if for all feasible policies Π, Π' , all $1 \le t \le T - 1$, and for all histories $h_t, h'_t \in X^t$, the relations

$$Z_t^{II}(h_t) = Z_t^{II'}(h_t')$$
$$\left(\rho_{t+1,T}^{II}(Z_{t+1}^{II},\ldots,Z_T^{II}) \middle| H_t^{II} = h_t\right) \leq_{st} \left(\rho_{t+1,T}^{II'}(Z_{t+1}^{II'},\ldots,Z_T^{II'}) \middle| H_t^{II'} = h_t'\right)$$

imply

$$\rho_{t,T}^{\Pi}(Z_t^{\Pi},\ldots,Z_T^{\Pi})(h_t) \leq \rho_{t,T}^{\Pi'}(Z_t^{\Pi'},\ldots,Z_T^{\Pi'})(h_t').$$

The conditional stochastic order \leq_{st} :

$$\begin{aligned} & Q_t^{\Pi}(h_t) \Big(\{ y : Z_t^{\Pi}(h_t) + \rho_{t+1,T}^{\Pi}(Z_{t+1}^{\Pi}, \dots, Z_T^{\Pi})(h_t, y) > \eta \} \Big) \\ & \leq Q_t^{\Pi'}(h_t') \Big(\{ y : Z_t^{\Pi'}(h_t') + \rho_{t+1,T}^{\Pi'}(Z_{t+1}^{\Pi'}, \dots, Z_T^{\Pi'})(h_t', y) > \eta \} \Big) \end{aligned}$$

The processes evaluated are $Z_t^{\Pi}(h_t) = c(x_t, \pi_t(h_t)), t = 1, ..., T$

A family of dynamic risk measures $\{(\rho_{t,T}^{\Pi})_{t=1,...,T} : \Pi \in \Pi\}$ is translation-invariant and stochastically conditionally time-consistent if and only if there exist functionals

$$\sigma_t: \mathcal{V} \times (\cup_{\Pi \in \Pi} \operatorname{Graph}(Q_t^{\Pi})) \to \mathbb{R}, \quad t = 1 \dots T - 1,$$

where \mathcal{V} is the set of measurable functions on $(\mathcal{X}, \mathcal{B}(\mathcal{X}))$, and

$$\rho_{t,T}^{\Pi}(Z_t^{\Pi},...,Z_T^{\Pi})(h_t) = Z_t^{\Pi}(h_t) + \sigma_t \left(\rho_{t+1,T}^{\Pi}(Z_{t+1}^{\Pi},...,Z_T^{\Pi})(h_t,\cdot), h_t, Q_t^{\Pi}(h_t) \right)$$

For all $\Pi \in \Pi$, $h_t \in \mathcal{X}^t$, the function $\sigma_t(\cdot, h_t, Q_t^{\Pi}(h_t))$ is a law-invariant risk measure on $(\mathcal{X}, \mathcal{B}(\mathcal{X}), Q_t^{\Pi}(h_t))$.

The mapping σ_t does not depend on Π : the policy only affects the equation through the next state's distribution $Q_t^{\Pi}(h_t)$.

A family of process-based dynamic risk measures $\{\rho_{t,T}^{\Pi}\}_{t=1,...,T}^{\Pi \in \Pi}$ for a Markov decision problem is Markov if for all Markov policies $\Pi \in \Pi$, for any measurable $c_1, \ldots, c_T : \mathcal{X} \times \mathcal{U} \to \mathbb{R}$, and for all $h_t = (x_1, \ldots, x_t)$ and $h'_t = (x'_1, \ldots, x'_t)$ such that $x_t = x'_t$, we have

$$\rho_{t,T}^{\Pi} (c_t(X_t, \pi_t(X_t)), \dots, c_T(X_T, \pi_T(X_T))) (h_t) \\ = \rho_{t,T}^{\Pi} (c_t(X_t, \pi_t(X_t)), \dots, c_T(X_T, \pi_T(X_T))) (h_t').$$

If the current state x_t is the same, and the same Markov policy Π is used, then the risk is the same.

