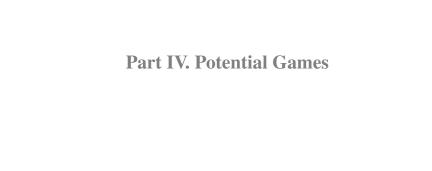
Mean-Field Games

Second lecture: Potential case, Common Noise, Master Equation

François Delarue (Nice – J.-A. Dieudonné)

PGMO, March 7-8 2022

Based on joint works with R. Carmona, P. Cardaliaguet, A. Cecchin, D. Crisan, J.F. Chassagneux, R. Foguen, D. Lacker, J.M. Lasry, P.L. Lions, K. Ramaman



Part IV. Potential Games

a. More on Pontryagin principle

Pontryagin in \mathbb{R}^d

- Go back to MFG but $\sigma \equiv 0$
 - \circ stochastic optimal control problem in the environment $(\mu_t)_{0 \le t \le T}$

$$dX_t = b(X_t, \mu_t, \alpha_t)dt$$

o cost functional (randomness inside the initial condition)

$$J(\boldsymbol{\alpha}) = \mathbb{E}\Big[g(X_T, \mu_T) + \int_0^T f(X_t, \mu_t, \boldsymbol{\alpha}_t) dt\Big]$$

• First order condition of optimality

$$X_t = X_0 + \int_0^t b(X_s, \mu_s, \alpha^*(X_s, \mu_s, Y_s)) ds$$

$$Y_t = \partial_x g(X_T, \mu_T) + \int_0^T \partial_x H(X_s, \mu_s, \alpha^*(X_s, \mu_s, Y_s), Y_s) ds$$

•
$$H(x, \mu, \alpha, z) = b(x, \mu, \alpha) \cdot z + f(x, \mu, \alpha)$$

• $\alpha^*(x, \mu, z) = \operatorname{argmin}_{\alpha \in A} H(x, \mu, \alpha, z)$

Pontryagin in \mathbb{R}^d

- Go back to MFG but $\sigma \equiv 0$
 - stochastic optimal control problem in the environment $(\mu_t)_{0 \le t \le T}$

$$dX_t = b(X_t, \mu_t, \alpha_t)dt$$

• cost functional (randomness inside the initial condition)

$$J(\boldsymbol{\alpha}) = \mathbb{E}\Big[g(X_T, \mu_T) + \int_0^T f(X_t, \mu_t, \boldsymbol{\alpha}_t) dt\Big]$$

• First order condition of optimality

$$X_t = X_0 + \int_0^t b(X_s, \mu_s, \alpha^*(X_s, \mu_s, Y_s)) ds$$

$$Y_t = \partial_x g(X_T, \mu_T) + \int_t^T \partial_x H(X_s, \mu_s, \alpha^*(X_s, \mu_s, Y_s), Y_s) ds$$

- Unique minimizer and sufficient condition for each $(\mu_t)_{0 \le t \le T}$ if
 - $\circ b(x, \mu, \alpha) = b_0(\mu) + b_1 x + b_2 \alpha$ and $\partial_x f$, $\partial_\alpha f$, $\partial_x g$ Lip. in (x, α)
 - \circ g and f convex in (x, α) with f strict convex in α

Pontryagin in \mathbb{R}^d

- Go back to MFG but $\sigma \equiv 0$
 - stochastic optimal control problem in the environment $(\mu_t)_{0 \le t \le T}$

$$dX_t = b(X_t, \mu_t, \alpha_t)dt$$

o cost functional (randomness inside the initial condition)

$$J(\boldsymbol{\alpha}) = \mathbb{E}\Big[g(X_T, \mu_T) + \int_0^T f(X_t, \mu_t, \boldsymbol{\alpha}_t) dt\Big]$$

• First order condition of optimality

$$X_{t} = X_{0} + \int_{0}^{t} b(X_{s}, \mathcal{L}(X_{s}), \alpha^{\star}(X_{s}, \mathcal{L}(X_{s}), Y_{s})) ds$$

$$Y_{t} = \partial_{x} g(X_{T}, \mathcal{L}(X_{T})) + \int_{t}^{T} \partial_{x} H(X_{s}, \mathcal{L}(X_{s}), \alpha^{\star}(X_{s}, \mathcal{L}(X_{s}), Y_{s}), Y_{s}) ds$$

- obtain MFG by replacing μ_s by $\mathcal{L}(X_s)$
 - \circ similar principle when $\sigma \neq 0$ using backward SDEs (\bullet)

Linear-quadratic in d = 1, σ constant

• Take

$$b(t, x, \mu, \alpha) = a_t x + a_t' \mathbb{E}(\mu) + b_t \alpha_t$$

$$g(x, \mu) = \frac{1}{2} [qx + q' \mathbb{E}(\mu)]^2$$

$$\circ f(t, x, \mu, \alpha) = \frac{1}{2} \left[\alpha^2 + (m_t x + m_t' \mathbb{E}(\mu))^2 \right]$$

• Pontryagin

$$dX_t = \left[a_t X_t + a_t' \mathbb{E}(X_t) - b_t^2 Y_t\right] dt + \sigma dW_t$$

$$dY_t = -\left[a_t Y_t + m_t (m_t X_t + m_t' \mathbb{E}(X_t))\right] dt + Z_t dW_t$$

$$Y_T = q\left[qX_T + q' \mathbb{E}(X_T)\right]$$

o take the mean

$$d\mathbb{E}(X_t) = [(a_t + a_t')\mathbb{E}(X_t) - b_t^2\mathbb{E}(Y_t)]dt$$

$$d\mathbb{E}(Y_t) = -[a_t\mathbb{E}(Y_t) + m_t(m_t + m_t')\mathbb{E}(X_t)]dt$$

$$\mathbb{E}(Y_T) = q(q + q')\mathbb{E}(X_T)$$

• existence and uniqueness if $q(q + q') \ge 0$, $m_t(m_t + m_t') \ge 0$ (\bigcirc)

Part IV. Potential Games

b. MFG as a first order condition

Optimization problem over the whole population

• Same dynamics as before! rewrite the dynamics of the particles

$$dX_t^i = b(X_t^i, \bar{\mu}_t^N, \alpha_t^i)dt + \sigma dW_t^i$$

• Same cost functional! to player $i \in \{1, ..., N\}$

$$J^{i}(\boldsymbol{\alpha}^{1}, \boldsymbol{\alpha}^{2}, \dots, \boldsymbol{\alpha}^{N}) = \mathbb{E}\Big[g(X_{T}^{i}, \bar{\boldsymbol{\mu}}_{T}^{N}) + \int_{0}^{T} f(X_{t}^{i}, \bar{\boldsymbol{\mu}}_{t}^{N}, \alpha_{t}^{i}) dt\Big]$$

- Reduce to Markov feedback policies $\alpha_t^i = \alpha^i(t, X_t^1, \dots, X_t^N)$
- Central planner! \Rightarrow Forces all the players to use the same $\alpha^i = \alpha$!
- \circ exchangeability (symmetry in law) $\Rightarrow J^1 = \cdots = J^N$ is the cost to the society
 - \circ minimize any J^i with respect to $\alpha!$

Asymptotic Social Optimization

• Recall the finite problem

$$dX_t^i = b(X_t^i, \bar{\mu}_t^N, \alpha_t^i)dt + \sigma dW_t^i$$

• with Markov feedback policies $\alpha_t^i = \alpha^i(t, X_t^1, \dots, X_t^N)$

o minimize

$$J(\alpha^1, \alpha^2, \dots, \alpha^N) = \mathbb{E}\left[g(X_T^i, \bar{\mu}_T^N) + \int_0^T f(X_t^i, \bar{\mu}_t^N, \alpha_t^i) dt\right]$$

