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Part IV. Potential Games



Part IV. Potential Games

a. More on Pontryagin principle



Pontryagin in R?
e Go back to MFG but o = 0

o stochastic optimal control problem in the environment (u;)o<;<7
dX; = b(Xy, g, o )dt

o cost functional (randomness inside the initial condition)

T
J(@) = E|gtrour) + fo e

o | First order condition of optimality ‘

t
X[ = XO + f b(X_y’llA‘e a/*(XS’ /'lS? YS)) ds
0

T
Yt = axg(X ’#T) + f axH(Xs’/JS’ a*(X_p/JS’ Y_y)’ YS) dS
t

L4 H(x,ll, a, Z) = b(x9,u7 a) *Z +f(xuu’a,)

o a*(x, 1, z) = argmin,, H(x, u, @, 2)



Pontryagin in R?
e Go back to MFG but o = 0

o stochastic optimal control problem in the environment (u;)o<;<7
dX[ = b(X[, My a[)dt

o cost functional (randomness inside the initial condition)

T
J(@) = [ g, ) + fo ey

o | First order condition of optimality ‘

t
X, =Xo + f b(Xs,ux,a*(Xs,ys, Ys)) ds
0

T
Yt = axg(XT,/lT) + f axH(Xs,,us, a*(XS,,uS, Ys)’ Ys) ds
!

e Unique minimizer and sufficient condition for each (u;)o<;<r if
o b(x, u, @) = bo(u) + b1x + bra and Oyf, 9,f, 0xg Lip. in (x, @)

o g and f convex in (x, @) with f strict convex in a (@)



Pontryagin in R?
e Go back to MFG but o = 0

o stochastic optimal control problem in the environment (u;)o<;<7

dX[ = b(Xt, My a’t)d[

o cost functional (randomness inside the initial condition)

T
J(@) = E|gtrour) + fo e

° ’ First order condition of optimality ‘

!
X, =Xo+ [ bX, L00).0" (4 L0 )
0

T
Y, = 8,g(Xy, L(X7) + f BH(X,, LX), 0% (X, LX), Y,). Y,) ds

t
e obtain MFG by replacing p; by £(X)
o similar principle when o # 0 using backward SDEs (@)



Linear-quadratic in d = 1, o constant

.
o b(t,x, 1, @) = ax + a;B(u) + by,
o g(x.0) = 3lqx + ¢’ E@]’
of(t,x,u, @) = %[afz + (mx + mEwW)*]
:
dX; = |aX; + dE(X;) — b?Y,]dt + odW,
dy, = —|a,Y; + m(m X, + mE(X)))|dt + Z,dW,
Yr = qlqXr + ¢'E(X7)]
o take the mean
dE(X,) = [(a; + a))E(X,) — bIE(Yy)]dt
dE(Yy) = —[a,E(Y;) + m,(m; + m))E(X,)]dt
E(Yr) = 9(q + ¢)EX7)

e existence and uniqueness if g(g + ¢') = 0, m;(m; + m;) = 0 (©)



Part IV. Potential Games

b. MFGQG as a first order condition



Optimization problem over the whole population

e Same dynamics as before! rewrite the dynamics of the particles

dX! = b(X!, @, a')dt + ocdW!

e | Same cost functional! | to player i € {1,...,N}

S, o) = Bg(xp. i )+ff( Y al)dr

e Reduce to Markov feedback policies o = a/(t, X}, ..., XV)

. ‘ Central planner! ‘ = Forces all the players to use the same o/ = o!

o exchangeability (symmetry in law) = J! = --. = JV is the cost
to the society

o minimize any J' with respect to a!