For a fixed history-dependent policy Π and every $h_t \in X^t$, we write

$$v_t^{c,\Pi}(h_t) = \rho_{t,T}^{\Pi}(c_t(X_t, \pi_t(H_t)), \dots, c_T(X_T, \pi_T(H_T)))(h_t)$$

If a family of process-based dynamic risk measures $\{\rho_{t,T}^{\Pi}\}_{t=1,...,T}^{\Pi \in \Pi}$ is Markov, translation-invariant, and stochastically conditionally time-consistent, then there exist transition risk mappings

$$\sigma_t: \mathcal{V} \times \left\{ \left(x, Q_t(x, u)\right) : \ u \in U(x), \ x \in X \right\} \to \mathbb{R}, \quad t = 1, \dots, T-1$$

such that for all $\Pi \in \Pi$, for all t = 1, ..., T - 1, and all $h_t \in X^t$, the functional $\sigma_t(\cdot, x_t, Q_t(x_t, \pi_t(h_t)))$ is a law-invariant risk measure on $(X, \mathcal{B}(X), Q_t(x_t, \pi_t(h_t)))$. Moreover, for any $c = \{c_t\}_{t=1...T}$, we have

$$v_t^{c,\Pi}(h_t) = c_t(x_t, \pi_t(h_t)) + \sigma_t(v_{t+1}^{c,\Pi}(h_t, \cdot), x_t, Q_t(x_t, \pi_t(h_t))), t = 1, \dots, T-1$$

From now on we assume that $\sigma_t(\cdot, x, m)$ is a coherent risk measure on $\mathcal{V} = \mathcal{L}_p(\mathcal{X}, \mathcal{B}, P_0)$.

Dual representation of transition risk mappings

$$\sigma(\mathbf{v},\mathbf{x},\mathbf{m}) = \max_{\mu \in \mathcal{A}(\mathbf{x},\mathbf{m})} \int_{\mathcal{X}} \mathbf{v}(\mathbf{y}) \, \mu(d\mathbf{y})$$

Example: Mean-Semideviation

$$\sigma(\mathbf{v}, \mathbf{x}, \mathbf{m}) = \int \mathbf{v} \, d\mathbf{m} + \kappa(\mathbf{x}) \Big(\int \Big(\mathbf{v} - \int \mathbf{v} \, d\mathbf{m} \Big)_{+}^{p} \, d\mathbf{m} \Big)^{\frac{1}{p}}$$

For p > 1 we obtain

$$\mathcal{A}(x,m) = \left\{g = m\left(1 + h - \int h \, dm\right) : \left\|h\right\|_{\mathcal{L}_q(X,\mathcal{B},m)} \leq \kappa(x), \ h \geq 0\right\}$$

- **G0.** For all $x \in \mathcal{X}$, $u \in U_t(x)$ the measure $Q_t(x, u)$ is an element of \mathcal{V}' ;
- **G1.** The transition kernel $Q_t(\cdot, \cdot)$ is setwise continuous;
- **G2.** The multifunctions $\mathcal{A}_t(\cdot, \cdot) \equiv \partial_{\varphi} \sigma_t(0, \cdot, \cdot)$ are lower semicontinuous;
- **G3.** The functions $c_t(\cdot, \cdot)$ are measurable, *w*-bounded, and lower semicontinuous;
- **G4.** The multifunctions $U_t(\cdot)$ are measurable and compact-valued.

Finite Horizon Risk-Averse Control Problem

Consider a controlled Markov process $\{x_t\}$ with $u_t = \pi_t(x_1, \ldots, x_t)$. Risk-averse optimal control problem:

$$\min_{\Pi} J_T(\Pi, x_1) = c_1(x_1, u_1) + \rho_1^{\Pi} \Big(c_2(x_2, u_2) + \cdots \\ + \rho_{T-1}^{\Pi} \Big(c_T(x_T, u_T) + \rho_T \Big(c_{T+1}(x_{T+1}) \Big) \cdots \Big) \Big).$$

Theorem

If the conditional measures ρ_t^{Π} are Markov (+ general conditions), then the optimal solution is given by the dynamic programming equations:

$$v_{T+1}(x) = c_{T+1}(x), \quad x \in \mathcal{X}$$
$$v_t(x) = \min_{u \in U(x)} \left\{ c_t(x, u) + \sigma_t(v_{t+1}, x, Q_t(x, u)) \right\}, \quad x \in \mathcal{X}, \quad t = T, \dots, 1.$$

Optimal Markov policy $\hat{\Pi} = \{\hat{\pi}_1, \dots, \hat{\pi}_T\}$ - the minimizers above

Finite Horizon Risk-Averse Control Problem

Consider a controlled Markov process $\{x_t\}$ with $u_t = \pi_t(x_1, \ldots, x_t)$. Risk-averse optimal control problem:

$$\min_{\Pi} J_T(\Pi, x_1) = c_1(x_1, u_1) + \rho_1^{\Pi} \Big(c_2(x_2, u_2) + \cdots \\ + \rho_{T-1}^{\Pi} \Big(c_T(x_T, u_T) + \rho_T \Big(c_{T+1}(x_{T+1}) \Big) \cdots \Big) \Big).$$