• Asymptotic problem | should be to minimize

$$J(\alpha) = \mathbb{E}\left[g(X_T, \mathcal{L}(X_T)) + \int_0^T f(X_t, \mathcal{L}(X_t), \alpha_t)dt\right]$$
over $dX_t = b(X_t, \mathcal{L}(X_t), \alpha_t)dt + \sigma dW_t$

o or, written for Fokker-Planck equations

$$J(\alpha) = \int_{\mathbb{R}^d} g(x, \mu_T) d\mu_T(x) + \int_0^T \int_{\mathbb{R}^d} f(x, \mu_t, \alpha_t(x)) d\mu_t(x) dt$$
over $\partial_t \mu_t = -\text{div}_x (b(x, \mu_t, \alpha(t, x))\mu_t) + \frac{1}{2}\sigma^2 \Delta_x \mu_t$

• Choose $b(\alpha) = \alpha \in \mathbb{R}^d$ and

$$g(x,\mu) = \frac{1}{2} \int_{\mathbb{R}^d} G(x-y) d\mu(y)$$

$$f(x,\mu,\alpha) = \frac{1}{2} \int_{\mathbb{R}^d} F(x-y) d\mu(y) + \frac{1}{2} |\alpha|^2, \quad F \text{ and } G \text{ even}$$

- variable $\mu \in \mathcal{P}(\mathbb{R}^d) \Rightarrow$ adjoint is a continuous function u on \mathbb{R}^d
 - o formal Hamiltonian

$$H(\mu, \alpha, \mathbf{u}) = \int_{\mathbb{R}^d} \alpha(x) \frac{\partial_x u(x)}{\partial_x u(x)} d\mu(x) + \frac{1}{2} \int_{\mathbb{R}^d} \sigma^2 \underline{\Delta_x u(x)} d\mu(x) + \frac{1}{2} \int_{\mathbb{R}^d} |\alpha(x)|^2 d\mu(x) + \frac{1}{2} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} F(x - y) d\mu(x) d\mu(y)$$

- \circ optimizer $\alpha^{\star}(x) = -\partial_x u(x)$
- \circ linearizing (differential calculus???) w.r.t. μ (\bullet)

$$\partial_t u_t(x) = -\frac{1}{2}\sigma^2 \Delta_x u_t(x) + \frac{1}{2}|\partial_x u_t(x)|^2 - \int_{\mathbb{R}^d} F(x - y) d\mu_t(x)$$

• Choose $b(\alpha) = \alpha \in \mathbb{R}^d$ and

$$g(x,\mu) = \frac{1}{2} \int_{\mathbb{R}^d} G(x-y) d\mu(y)$$

$$f(x,\mu,\alpha) = \frac{1}{2} \int_{\mathbb{R}^d} F(x-y) d\mu(y) + \frac{1}{2} |\alpha|^2, \quad F \text{ and } G \text{ even}$$

- variable $\mu \in \mathcal{P}(\mathbb{R}^d) \Rightarrow$ adjoint is a continuous function u on \mathbb{R}^d
 - \circ linearizing (differential calculus???) w.r.t. μ (\bullet)

$$\partial_t u_t(x) = -\frac{1}{2}\sigma^2 \Delta_x u_t(x) + \frac{1}{2}|\partial_x u_t(x)|^2 - \int_{\mathbb{R}^d} F(x - y) d\mu_t(x)$$

• Choose $b(\alpha) = \alpha \in \mathbb{R}^d$ and

$$g(x,\mu) = \frac{1}{2} \int_{\mathbb{R}^d} G(x-y) d\mu(y)$$

$$f(x,\mu,\alpha) = \frac{1}{2} \int_{\mathbb{R}^d} F(x-y) d\mu(y) + \frac{1}{2} |\alpha|^2, \quad F \text{ and } G \text{ even}$$

- variable $\mu \in \mathcal{P}(\mathbb{R}^d) \Rightarrow$ adjoint is a continuous function u on \mathbb{R}^d
 - \circ linearizing (differential calculus???) w.r.t. μ (\bullet)

$$\partial_t u_t(x) = -\frac{1}{2}\sigma^2 \Delta_x u_t(x) + \frac{1}{2}|\partial_x u_t(x)|^2 - \int_{\mathbb{D}^d} F(x - y) d\mu_t(x)$$

- \circ terminal condition $u_T(x) = \int_{\mathbb{R}^d} G(x-y) d\mu_T(x)$
- \circ combine with $\partial_t \mu_t = \text{div}_x(\partial_x u(t, x) \mu_t) + \frac{1}{2} \sigma^2 \Delta_x \mu_t$ and

get an MFG over $dX_t = \alpha_t dt + \sigma dW_t$ with cost functional

$$J(\alpha) = \mathbb{E}\left[\int_{\mathbb{R}^d} G(\mathbf{X}_T - y) d\mu_T(y) + \int_0^T \left(\frac{1}{2}|\alpha_t|^2 + \int_{\mathbb{R}^d} F(\mathbf{X}_t - y) d\mu_t(y)\right) dt\right]$$

• Choose $b(\alpha) = \alpha \in \mathbb{R}^d$ and

$$g(x,\mu) = \frac{1}{2} \int_{\mathbb{R}^d} G(x-y) d\mu(y)$$

$$f(x,\mu,\alpha) = \frac{1}{2} \int_{\mathbb{R}^d} F(x-y) d\mu(y) + \frac{1}{2} |\alpha|^2, \quad F \text{ and } G \text{ even}$$

- variable $\mu \in \mathcal{P}(\mathbb{R}^d) \Rightarrow$ adjoint is a continuous function u on \mathbb{R}^d
 - \circ linearizing (differential calculus???) w.r.t. μ (\bullet)

$$\partial_t u_t(x) = -\frac{1}{2}\sigma^2 \Delta_x u_t(x) + \frac{1}{2} |\partial_x u_t(x)|^2 - \int_{\mathbb{D}^d} F(x - y) d\mu_t(x)$$

- terminal condition $u_T(x) = \int_{\mathbb{R}^d} G(x y) d\mu_T(x)$
- MFG is a first order condition for optimal problem on space of probability measures () ()
- MFG and optimal problem on space of probabilities do not have
 same coefficients but share same solutions ⇒ Mechanism design

Part V. Solving MFG with a Common Noise

Part V. Solving MFG with a Common Noise

a. Formulation

MFG with a common noise

- Mean field game with common noise *B*
 - o asymptotic formulation for a finite player game with

$$dX_t^i = b(X_t^i, \bar{\mu}_t^N, \alpha_t^i)dt + \sigma(X_t^i, \bar{\mu}_t^N)dW_t^i + \sigma^0(X_t^i, \bar{\mu}_t^N)dB_t$$

- ∘ uncontrolled version \rightarrow asymptotic SDE with $\bar{\mu}_t^N$ replaced by $\mathcal{L}(X_t|(B_s)_{0 \le s \le T}) = \mathcal{L}(X_t|(B_s)_{0 \le s \le t})$ (●)
- o particles become independent conditional on *B* and converge to the solution

$$dX_t = b(X_t, \mathcal{L}(X|B))dt + \sigma(X_t, \mathcal{L}(X|B))dW_t + \sigma^0(X_t, \mathcal{L}(X|B))dB_t$$

MFG with a common noise

- Mean field game with common noise **B**
 - \circ asymptotic formulation for a finite player game with $A = \mathbb{R}^k$ and

$$dX_t^i = \left(b(X_t^i, \bar{\mu}_t^N) + \alpha_t^i\right)dt + \sigma dW_t^i + \eta dB_t$$

- \circ uncontrolled version $\leadsto \bar{\mu}_t^N$ replaced by $\mathcal{L}(X_t|B)$
- Equilibrium as a fixed point \sim time [0, T], state in \mathbb{R}^d
- o candidate $\rightsquigarrow (\mu_t)_{t \in [0,T]} \mathbb{F}^B$ prog-meas with values in space of probability measures with a finite second moment $\mathcal{P}_2(\mathbb{R}^d)$
 - \circ representative player with control α

$$dX_t = (b(X_t, \mu_t) + \alpha_t)dt + \sigma dW_t + \eta dB_t$$

$$\rightsquigarrow X_0 \sim \mu_0, \, \sigma, \eta \in \{0, 1\}, \, W \text{ and } B \mathbb{R}^d \text{-valued } \bot \text{ B.M.}$$

$$\circ \text{ cost functional } J(\alpha) = \mathbb{E} \Big[g(X_T, \mu_T) + \int_0^T \Big(f(X_t, \mu_t) + \frac{1}{2} |\alpha_t|^2 \Big) dt \Big]$$

$$\circ \text{ find } (\mu_t)_{t \in [0,T]} \text{ such that } \left| \mu_t = \mathcal{L}(X_t^{\star} | (B_s)_{0 \le s \le T}) \right|$$