Asymptotic Social Optimization

e Recall the finite problem
dX! = b(X!, @, a})dt + cdW!
o with Markov feedback policies o! = o/(t, X/, ..., XN)
o minimize

T
J', a?,...,a") :E[g( },ﬂ¥)+£ f(X,’,gﬁV,a;)dz]

. ’ Asymptotic problem ‘ should be to minimize

T
J(@) = E[g(Xr, LX) + fo F i LX), a)di]

over dX[ = b(Xt, L(Xz), a,)dl‘ + (Tth

o or, written for Fokker-Planck equations

T
J(@) = fR dg(X,,UT)dMT(X)+ fo fR df(x,uz,az(X))duz(x)dt

over Oyu; = —divy(b(x, s, a(t, X))u;) + %GZAX;J,



Formal application of Pontryagin

e Choose b(a) = a € R? and

o) =4 [ 6=y

fonpa) =4 f F(x = y)du(y) + Y|el?, Fand Geven
R4

e variable u € P(RY) = adjoint is a continuous function u on R4

) ‘ formal Hamiltonian ‘

H(u, a,u) = fR ) a(x)u(x)du(x) + % fR ) o2 A cu(x)du(x)

) fR )P du(x) + § fR ) Lﬁ“ﬂ”ﬂ“ﬂﬂ@

o optimizer a* (x) = —d,u(x)

o linearizing (differential calculus???) w.r.t. u (@)

Oty (x) = =507 At () + 31014, () — fR FGe =y



Formal application of Pontryagin

e Choose b(a) = a € R? and
st =4 [ G- duy
R
S, u, @) = %f F(x —y)du(y) + %Ialz, F and G even
Rd

e variable € P(RY) = adjoint is a continuous function u on R¢

o linearizing (differential calculus???) w.r.t. u (@)

Opty(x) = =37 At () + 20, (01 — fR JFGe=y)dpu(x)



Formal application of Pontryagin

e Choose b(a) = a € R? and

o) =4 [ 6=y

fonpa) =4 f F(x = y)du(y) + Y|el?, Fand Geven
R4

e variable u € P(RY) = adjoint is a continuous function u on R4

o linearizing (differential calculus???) w.r.t. u (©)
1) = =308, + Yo - [ Fr= o)
R

o terminal condition uy(x) = j@ G(x — y)dur(x)

o combine with 8y, = divy(dsu(t, x)u;) + 0> Agpt, and

get an MFG | over dX; = a,dt + oodW, with cost functional

T
@) =8| [ 60 =ydur)+ [ (ol + [ PO~ )]



Formal application of Pontryagin

e Choose b(a) = a € R? and
st =4 [ G- duy
R
S, u, @) = %f F(x —y)du(y) + %Ialz, F and G even
Rd

e variable € P(RY) = adjoint is a continuous function u on R¢

o linearizing (differential calculus???) w.r.t. u (@)
Brity(x) = =50 A (%) + 310, (O — f JFGe=y)dpu(x)
R

o terminal condition u7(x) = fRd G(x — y)dur(x)

o MFG is a first order condition for optimal problem on space of
probability measures (@) (@)

o MFG and optimal problem on space of probabilities do not have

same coefficients but share same solutions = | Mechanism design




Part V. Solving MFG with a Common Noise



Part V. Solving MFG with a Common Noise

a. Formulation



MFG with a common noise

e Mean field game with | common noise 5|

o asymptotic formulation for a finite player game with
dX! = b(XL, @Y, adydt + (X!, @ )dW' + (X!, i )dB,
o uncontrolled version ~» asymptotic SDE with " replaced by
LXil(By)oss<r) = LIXil(By)ozs<r) (@)

o particles become independent conditional on B and converge to
the solution

dX, = b(X,, LX|B))dt + o"(X;, LX|B))dW, + 0°(X,, L(X|B))dB,



MFG with a common noise

e Mean field game with | common noise 5|

o asymptotic formulation for a finite player game with A = R* and
dxX; = (b(X}, 1)) + &} )dt + dW, + ndB,

o uncontrolled version ~» [ replaced by L(X,|B)

o | Equilibrium as a fixed point ‘ ~> time [0, T, state in R4

o candidate ~> (uy)sef0.7] F? prog-meas with values in space of
probability measures with a finite second moment $,(R¢)

o representative player with control «
dXt (b(Xt,ﬂf) + a;)dl‘ + O_dW[ + ndBt
~s X ~ pto, .17 € {0, 1}, W and B R%-valued 1L B.M.