Theorem

If the conditional measures ρ_t^{Π} are Markov (+ general conditions), then the optimal solution is given by the dynamic programming equations:

$$v_{T+1}(x) = c_{T+1}(x), \quad x \in \mathcal{X}$$
$$v_t(x) = \min_{u \in U(x)} \left\{ c_t(x, u) + \max_{\mu \in \mathcal{A}_t(x, Q_t(x, u))} \mathbb{E}_{\mu} [v_{t+1}] \right\}, \quad x \in \mathcal{X}, \quad t = T, \dots, 1.$$

Optimal Markov policy $\hat{\Pi} = \{\hat{\pi}_1, \dots, \hat{\pi}_T\}$ - the minimizers above

Discounted risk measure (0 < α < 1)

$$J^{\alpha}_{T}(\Pi, \mathbf{x}) = Z^{\Pi}_{1} + \rho^{\Pi}_{1} \left(\alpha Z^{\Pi}_{2} + \dots + \rho^{\Pi}_{T-1} \left(\alpha^{T-1} Z^{\Pi}_{T} \right) \cdots \right)$$

Optimal cost: $J^*(x) = \inf_{\Pi} \lim_{T \to \infty} J^{\alpha}_T(\Pi, x)$

Assume that the model is stationary, the conditional risk measures ρ_t , t = 1, ..., T, are Markov (+ technical conditions). Then a bounded function $v : X \to \mathbb{R}$ satisfies the dynamic programming equations

$$v(x) = \min_{u \in U(x)} \left\{ c(x, u) + \alpha \sigma(v, x, Q(x, u)) \right\}, \quad x \in \mathcal{X},$$

if and only if $v(\cdot) \equiv J^*(\cdot)$. Moreover, the minimizer $\pi^*(x)$, $x \in X$, on the right hand side exists and defines an optimal Markov policy $\Pi^* = \{\pi^*, \pi^*, \ldots\}$.

If $\alpha = 1$ additional conditions of risk transient models

Discounted risk measure (0 < α < 1)

$$J^{\alpha}_{T}(\Pi, \mathbf{x}) = Z^{\Pi}_{1} + \rho^{\Pi}_{1} \left(\alpha Z^{\Pi}_{2} + \dots + \rho^{\Pi}_{T-1} \left(\alpha^{T-1} Z^{\Pi}_{T} \right) \cdots \right)$$

Optimal cost: $J^*(x) = \inf_{\Pi} \lim_{T \to \infty} J^{\alpha}_{T}(\Pi, x)$

Assume that the model is stationary, the conditional risk measures ρ_t , t = 1, ..., T, are Markov (+ technical conditions). Then a bounded function $v : X \to \mathbb{R}$ satisfies the dynamic programming equations

$$\mathbf{v}(\mathbf{x}) = \min_{\mathbf{u}\in U(\mathbf{x})} \Big\{ \mathbf{c}(\mathbf{x},\mathbf{u}) + \alpha \max_{\mu\in\mathcal{A}(\mathbf{x},\mathbf{Q}(\mathbf{x},\mathbf{u}))} \mathbb{E}_{\mu}[\mathbf{v}] \Big\}, \quad \mathbf{x}\in\mathcal{X},$$

if and only if $v(\cdot) \equiv J^*(\cdot)$. Moreover, the minimizer $\pi^*(x)$, $x \in X$, on the right hand side exists and defines an optimal Markov policy $\Pi^* = \{\pi^*, \pi^*, \ldots\}$.

If $\alpha = 1$ additional conditions of risk transient models
For every *x* we define the set of probability measures:

$$\mathfrak{M}^{\pi}(x) = \mathcal{A}(x, Q(x, \pi(x))), \quad x \in \mathcal{X}$$

The multifunction $\mathfrak{M}^{\pi} : X \rightrightarrows \mathcal{P}(X)$ is a risk multikernel, associated with the risk transition mapping $\sigma(\cdot, \cdot, \cdot)$, the kernel Q, and decision rule π .