MFG with a common noise

- Mean field game with common noise **B**
 - o asymptotic formulation for a finite player game with

$$dX_t^i = \left(b(X_t^i, \bar{\mu}_t^N) + \alpha_t^i\right)dt + \sigma dW_t^i + \eta dB_t$$

- \circ uncontrolled version $\leadsto \bar{\mu}_t^N$ replaced by $\mathcal{L}(X_t|B)$
- Equilibrium as a fixed point \rightarrow time [0, T], state in \mathbb{R}^d
- \circ candidate $\sim (\mu_t)_{t \in [0,T]} \mathbb{F}^B$ prog-meas with values in space of probability measures with a finite second moment $\mathcal{P}_2(\mathbb{R}^d)$
 - \circ representative player with control α

$$dX_t = (b(X_t, \mu_t) + \alpha_t)dt + \sigma dW_t + \eta dB_t$$

$$\rightsquigarrow X_0 \sim \mu_0, \sigma, \eta \in \{0, 1\}, W \text{ and } B \mathbb{R}^d \text{-valued } \bot B.M.$$

$$\circ \operatorname{cost functional} J(\alpha) = \mathbb{E} \left[g(X_T, \mu_T) + \int_0^T \left(f(X_t, \mu_t) + \frac{1}{2} |\alpha_t|^2 \right) dt \right]$$

$$\circ \text{ find } (\mu_t)_{t \in [0,T]} \text{ such that } \left| \mu_t = \mathcal{L}(X_t^{\star} | (B_s)_{0 \le s \le t}) \right|$$

Forward-backward formulation

• Forward-backward formulation must account for $(\mu_t)_{0 \le t \le T}$ random

o systems of two forward-backward SPDEs [Carmona D, Cardaliaguet D Lasry Lions, Cardaliaguet Souganidis]

Forward-backward formulation

- Forward-backward formulation must account for $(\mu_t)_{0 \le t \le T}$ random
 - o systems of two forward-backward SPDEs

$$d_{t}u(t,x) + \left(b(x,\mu_{t}) \cdot \partial_{x}u(t,x) + \frac{\sigma^{2} + \eta^{2}}{2}\Delta_{x}u(t,x) + f(x,\mu_{t}) - \frac{1}{2}|\partial_{x}u(t,x)|^{2}\right)$$

$$Laplace\ generator \qquad standard\ Hamiltonian\ in\ HJB$$

$$+ \eta \text{div}[v(t,x)] \qquad dt - \underbrace{1_{\{\eta \neq 0\}}v(t,x) \cdot dB_{t}}_{backward\ term} = 0$$

$$lto\ Wentzell\ cross\ term \qquad backward\ term$$

with boundary condition:
$$u(T, \cdot) = g(\cdot, \mu_T)$$

$$d_t \mu_t = \left(-div(\mu_t[b(x, \mu_t) - \frac{\partial_x u(t, x)}{\partial_x u(t, x)}] \right) dt + \frac{\sigma^2 + \eta^2}{2} \Delta_x^2 \mu_t dt - \frac{\eta}{2} div(\mu_t dB_t)$$

Part V. MFG with Common Noise

b. Strong solutions

Continuation method

(Cardaliaguet-D.-Lasry-Lions)

- Standard method for handling nonlinear equations
- Stochastic Fokker Planck equation

$$d_t \mu_t = \left\{ \frac{1}{2} (1 + \eta^2) \Delta \mu_t + div(\mu_t \partial_x u(t, x)) \right\} dt - \eta \, div(\mu_t dB_t)$$

Stochastic HJB equation

$$d_{t}u(t,x) = \{-\frac{1}{2}(1+\eta^{2})\Delta u(t,x) + \frac{1}{2}|\partial_{x}u(t,x)|^{2} - f(x,\mu_{t}) - \eta \operatorname{div}(v(t,x))\}dt + v(t,x) \cdot dB_{t}$$

$$u(T,x) = g(x,\mu_{T})$$

Continuation method

(Cardaliaguet-D.-Lasry-Lions)

- Standard method for handling nonlinear equations
- Stochastic Fokker Planck equation

$$d_t \mu_t = \left\{ \frac{1}{2} (1 + \eta^2) \Delta \mu_t + div(\mu_t \partial_x u(t, x)) \right\} dt - \eta \, div(\mu_t dB_t)$$

• Stochastic HJB equation

$$\begin{split} d_t u(t,x) &= \big\{ -\frac{1}{2}(1+\eta^2)\Delta u(t,x) + \frac{1}{2}|\partial_x u(t,x)|^2 \\ &- \beta f(x,\mu_t) - \varphi_t(x) - \eta \operatorname{div}(v(t,x)) \big\} dt \\ &+ v(t,x) \cdot dB_t \\ u(T,x) &= \beta g(x,\mu_T) + \gamma(x) \end{split}$$

- Continuation method
 - \circ increase step by step the coupling parameter β
 - $\circ \beta = 0 \Rightarrow$ stochastic HJB is decoupled!

Decoupled case $\beta = 0$

• Conditional on \mathcal{F}_T^B , action of $(B_t)_t$ reduced to a transport

$$d(X_t - \eta B_t) = \alpha_t dt + dW_t$$

$$\circ \tilde{u}(t, x) = u(t, x + \eta B_t)$$
 and $\tilde{\mu}_t = \mu_t \circ (x \mapsto x - \eta B_t)^{-1}$

o reduced Stoc. HJB / Stoc. FP system

$$\begin{split} d_t \tilde{\mu}_t &= \big\{ \frac{1}{2} \Delta \tilde{\mu}_t + div(\tilde{\mu}_t \partial_x \tilde{u}(t, x)) \big\} dt \\ d_t \tilde{u}(t, x) &= \big\{ -\frac{1}{2} \Delta \tilde{u}(t, x) + \frac{1}{2} |\partial_x \tilde{u}(t, x)|^2 - \tilde{\varphi}_t(x) \big\} dt - \tilde{v}(t, x) \cdot dB_t \\ \tilde{u}(T, x) &= \tilde{\gamma}(x) \end{split}$$

• If $p_t(x)$ is the heat kernel \Rightarrow express $\tilde{u}(t,x)$ as

$$\tilde{u}(t,x) = \mathbb{E}\bigg[\int_{\mathbb{R}^d} \tilde{\gamma}(x-y) p_{T-t}(y) dy + \int_t^T \int_{\mathbb{R}^d} (\tilde{\varphi}(s,\cdot) - \frac{1}{2} |\partial_x \tilde{u}(s,\cdot)|^2) (x-y) p_{s-t}(y) dy | \mathcal{F}_t^B \bigg].$$