T
o cost functional J(@) = E[g(XT,uT) + f (f(X,,,u,) + %la,lz)dt]
0

o find (14;)se0,77 such that‘,ut LXF|(By)o<s<r) ‘




MFG with a common noise

e Mean field game with | common noise 5|

o asymptotic formulation for a finite player game with
dxX; = (b(X}, 1)) + &} )dt + dW, + ndB,

o uncontrolled version ~» [ replaced by L(X,|B)

o | Equilibrium as a fixed point ‘ ~> time [0, T, state in R4

o candidate ~> (uy)sef0.7] F? prog-meas with values in space of
probability measures with a finite second moment $,(R¢)

o representative player with control «
dXt (b(Xt,ﬂf) + a;)dl‘ + O_dW[ + ndBt
~s X ~ pto, .17 € {0, 1}, W and B R%-valued 1L B.M.

T
o cost functional J(@) = E[g(XT,uT) + f (f(X,,,u,) + %la,lz)dt]
0

o find (1)e(o.1) such that | i, = LBy oss=) |




Forward-backward formulation

e Forward-backward formulation must account for (i;)p<;<r random

o systems of two forward-backward SPDEs [Carmona D,
Cardaliaguet D Lasry Lions, Cardaliaguet Souganidis]



Forward-backward formulation

e Forward-backward formulation must account for (u;)o<;<7 random

o systems of two forward-backward SPDEs

~w> ’ one backward stochastic HIB equation ‘ [Peng]

a4 1 2
dyu(t, x) + (bOx, 1) - Outa(t, x) + S5 Au(t, x) + fx, 1) = 310,u(t, %)

Laplace generator standard Hamiltonian in HJIB
+  pdiviv(ex)]  )di= 10t x) - dB; = 0
N’ ————
Ito Wentzell cross term (&) backward term

with boundary condition: u(7,-) = g(-, ur)

~r ’ one forward stochastic Fokker-Planck equation ‘

2 2
dity = (~div(u[b(x, pr) = Ot ))dt + 5 A2y )t
— ndiv(u,dB;)



Part V. MFG with Common Noise

b. Strong solutions



Continuation method

(Cardaliaguet-D.-Lasry-Lions)

° ’ Standard method ‘ for handling nonlinear equations

o Stochastic Fokker Planck equation
dipte = (A1 + 1) A + div(u,d.u(t, x))}dt — n div(u,dB;)
e Stochastic HIB equation

du(t,x) = {—=1(1 + 7)) Au(t,x) + 310.u(t, )

—fx, ) — ndiv(v(t, x)))dt
+ v(t,x) - dB;

u(T,x) = g(x, ur)



Continuation method

(Cardaliaguet-D.-Lasry-Lions)

° ’ Standard method ‘ for handling nonlinear equations

o Stochastic Fokker Planck equation
dipte = (A1 + 1) A + div(u,d.u(t, x))}dt — n div(u,dB;)
e Stochastic HIB equation

dyu(t,x) = {=5(1 +17°)Au(t, x) + §10.u(t, )P

= B (X, ) — @i (x) — ndiv(v(t, x))}dt
+v(t,x) - dB;

u(T,x) = pglx, ur) + y(x)

e Continuation method

o ‘ increase step by step the coupling parameter ‘ B

o 8 = 0 = stochastic HJB is decoupled!



Decoupled case 5 =0

e Conditional on 7—‘7’?, action of (B,); reduced to a transport
d(X[ - nB;) = a’tdt + dW[

oii(t,x) =u(t,x+nB;) and [, =g oxrH x- nB,)‘l
o reduced Stoc. HIB / Stoc. FP system

difiy = {3 AR + div(iL,0,ii(t, x)))dt
diii(t,x) = (=L Au(t, x) + Lo.ii(t, ) — @,(x))dt - (2, x) - dB,
u(T,x) = y(x)

o If p,(x) is the heat kernel = express ii(t, x) as
u(t,x) = E[ f Y =y)pr-()dy
R

T
+ f fR (@5 = Hosi(s, YP)x = s (0dy | FE|.