Key formula for Markov policy $\Pi = \{\pi, \pi, ...\}$

$$\rho_t^{\Pi}(\mathbf{v}(\mathbf{x}_{t+1})) = \max_{\mathbf{M} \in \mathfrak{M}^{\pi}(\mathbf{x}_t)} \int_{\mathcal{X}} \mathbf{v}(\mathbf{y}) \ \mathbf{M}(d\mathbf{y})$$

A Markov model is risk-transient if

$$\|M\|_{w} \leq K$$
 for all $M \ll \sum_{j=1}^{T} \left(\widetilde{\mathfrak{M}}^{\pi}\right)^{j}$ and all $T \geq 0$

Value iteration

$$\mathbf{v}^{k+1}(\mathbf{x}) = \min_{u \in U(\mathbf{x})} \Big\{ c(\mathbf{x}, u) + \alpha \sigma \big(\mathbf{v}^k, \mathbf{x}, Q(\mathbf{x}, u) \big), \quad \mathbf{x} \in \mathcal{X}, \quad k = 1, 2, \dots$$

Policy iteration

• For k = 0, 1, 2, ..., given a stationary Markov policy $\{\pi^k, \pi^k, ...\}$, find the value function v^k by solving (by a specialized Newton method) the nonsmooth equation

$$v(x) = c(x, \pi^k(x)) + \alpha \sigma(v, x, Q(x, \pi^k(x))), \quad x \in \mathcal{X}$$

• Find the next policy $\pi^{k+1}(\cdot)$ by one-step optimization

$$\pi^{k+1}(x) = \operatorname*{argmin}_{u \in U(x)} \left\{ c(x, u) + \alpha \sigma(v^k, x, Q(x, u)) \right\}, \quad x \in \mathcal{X}$$

For $\alpha = 1$ additional conditions of risk transient models + positive or negative $c(\cdot, \cdot)$ for the value iteration method

Optimal Stopping - Asset Selling Example (with Özlem Çavuş)

Offers Y_t arriving in time periods t = 1, 2, ... are i.i.d. integrable random variables. At each time we may accept the highest offer so far, or wait, at cost c_0 .

The expected value solution: accept the first offer greater than or equal to the solution \hat{x} of the equation

$$\mathbb{E}\big[(Y-\hat{x})_+\big]=c_0.$$

Risk-averse DP equation:

$$v(x) = \min\left\{-x, c_0 + \sigma(v, x, Q(x))\right\}, x \in \mathbb{R}_+$$

Suppose σ is law invariant and does not depend on the second argument. Risk-averse solution: accept any offer that is greater or equal to the solution x^* of the equation

$$c_0 = \min_{\mu \in \mathcal{A}} \mathbb{E}_{\mu} \Big[(Y - x^*)_+ \Big]$$
 (\mathcal{A} - subdifferential of σ).

If $x < x^*$, then wait.

• Expected Total Reward:

The optimal policy is to wait

• Mean Semi-Deviation with Deterministic Policies: The optimal policy is to transplant

Mean Semi-Deviation with Randomized Policies:

Wait with probability 0.993983 and transplant with probability 0.006017

к	(1,l)	(1,m)	(1,h)	(2,l)	(2,m)	(2,h)	(3,I)	(3,m)	(3,h)
0.005									
0.025	m	n	n	m	n	n	m	m	n
0.1		h	h	m	h	h	m	m	h
0.2		h	h	m	h	h	m	m	h
0.3		h	h	m	h	h	m	m	h
0.4		h	h	m	h	h	m	m	h
0.5		h	h	m	h	h	m	m	h
0.6		h	h	m	h	h	m	m	h
0.7		h	h	m	h	h	m	m	h
0.8		m	h	I	h	h	m	m	h
0.9	1	m	h	I	m	h	m	m	h
1		m	h	1	m	h	m	m	h

κ - risk aversion coefficient

К	# of Value Iterations	# of Policy Iterations	# of Newton Iterations
0.025	869	3	4,3,3
0.1	797	4	3,3,2,3
0.2	746	4	3,3,2,2
0.3	689	4	4,2,2,2
0.4	658	4	4,2,2,2
0.5	661	4	4,2,2,2
0.6	761	3	4,3,3
0.7	893	3	4,2,3
0.8	525	3	4,3,2
0.9	1354	3	5,2,3
1	1231	3	6,2,3

- A. Ruszczyński and A. Shapiro, Conditional risk mappings, *Mathematics of Operations Research* 31 (2006) 544–561
- A. Ruszczyński, Risk-averse dynamic programming for Markov decision processes, *Mathematical Programming*, Series B 125 (2010) 235–261
- J. Fan and A. Ruszczyński, Process-based risk measures for observable and partially observable discrete-time controlled systems, *submitted for publication*.
- Ö. Çavuş and A. Ruszczyński, Computational methods for risk-averse undiscounted transient Markov models, *Operations Research*, 62 (2), 2014, 401–417.
- Ö. Çavuş and A. Ruszczyński, Risk-averse control of undiscounted transient Markov models, *SIAM J. on Control and Optimization*, in press.