Small coupling $\beta \ll 1$

• Picard fixed point theorem for solving the system when $\beta \ll 1$

$$d_{t}\tilde{\mu}_{t} = \{\frac{1}{2}\Delta\tilde{\mu}_{t} + div(\tilde{\mu}_{t}\partial_{x}\tilde{u}(t,x))\}dt$$

$$d_{t}\tilde{u}(t,x) = \{-\frac{1}{2}\Delta\tilde{u}(t,x) + \frac{1}{2}|\partial_{x}\tilde{u}(t,x)|^{2} - \beta\tilde{f}(x,\tilde{\mu}_{t})\}dt - \tilde{v}(t,x) \cdot dB_{t}$$

$$\tilde{u}(T,x) = \beta\tilde{g}(x,\tilde{\mu}_{T})$$

• Contraction with

$$d_{t}\tilde{\mu}_{t} = \{\frac{1}{2}\Delta\tilde{\mu}_{t} + div(\tilde{\mu}_{t}\partial_{x}\tilde{u}(t,x))\}dt$$

$$d_{t}\tilde{u}(t,x) = \{-\frac{1}{2}\Delta\tilde{u}(t,x) + \frac{1}{2}|\partial_{x}\tilde{u}(t,x)|^{2} - \tilde{\varphi}_{t}(x)\}dt - \tilde{v}(t,x) \cdot dB_{t}$$

$$\tilde{u}(T,x) = \tilde{\gamma}(x)$$

$$\circ \tilde{\varphi}_{t}(x) = \beta \tilde{f}(x, \tilde{\mu}_{t}^{input}), \quad \tilde{\gamma}(x) = \beta \tilde{g}(x, \tilde{\mu}_{T}^{input})$$

$$\circ \tilde{\varphi}'_{t}(x) = \beta \tilde{f}(x, \tilde{\mu}_{t}^{input,\prime}), \quad \tilde{\gamma}'(x) = \beta \tilde{g}(x, \tilde{\mu}_{T}^{input,\prime})$$

• Stability if f and g and their derivatives are Lipschitz in μ essup, $g \in S$ sup $W_1(\mu_t, \mu'_t)$

$$\begin{split} \operatorname{essup}_{\omega \in \Omega} \sup_{t \in [0,T]} W_1(\mu_t, \mu_t') \\ & \leq C \Big[\operatorname{essup}_{\omega \in \Omega} \Big(\|\tilde{\gamma} - \tilde{\gamma}'\|_{1+\alpha} + \sup_{t \in [0,T]} \|\tilde{\varphi}_t - \tilde{\varphi}_t'\|_{\alpha} \Big) \Big] \end{split}$$

Method of continuation

• Increase the value of β progressively in

$$\begin{split} d_t \tilde{\mu}_t &= \big\{ \frac{1}{2} \Delta \tilde{\mu}_t + div \big(\tilde{\mu}_t \partial_x \tilde{u}(t,x) \big) \big\} dt \\ d_t \tilde{u}(t,x) &= \big\{ -\frac{1}{2} \Delta \tilde{u}(t,x) + \frac{1}{2} |\partial_x \tilde{u}(t,x)|^2 - \beta \tilde{f}(x,\tilde{\mu}_t) - \tilde{\varphi}_t(x) \big\} dt - \tilde{v}(t,x) \cdot dB_t \\ \tilde{u}(T,x) &= \beta \tilde{g}(x,\tilde{\mu}_T) + \tilde{\gamma}(x) \end{split}$$

- Show $\exists \epsilon > 0$ s.t. $\exists !$ for $\beta \in [0, 1) \Rightarrow \exists !$ for $\beta + \epsilon$
- Same principle as above

$$\circ \tilde{\varphi}_{t}(x) = \epsilon \tilde{f}(x, \tilde{\mu}_{t}^{input}), \quad \tilde{\gamma}(x) = \epsilon \tilde{g}(x, \tilde{\mu}_{T}^{input})$$

$$\circ \tilde{\varphi}'_{t}(x) = \epsilon \tilde{f}(x, \tilde{\mu}_{t}^{input,'}), \quad \tilde{\gamma}'(x) = \epsilon \tilde{g}(x, \tilde{\mu}_{T}^{input,'})$$

• Need stability for $\beta \in (0, 1)$!

$$\begin{split} \operatorname{essup}_{\omega \in \Omega} \sup_{t \in [0,T]} W_1(\mu_t, \mu_t') \\ & \leq C \operatorname{essup}_{\omega \in \Omega} \Bigl(\|\tilde{\gamma} - \tilde{\gamma}'\|_{1+\alpha} + \sup_{t \in [0,T]} \|\tilde{\varphi}_t - \tilde{\varphi}_t'\|_{\alpha} \Bigr) \end{split}$$

Method of continuation

• Increase the value of β progressively in

$$\begin{split} d_t \tilde{\mu}_t &= \big\{ \frac{1}{2} \Delta \tilde{\mu}_t + div \big(\tilde{\mu}_t \partial_x \tilde{u}(t,x) \big) \big\} dt \\ d_t \tilde{u}(t,x) &= \big\{ -\frac{1}{2} \Delta \tilde{u}(t,x) + \frac{1}{2} |\partial_x \tilde{u}(t,x)|^2 - \beta \tilde{f}(x,\tilde{\mu}_t) - \tilde{\varphi}_t(x) \big\} dt - \tilde{v}(t,x) \cdot dB_t \\ \tilde{u}(T,x) &= \beta \tilde{g}(x,\tilde{\mu}_T) + \tilde{\gamma}(x) \end{split}$$

- Show $\exists \epsilon > 0$ s.t. $\exists !$ for $\beta \in [0, 1) \Rightarrow \exists !$ for $\beta + \epsilon$
- Same principle as above

$$\circ \tilde{\varphi}_{t}(x) = \epsilon \tilde{f}(x, \tilde{\mu}_{t}^{input}), \quad \tilde{\gamma}(x) = \epsilon \tilde{g}(x, \tilde{\mu}_{T}^{input})$$

$$\circ \tilde{\varphi}'_{t}(x) = \epsilon \tilde{f}(x, \tilde{\mu}_{t}^{input,'}), \quad \tilde{\gamma}'(x) = \epsilon \tilde{g}(x, \tilde{\mu}_{T}^{input,'})$$

• Need stability for $\beta \in (0, 1)$! Consequence of monotonicity

$$\begin{aligned} & \operatorname{essup}_{\omega \in \Omega} \sup_{t \in [0,T]} W_1(\mu_t, \mu_t') \\ & \leq C \operatorname{essup}_{\omega \in \Omega} \left(\|\tilde{\gamma} - \tilde{\gamma}'\|_{1+\alpha} + \sup_{t \in [0,T]} \|\tilde{\varphi}_t - \tilde{\varphi}_t'\|_{\alpha} \right) \end{aligned}$$

Part VI. Master Equation

Part VI. Master Equation

a. Derivation of the master equation

Generalized value function

- Throughout this section | → existence and uniqueness of equilibria
 - o for instance → smooth coefficients and monotonicity
 - \circ definition on \mathbb{R}^d first, and analysis on \mathbb{T}^d
- Initial condition of the population μ^0 at time t_0
 - \circ uniqueness \leadsto flow $(\mu_t)_{t_0 \le t \le T}$ describing the equilibrium
 - \circ solution of optimal control starting from x_0 under $\mu = (\mu_t)_{t_0 \le t \le T}$

$$dX_t = -\partial_x u^{\mu}(t, X_t)dt + dW_t + \frac{\eta}{\eta}dB_t \quad t \in [t_0, T],$$

with $X_{t_0} = x$ and

$$d_t u^{\mu}(t,x) = \left\{ -\frac{1}{2}(1+\eta^2)\Delta u^{\mu}(t,x) + \frac{1}{2}|\partial_x u^{\mu}(t,x)|^2 - f(x,\mu_t) - \eta div(v^{\mu}(t,x)) \right\} dt + v^{\mu}(t,x) \cdot dB_t$$

$$u^{\mu}(T,x) = g(x,\mu_T)$$

• Generalized value function : $\mathcal{U}(t_0, x_0, \mu^0) = u^{\mu:\mu_{t_0} = \mu^0}(t_0, x_0)$

Dynamic Programming

• $(X^*)_{t_0 \le t \le T} \leadsto$ optimal trajectory starting from x_0 at t_0 under equilibrium μ starting from μ^0 at t_0

$$\mathcal{U}(t_0, x_0, \mu^0) = \mathbb{E}\left[\int_{t_0}^T \left[f(X_s^{\star}, \mu_s) + \frac{1}{2}|\alpha_s^{\star}|^2\right] ds + g(X_T^{\star}, \mu_T)\right]$$

• Flow property at the equilibrium

$$\mathcal{U}(t_0, x_0, \mu^0) = \mathbb{E}\left[\int_{t_0}^{t_0+\epsilon} \left[f(X_s^{\star}, \mu_s) + \frac{1}{2} |\alpha_s^{\star}|^2 \right] ds + \mathcal{U}(t_0 + \epsilon, X_{t_0+\epsilon}^{\star}, \mu_{t_0+\epsilon}) \right]$$

- If \mathcal{U} is smooth w.r.t. three arguments \Rightarrow solution of a PDE on $[0,T] \times \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d)$
 - o needs differential calculus and chain rule
- o use Lions' approach to differential calculus on Wasserstein space

Differential calculus on Wasserstein space

- Approach of the differentiation on $\mathcal{P}_2(\mathbb{R}^d)$ due to Lions
- Given $\mathcal{U}: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$
- Lifting of *U*

$$\hat{\mathcal{U}}: L^2(\Omega, \mathbb{P}) \ni X \mapsto \mathcal{U}(\mathcal{L}(X) = \text{Law}(X))$$

- $\circ \mathcal{U}$ differentiable if $\hat{\mathcal{U}}$ Fréchet differentiable
- Differential of *U*
 - \circ Fréchet derivative of $\hat{\mathcal{U}}$

$$D\hat{\mathcal{U}}(\mathbf{X}) = \partial_{\mu}\mathcal{U}(\mu)(\mathbf{X}), \quad \partial_{\mu}\mathcal{U}(\mu) : \mathbb{R}^{d} \ni \mathbf{x} \mapsto \partial_{\mu}\mathcal{U}(\mu)(\mathbf{x}) \quad \mu = \mathcal{L}(X)$$

- \circ derivative of \mathcal{U} in $\mu \rightsquigarrow \partial_{\mu} \mathcal{U}(\mu) \in L^{2}(\mathbb{R}^{d}, \mu; \mathbb{R}^{d})$
- Finite-dimensional projection ()

$$\partial_{x_i} \left[\mathcal{U} \left(\frac{1}{N} \sum_{i=1}^N \delta_{x_i} \right) \right] = \frac{1}{N} \partial_{\mu} \mathcal{U} \left(\frac{1}{N} \sum_{i=1}^N \delta_{x_i} \right) (x_i), \quad x_1, \dots, x_N \in \mathbb{R}^d$$

First-order differentiability

- Example : $\mathcal{U}(\mu) = \int_{\mathbb{R}^d} h(y) d\mu(y)$
 - $\circ h C^1$ and ∇h at most of linear growth

$$\begin{split} \hat{\mathcal{U}}(X+Y) &= \mathbb{E}[h(X+Y)] = \mathbb{E}[h(X)] + \mathbb{E}[\nabla h(X) \cdot Y] + o(||Y||_2) \\ &\Rightarrow D\hat{\mathcal{U}}(X) = \nabla h(X) \Rightarrow \partial_u \mathcal{U}(\mu)(v) = \nabla h(v) \end{split}$$

- Equivalent form (close to geometric approach, Tudorascu (17))
 - \circ action of ${\mathcal U}$ along measure transported by a vector field

$$b: \mathbb{R}^d \to \mathbb{R}^d$$
$$dX_t = b(X_t)dt, \quad X_0 \sim \mu_0 \in \mathcal{P}_2(\mathbb{R}^d)$$

 \circ action of \mathcal{U} along $(\mu_t = \mathcal{L}(X_t))_t$?

$$\frac{d}{dt}_{|t=0} \mathcal{U}(\mu_t) = \frac{d}{dt}_{|t=0} \mathbb{E}[\hat{\mathcal{U}}(X_t)] = \mathbb{E}[\partial_{\mu} \mathcal{U}(\mu)(X_0) \cdot b(X_0)]$$

$$= \int_{\mathbb{R}^d} \partial_{\mu} \mathcal{U}(\mu)(v) \cdot b(v) d\mu_0(v)$$

Second-order differentiability

- Need for existence of second-order derivatives
 - o asking the lift to be twice Fréchet is too strong
 - o only discuss the existence of second-order partial derivatives
- Requires
 - $\circ \partial_{\mu} \mathcal{U}(\mu)(v)$ is differentiable in v and μ

$$\partial_{\nu}\partial_{\mu}\mathcal{U}(\mu)(\nu)$$
 $\partial_{\mu}^{2}\mathcal{U}(\mu)(\nu, \mathbf{v'})$

- $\circ \partial_{\nu}\partial_{\mu}\mathcal{U}(\mu)(\nu)$ and $\partial_{\mu}^{2}\mathcal{U}(\mu)(\nu,\nu')$ continuous in (μ,ν,ν') (for W_{2} in μ) with suitable growth
- Finite-dimensional projection

$$\partial_{\mathbf{x}_{i} \ \mathbf{x}_{j}}^{2} \left[\mathcal{U} \left(\frac{1}{N} \sum_{k=1}^{N} \delta_{\mathbf{x}_{k}} \right) \right] = \frac{1}{N} \partial_{\nu} \partial_{\mu} \mathcal{U} \left(\frac{1}{N} \sum_{k=1}^{N} \delta_{\mathbf{x}_{k}} \right) (\mathbf{x}_{i}) \ \delta_{i,j}$$
$$+ \frac{1}{N^{2}} \partial_{\mu}^{2} \mathcal{U} \left(\frac{1}{N} \sum_{k=1}^{N} \delta_{\mathbf{x}_{k}} \right) (\mathbf{x}_{i}, \mathbf{x}_{j})$$

Itô's formula on $\mathcal{P}_2(\mathbb{R}^d)$

- Process $dX_t = b_t dt + dW_t + dB_t$ with $\mathbb{E} \int_0^T |b_t|^2 dt < \infty$ • μ_t = conditional law of X_t given B
- $\mathcal U$ Fréchet differentiable with $\mathbb R^d \ni v \mapsto \partial_\mu \mathcal U(\mu)(v)$ differentiable in v and μ
 - \circ Itô's formula for $(\mathcal{U}(\mu_t))_{t\geq 0}$?
- Space discretization : Approximation of μ_t by a particle system

$$\mu_t \sim \frac{1}{N} \sum_{i=1}^{N} \delta_{X_t^i}$$
 with $(X_t^i)_t$ conditionally i.i.d. given B

• Limit on standard Itô's formula for $d_t \left[\mathcal{U} \left(\frac{1}{N} \sum_{j=1}^N \delta_{X_i^j} \right) \right]$

$$\begin{split} d\mathcal{U}(\boldsymbol{\mu_t}) &= \mathbb{E}[b_t \cdot \partial_{\mu}\mathcal{U}(\boldsymbol{\mu_t})(X_t^1) \,|\, \boldsymbol{B}] + \mathbb{E}[\operatorname{Trace}(\partial_{\nu}\partial_{\mu}\mathcal{U}(\boldsymbol{\mu_t})(X_t^1)) \,|\, \boldsymbol{B}]dt \\ &+ \frac{1}{2}\mathbb{E}[\operatorname{Trace}(\partial_{\mu}^2\mathcal{U}(\boldsymbol{\mu_t})(X_t^1, X_t^2)) \,|\, \boldsymbol{B}]dt + \mathbb{E}[\partial_{\mu}\mathcal{U}(\boldsymbol{\mu_t})(X_t^1) \,|\, \boldsymbol{B}] \cdot dB_t \end{split}$$

Form of the master equation

- Formal identification in the dynamic programming expansion
- Master equation at order 2

$$\begin{split} &\partial_{t}\mathcal{U}(t,x,\mu)-\int_{\mathbb{R}^{d}}\partial_{x}\mathcal{U}(t,v,\mu)\cdot\partial_{\mu}\mathcal{U}(t,x,\mu,v)d\mu(v)\\ &-\frac{1}{2}|\partial_{x}\mathcal{U}(t,x,\mu)|^{2}+f(x,\mu)+\frac{1}{2}(1+\eta^{2})\mathrm{Trace}\left(\partial_{x}^{2}\mathcal{U}(t,x,\mu)\right)\\ &+\frac{1}{2}(1+\eta^{2})\int_{\mathbb{R}^{d}}\mathrm{Trace}\left(\partial_{v}\partial_{\mu}\mathcal{U}(t,x,\mu)(v)\right)d\mu(v)\\ &+\eta^{2}\int_{\mathbb{R}^{d}}\mathrm{Trace}\left(\partial_{x}\partial_{\mu}\mathcal{U}(t,x,\mu)(v)\right)d\mu(v)\\ &+\frac{1}{2}\eta^{2}\int_{\mathbb{R}^{d}}\int_{\mathbb{R}^{d}}\mathrm{Trace}\left(\partial_{\mu}^{2}\mathcal{U}(t,x,\mu)(v,v')\right)d\mu(v)d\mu(v')=0 \end{split}$$

Not a HJB! (MFG ≠ optimization) (●)

Typical statement

- Lions, Chassagneux-Crisan-D., Cardaliaguet-D.-Lasry-Lions, Gangbo Swiech ($T \ll 1$)
- Require monotonicity and bounded coefficients
- Require first-order smoothness of the coefficients (same for *g*)
 - $\circ \partial_x f(x, \mu)$ bounded and Lipschitz in (x, μ)
 - $\circ \partial_{\mu} f(x,\mu)(v)$ bounded and Lipschitz
- Require second-order smoothness of the coefficients (same for g)
 - $\circ \partial_x^2 f(x,\mu)$ bounded and Lipschitz in (x,μ)
 - $\circ \partial_{\mu} f(x,\mu)(v)$ is differentiable in x, v and μ
 - $\circ \partial_x \partial_\mu f(x,\mu)(v), \partial_v \partial_\mu f(x,\mu)(v)$ are bounded and Lipschitz
 - $\circ \partial_{\mu}^{2} f(x,\mu)(v,v')$ is bounded and Lipschitz
- Then existence and uniqueness of a classical solution with
- $\circ \mathcal{U}(t,\cdot,\cdot)$ having the same smoothness as f and g and continuously differentiable in time

Extensions

•

Part VI. Master Equation

b. Linearization ($\eta = 0$)

Road map to regularity of ${\cal U}$

- To proceed with the analysis → torus
- \bullet Look at ${\mathcal U}$ as

$$\mathcal{U}: [0,T] \times \mathcal{P}(\mathbb{T}^d) \ni (t,\mu) \mapsto \underbrace{\left(\mathbb{T}^d \ni x \mapsto \mathcal{U}(t_0,x,\mu)\right)}_{\mathcal{U}(t_0,\cdot,\mu)}$$

- ∘ typical example $\rightsquigarrow \mathcal{U}(t_0, \cdot, \mu) \in \mathbb{C}^{n+\alpha}(\mathbb{T}^d)$
- \circ *n*, α depending on the smoothness of *f* and *g*
- \bullet Objective is to understand smoothness w.r.t. μ

o recall
$$\rightsquigarrow \mathcal{U}(t_0,\cdot,\mu) = \underbrace{u^{\mu:\mu_{t_0}=\mu}(t_0,\cdot)}_{\text{HJB with FP initialized at } (t_0,\mu)}$$

 \circ differentiability w.r.t. $\mu^0 \rightarrow$ use convex perturbation

$$\begin{split} \frac{d}{d\varepsilon} &_{|\varepsilon=0+} u^{(1-\varepsilon)\mu+\varepsilon\mu'}(t_0,\cdot) \\ &= \frac{d}{d\varepsilon} |_{|\varepsilon=0+} \mathcal{U}(t_0,\cdot,(1-\varepsilon)\mu+\varepsilon\mu') \quad \mu, \ \mu' \in \mathcal{P}(\mathbb{T}^d) \end{split}$$

Other approach of differentiation on $\mathcal{P}(\mathbb{T}^d)$

• We say that $\mathcal{V}: \mathcal{P}(\mathbb{T}^d) \to \mathbb{R}$ is C^1 if

$$\frac{d}{d\varepsilon}|_{\varepsilon=0+} \mathcal{V}((1-\varepsilon)\mu + \varepsilon\mu') = \underbrace{\int_{\mathbb{T}^d} \frac{\delta \mathcal{V}}{\delta m}(\mu)(\nu) d(\mu' - \mu)(\nu)}_{\frac{\delta \mathcal{V}}{\delta m}}(\mu)(\cdot) \cdot (\mu' - \mu)$$

for a continuous map $\frac{\delta'V}{\delta m}: \mathcal{P}(\mathbb{T}^d) \times \mathbb{T}^d \to \mathbb{R} \ (\bullet) \ (\bullet)$

 \circ unique up to an additive constant \rightsquigarrow impose zero mean under μ_0

$$\partial_{\mu} \mathcal{V}(\mu)(v) = \partial_{\nu} \frac{\delta \mathcal{V}}{\delta m}(\mu)(v)$$

- ∘ ∃ conditions under which equality holds true
- \mathcal{V} is \mathbb{C}^2 if

$$\circ$$
 for all $v \in \mathbb{T}^d$ $\mathcal{P}(\mathbb{T}^d) \ni \mu \mapsto \frac{\delta \mathcal{V}}{\delta m}(\mu)(v)$ is C^1

Linearized MFG system

• Assume that f and g are C^1 w.r.t. m with

$$\frac{\delta f}{\delta m}, \frac{\delta g}{\delta m}: \mathbb{T}^d \times \mathcal{P}(\mathbb{T}^d) \times \mathbb{T}^d \ni (x, \mu, v) \mapsto \frac{\delta f}{\delta m}(x, \mu)(v), \frac{\delta g}{\delta m}(x, \mu)(v)$$
smooth enough in x and v

• Formal differentiation of the MFG system

$$\circ$$
 perturbation of μ along a direction $\mu' - \mu$

$$\circ \text{ we let } z_t = \underbrace{\frac{d}{d\varepsilon}_{|\varepsilon=0+} u^{(1-\varepsilon)\mu+\varepsilon\mu'}(t,\cdot)}_{\text{function}}, \quad m_t = \underbrace{\frac{d}{d\varepsilon}_{|\varepsilon=0+} \mu_t^{(1-\varepsilon)\mu+\varepsilon\mu'}}_{\text{distribution}}$$

$$\begin{split} \partial_t m_t - \frac{1}{2} \Delta m_t - div \Big(m_t \partial_x u(t, x) + \mu_t \partial_x z(t, x) \Big) &= 0 \\ \partial_t z(t, x) + \frac{1}{2} \Delta z(t, x) - \partial_x u(t, x) \cdot \partial_x z(t, x) + \frac{\delta f}{\delta m}(x, \mu_t)(\cdot) \cdot m_t(\cdot) &= 0 \\ z_T(x) &= \frac{\delta g}{\delta m}(x, \mu_T)(\cdot) \cdot m_T(\cdot) \end{split}$$

Linearized MFG system

• Assume that f and g are C^1 w.r.t. m with

$$\frac{\delta f}{\delta m}, \frac{\delta g}{\delta m}: \mathbb{T}^d \times \mathcal{P}(\mathbb{T}^d) \times \mathbb{T}^d \ni (x, \mu, v) \mapsto \frac{\delta f}{\delta m}(x, \mu)(v), \frac{\delta g}{\delta m}(x, \mu)(v)$$
smooth enough in x and v

- Formal differentiation of the MFG system
 - \circ perturbation of μ along a direction $\mu' \mu$

$$\circ \text{ we let } z_t = \underbrace{\frac{d}{d\varepsilon}_{|\varepsilon=0+} u^{(1-\varepsilon)\mu+\varepsilon\mu'}(t,\cdot)}_{\text{function}}, \quad m_t = \underbrace{\frac{d}{d\varepsilon}_{|\varepsilon=0+} \mu_t^{(1-\varepsilon)\mu+\varepsilon\mu'}}_{\text{distribution}}$$

should solve

$$\begin{split} \partial_t m_t - \frac{1}{2} \Delta m_t - div \Big(m_t \partial_x u(t,x) + \mu_t \partial_x z(t,x) \Big) &= 0 \\ \partial_t z(t,x) + \frac{1}{2} \Delta z(t,x) - \partial_x u(t,x) \cdot \partial_x z(t,x) + \underbrace{\frac{\delta f}{\delta m}(x,\mu_t)(\cdot) \cdot m_t(\cdot)}_{} &= 0 \end{split}$$

balance reg in v / singularity m

Initialization of the linearized system

• Assume
$$\frac{\delta f}{\delta m} \frac{\delta g}{\delta m} C^{n+2+\alpha}$$
 in (x, y) , $n \ge 0$, $\alpha \in (0, 1)$

- Fix initial condition of linearized system $m_{t_0}(\cdot) \in C^{-(n+1+\alpha)}(\mathbb{T}^d)$
 - $\circ \sim \exists !$ solution to linearized system with

$$\big(z(t,\cdot),\mu_t(\cdot)\big)_{t_0 \leq t \leq T} \in C\big([0,T],C^{n+2+\alpha}(\mathbb{T}^d) \times C^{-(n+1+\alpha)}(\mathbb{T}^d)\big)$$

- ∘ more than uniqueness → stability
- Example: $m_{t_0} = \delta_v \rightsquigarrow z(t_0, x) = \mathcal{V}^0(t_0, x, \mu_0)(v)$
- if $m_{t_0}(\cdot)$ is finite signed measure \sim linearity

$$z(t_0, x) = \int_{\mathbb{T}^d} \mathcal{V}^0(t_0, x, \mu_0)(v) dm_{t_0}(v)$$

Initialization of the linearized system

• Assume
$$\frac{\delta f}{\delta m} \frac{\delta g}{\delta m} C^{n+2+\alpha}$$
 in $(x, y), n \ge 0, \alpha \in (0, 1)$

• Fix initial condition of linearized system $m_{t_0}(\cdot) \in C^{-(n+1+\alpha)}(\mathbb{T}^d)$

 $(z(t,\cdot),\mu_t(\cdot))_{t_0 \le t \le T} \in C([0,T],C^{n+2+\alpha}(\mathbb{T}^d) \times C^{-(n+1+\alpha)}(\mathbb{T}^d))$

$$\circ \sim \exists$$
! solution to linearized system with

∘ more than uniqueness → stability

• Example:
$$m_{t_0} = (-1)^{\ell} \frac{d^{\ell}}{dv^{\ell}} \delta_v, \ \ell \le n+1 \Rightarrow z(t_0, x) = \underbrace{\mathcal{V}^{\ell}(t_0, x, \mu_0)(v)}_{\partial_v^{\ell} \mathcal{V}^0(t_0, x, \mu_0)(v)}$$

• if $m_{t_0}(\cdot)$ is finite signed measure \sim linearity

$$z(t_0, x) = \int_{\mathbb{T}^d} \mathcal{V}^0(t_0, x, \mu_0)(v) dm_{t_0}(v)$$

• Distributions in $C^{-(n+1+\alpha)}(\mathbb{T}^d) \rightsquigarrow V^0$ is $C^{n+1+\alpha}(\mathbb{T}^d)$ in V

General strategy

• Aim at solving

$$\begin{split} \partial_t m_t &- \tfrac{1}{2} \Delta m_t - div \Big(m_t \partial_x u(t,x) + \mu_t \partial_x z(t,x) \Big) = 0 \\ \partial_t z(t,x) &+ \tfrac{1}{2} \Delta z(t,x) - \partial_x u(t,x) \cdot \partial_x z(t,x) + \frac{\delta f}{\delta m}(x,\mu_t) \cdot m_t(\cdot) = 0 \\ z(T,x) &= \frac{\delta g}{\delta m}(x,\mu_T) \cdot m_T(\cdot) \end{split}$$

- \circ deterministic case \rightsquigarrow Schauder's theorem for \exists and monotonicity for !
 - ∘ common noise → continuation method
 - o progressive augmentation of coupling parameter

General strategy

• Aim at solving

$$\begin{split} \partial_t m_t &- \frac{1}{2} \Delta m_t - div \Big(m_t \partial_x u(t,x) + \mu_t \partial_x z(t,x) \Big) = 0 \\ \partial_t z(t,x) &+ \frac{1}{2} \Delta z(t,x) - \partial_x u(t,x) \cdot \partial_x z(t,x) + \beta \frac{\delta f}{\delta m}(x,\mu_t) \cdot m_t(\cdot) = 0 \\ z(T,x) &= \beta \frac{\delta g}{\delta m}(x,\mu_T) \cdot m_T(\cdot) \end{split}$$

- \circ deterministic case \leadsto Schauder's theorem for \exists and monotonicity for !
 - ∘ common noise → continuation method
 - \circ progressive augmentation of coupling parameter β
 - $\circ \beta = 0 \Rightarrow z \equiv 0$ and $(m_t)_t$ solved separately
 - \circ proof of \exists ! by induction $\beta = 0, \epsilon, 2\epsilon, \ldots, 1, \epsilon$ small enough

First order condition of optimality with noise

$$dX_t = b(X_t, \mu_t, \alpha_t)dt + \sigma dW_t$$

→ Pontryagin system (Peng)

$$X_{t} = X_{0} + \int_{0}^{t} b(X_{s}, \mu_{s}, \alpha^{*}(X_{s}, \mu_{s}, Y_{s})) ds$$

$$+ \sigma W_{t}$$

$$Y_{t} = \partial_{x} g(X_{T}, \mu_{T}) + \int_{t}^{T} \partial_{x} H(X_{s}, \mu_{s}, \alpha^{*}(X_{s}, \mu_{s}, Y_{s}), Y_{s}) ds$$

$$- \int_{t}^{T} Z_{s} dW_{s}$$

First order condition of optimality with noise

$$dX_t = b(X_t, \mu_t, \alpha_t)dt + \sigma dW_t$$

→ Pontryagin system (Peng)

$$X_{t} = X_{0} + \int_{0}^{t} b(X_{s}, \mu_{s}, \alpha^{*}(X_{s}, \mu_{s}, Y_{s})) ds$$

$$+ \sigma W_{t}$$

$$Y_{t} = \partial_{x} g(X_{T}, \mu_{T}) + \int_{t}^{T} \partial_{x} H(X_{s}, \mu_{s}, \alpha^{*}(X_{s}, \mu_{s}, Y_{s}), Y_{s}) ds$$

$$- \int_{t}^{T} Z_{s} dW_{s}$$

First order condition of optimality with noise

$$dX_t = b(X_t, \mu_t, \alpha_t)dt + \sigma dW_t$$

→ Pontryagin system (Peng)

$$X_{t} = X_{0} + \int_{0}^{t} b(X_{s}, \mathcal{L}(X_{s}), \alpha^{*}(X_{s}, \mathcal{L}(X_{s}), Y_{s})) ds$$

$$+ \sigma W_{t}$$

$$Y_{t} = \partial_{x} g(X_{T}, \mathcal{L}(X_{T})) + \int_{t}^{T} \partial_{x} H(X_{s}, \mathcal{L}(X_{s}), \alpha^{*}(X_{s}, \mathcal{L}(X_{s}), Y_{s}), Y_{s}) ds$$

$$- \int_{0}^{T} Z_{s} dW_{s}$$

□ Summary: Forward-Backward systems may be ill-posed! But:

→ Noise restores uniqueness!

 $\rightsquigarrow Monotonicity \ (\leftrightarrow convexity) \ restores \ uniqueness!$

☐ Hint: Either use monotonicity or interpret the FB system as the Pontryagin system of a standard optimal control problem with linear—convex coefficients

- □ Exercise: What does monotonicity for the MFG mean for the control problem?
- □ | Hint |: Write monotonicity as

$$\int_{\mathbb{R}^d} \left[\int_{\mathbb{R}^d} F(x - y) dm(y) - \int_{\mathbb{R}^d} F(x - y) dm'(y) \right] d(m - m')(x) \ge 0$$

$$\Leftrightarrow \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} F(x - y) d(m - m')(y) d(m - m')(x) \ge 0$$

□ Examples :

$$\rightsquigarrow F(z) = -|z|^2$$

 $\leadsto F(z) = \int_{\mathbb{R}^d} \exp(iz \cdot s) d\lambda(s)$, where λ is symmetric positive finite measure

(take λ a Gaussian, take λ a Cauchy, take λ a combination of two Dirac masses...)

 \square Make a convex perturbation of $\mu \in \mathcal{P}(\mathbb{R}^d)$

 \rightsquigarrow take $v \in \mathcal{P}(\mathbb{R}^d)$ and expand

$$\frac{1}{2} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} F(x - y) d((1 - \varepsilon)\mu(x) + \varepsilon \nu(x)) d((1 - \varepsilon)\mu(x) + \varepsilon \nu(x))$$

$$= \frac{1}{2} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} F(x - y) d\mu(x) d\mu(y)$$

$$+ \varepsilon \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} F(x - y) d\mu(x) d(\nu - \mu)(y)$$

$$+ \varepsilon^2 \frac{1}{2} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} F(x - y) d(\nu - \mu)(x) d(\nu - \mu)(y)$$

 \rightsquigarrow regard $\nu - \mu$ as direction of linearization

□ Think of

$$X_t = F_t((B_s)_{0 \le s \le t}, (W_s^1, \cdots, W_s^N)_{0 \le s \le t})$$

 $\leadsto B$ constructed on Ω^0 and W^1, \cdots, W^N constructed on Ω^1 and equip $\Omega^0 \times \Omega^1$ with product measures $\mathbb{P}^0 \otimes \mathbb{P}^1$

 \rightsquigarrow take $\omega^0 \in \Omega^0 \Rightarrow \mathcal{L}(X_t | (B_s)_{0 \le s \le t})$ at ω^0 is the law on Ω^1 of $F_t((B_s(\omega^0))_{0 \le s \le t}, (W_s^1, \cdots, W_s^N)_{0 \le s \le t})$

 \square Take sequence $(X_n)_{n\geq 1}$ of r.v. on $\Omega^0 \times \Omega^1$ with values in \mathbb{R}^d

$$\rightsquigarrow$$
 assume, \mathbb{P}^0 a.s., $(X_n(\omega^0,\cdot))_{n\geq 1}$ are under \mathbb{P}^1

 \rightsquigarrow take $\varphi : \mathbb{R}^d \to \mathbb{R}$ bounded continuous

$$\mathbb{P}^0 \otimes \mathbb{P}^1 \left(\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^N \varphi(X_n) = \mathbb{E}^1 [\varphi(X_1)] \right) = 1$$

□ Optimality says that

$$\left(\int_{\mathbb{R}^d} u(t,x) d\mu_t(x) + \int_0^t \int_{\mathbb{R}^d} \left(f(x,\mu_s) + \frac{1}{2} |\partial_x u(s,x)|^2 \right) d\mu_s(x) ds \right)_{0 \le t \le T}$$

should be a martingale

 \rightsquigarrow but bracket in the product $\int_{\mathbb{R}^d} u(t, x) d\mu_t(x)!$

$$-\eta \int_{\mathbb{R}^d} \sum_{i=1}^d v^i(t, x) \partial_{x_i} (d\mu_t(x)) = \eta \int_{\mathbb{R}^d} \sum_{i=1}^d \partial_{x_i} v^i(t, x) d\mu_t(x)$$
$$= \eta \int_{\mathbb{R}^d} \frac{\text{div} v(t, x) d\mu_t(x)}{\int_{\mathbb{R}^d} \frac{\text{div} v(t, x)}{\int_{\mathbb{R}^d} \frac{\text{div} v(t, x)$$

□ Prove

$$\partial_{x_i} \left[\mathcal{U} \left(\frac{1}{N} \sum_{i=1}^N \delta_{x_i} \right) \right] = \frac{1}{N} \partial_{\mu} \mathcal{U} \left(\frac{1}{N} \sum_{i=1}^N \delta_{x_i} \right) (x_i), \quad x_1, \dots, x_N \in \mathbb{R}^d$$

 \square Choose θ r.v. with values in $\{1, \dots, N\}$ \$ equipped with uniform probability

for
$$x = (x_1, \dots, x_N), y = (y_1, \dots, y_N) \in \mathbb{R}^d$$
, expand
$$\hat{\mathcal{U}}(x_\theta + y_\theta) = \hat{\mathcal{U}}(x_\theta) + \mathbb{E}[D\hat{\mathcal{U}}(x_\theta) \cdot y_\theta] + o(||y_\theta||_2)$$

$$= \hat{\mathcal{U}}(x_\theta) + \mathbb{E}[\partial_\mu \mathcal{U}(\mathcal{L}(x_\theta))(x_\theta) \cdot y_\theta] + o(||y_\theta||_2)$$

$$= \hat{\mathcal{U}}(x_\theta) + \frac{1}{N} \sum_{i=1\dots N} \partial_\mu \mathcal{U}(\bar{\mu}_x^N)(x_i) y_i + o(||y_\theta||_2)$$

with
$$\bar{\mu}_x^N = \frac{1}{N} \sum_{i=1}^N \delta_{x_i}$$

Exercise: Assume that

$$\partial_{\nu} \frac{\delta^{\epsilon} V}{\delta m}(\mu)(\nu)$$

is smooth and expand

$$(\mathcal{L}(Y)) - (\mathcal{L}(X))$$

$$= \int_0^1 \mathbb{E} \left[\frac{\delta}{\delta m} (\lambda \mathcal{L}(Y) + (1 - \lambda) \mathcal{L}(X), Y) - \frac{\delta}{\delta m} (\lambda \mathcal{L}(Y) + (1 - \lambda) \mathcal{L}(X), X) \right] d\lambda$$

Deduce that

$$\partial_{\mu} \mathcal{V}(\mu)(\nu) = \partial_{\nu} \frac{\delta \mathcal{V}}{\delta m}(\mu)(\nu)$$

 \Box | Exercise |: Choose $\eta = 0$ and take a potential game

write the HJB equation on the space of probability measures for the social optimization problem

 \rightsquigarrow derive formally the value function w.r.t. m

which show that this coincides with the master equation for the MFG

→ see [Gangbo and Swiech], see [C D L L]

 \square Exercise: Adapt the notion of derivative to \mathbb{R}^d and check that it is consistant with the linearization procedure used for potential games!

$$\rightsquigarrow$$
 take $\mathcal{V}(\mu) = \frac{1}{2} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} F(x - y) d\mu(x) d\mu(y)$

 \rightsquigarrow take $\mu, \nu \in \mathcal{P}(\mathbb{R}^d)$ and expand

$$\frac{1}{2} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} F(x - y) d((1 - \varepsilon)\mu(x) + \varepsilon \nu(x)) d((1 - \varepsilon)\mu(x) + \varepsilon \nu(x))$$

$$= \frac{1}{2} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} F(x - y) d\mu(x) d\mu(y)$$

$$+ \varepsilon \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} F(x - y) d\mu(x) d(\nu - \mu)(y)$$

$$+ \varepsilon^2 \frac{1}{2} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} F(x - y) d(\nu - \mu)(x) d(\nu - \mu)(y)$$

$$\iff \text{deduce } \frac{\delta \mathcal{V}}{\delta m}(\nu) = \int_{\mathbb{R}^d} F(\nu - x) d\mu(x)$$

□ | Exercise |: Consider a more general social optimization problem

$$J(\alpha) = G(\mathcal{L}(X_T)) + \int_0^T F(\mathcal{L}(X_t)) + \frac{1}{2} \mathbb{E} \int_0^T |\alpha_t|^2 dt$$

over $dX_t = b(X_t, \mathcal{L}(X_t), \alpha_t)dt + \sigma dW_t$

which show the first order condition is given by the MFG system

$$\partial_t u_t(x) = -\frac{1}{2}\sigma^2 \Delta_x u_t(x) + \frac{1}{2} |\partial_x u_t(x)|^2 - \frac{\delta F}{\delta m}(\mu_t)(x)$$

with terminal condition $u_T(x) = \frac{\delta G}{\delta m}(\mu_T)(x)$ and with

$$\partial_t \mu_t = \operatorname{div}_x(\partial_x u(t, x)\mu_t) + \frac{1}{2}\sigma^2 \Delta_x \mu_t$$