Small coupling 5 < 1

° ’ Picard fixed point theorem ‘ for solving the system when 8 < 1

difiy = {3 AR + div(i0,iu(t, x))}dt
diii(t,x) = {1 Au(t, x) + Lo.ii(t, 0 — BF (x, fip)}dt — (t,x) - dB,
T, x) = pg(x, fir)
J ’ Contraction with \
difiy = {3 AR + div(iL,0,ii(t, x))}dt
diii(t,x) = {1 Au(t, x) + L0xii(t, 0)I* — ¢, (x)}dt — ¥(t,x) - dB,
(T, x) =y(x)
o gu(x) = Ao, ™), 7o) = Bglx. i)
o &(0) = BF (e, i), ¥ () = BRlx, ™)
e Stability if f and g and their derivatives are Llpschitz in u

esSUp,cq SUp Wi, if)

t€[0,T] L, B -,
< C[essum,eg(lly =¥ lh+e + sup |l&; - sotlla)]
t€[0,T]



Method of continuation

° ’ Increase the value of 8 progressively ‘ in

difis = {3 AR, + div(it,0,iu(t, x))}dt

diiu(t,x) = {1 Au(t, x) + Y.t 0)I* - BF(x, fi) — §,(x)}dt — 91, x) - dB,
(T, x) = Bg(x, fir) + y(x)

e Show de > 0 s.t. Al forf e [0,1) = Al forf+ €

° ’ Same principle as above ‘

o gulx) = f (e, ™), F() = ez, ™)

0 i) = B, V) = gl )

¢ | Need stability |for g € (0,1) !

essup,eq Sup Wi, i)
t€[0,T]

< Cessupeq(lly = ¥ llise + sup 16, — &l )
t€[0,T]



Method of continuation

° ’ Increase the value of 8 progressively ‘ in

difis = {3 AR, + div(it,0,iu(t, x))}dt

diiu(t,x) = {1 Au(t, x) + Y.t 0)I* - BF(x, fi) — §,(x)}dt — 91, x) - dB,
(T, x) = Bg(x, fir) + y(x)

e Show de > 0s.t. Al forf e [0,1) = ! forf + €

° ’ Same principle as above ‘

o gulx) = f (e, ™), F() = ez, ™)

0 i) = B, V) = gl )

e | Need stability |for 8 € (0, 1) | Consequence of monotonicity

essup,eq Sup Wi, i)
t€[0,T]

< Cessupeq(lly = ¥ llise + sup 16, — &l )
t€[0,T]



Part VI. Master Equation



Part VI. Master Equation

a. Derivation of the master equation



Generalized value function

. ’ Throughout this section ‘«» existence and uniqueness of equilibria

o for instance ~» smooth coefficients and monotonicity

o definition on R first, and analysis on T¢

o | Initial condition | of the population 1. at time 7

o uniqueness ~ flow (u;),,<:<r describing the equilibrium

o solution of optimal control starting from xo under g = (U;)sy<s<T
dX, = —0,ut(t, X,)dt + dW, + ndB, t € [to, T,
with X;, = x and

dt(t,x) = {=1(1 + ) Aub (1, x) + 2o (2, )1 = £ (x, ptr)
— ndiv(W#(t, x))}dr + V(t,x) - dB;
u (T, x) = g(x, ur)

. . . _,,0
e Generalized value function : U(ty, xo, ") = ut* 0= (19, xo)



Dynamic Programming

o (X*);,<i<T ~ optimal trajectory starting from xg at 7y under
equilibrium p starting from x at £,

T
Utto. i) =B [ [0 ) + Hat s + 90|

o | Flow property | at the equilibrium

fo+e€
Uto, x0, 1) = E[ f | O 115) + 1P ds
1o

+ (L{(l() + €, XI;+5’#’<)+E)

o If U is smooth w.r.t. three arguments = solution of a PDE on
[0, T] X R x P, (RY)

o needs differential calculus and chain rule
o use | Lions’ approach | to differential calculus on Wasserstein
space




Differential calculus on Wasserstein space
e Approach of the differentiation on P»(R¢) due to Lions
e Given U : P,(RY) - R

-
U LX(Q,P) 3 X > ULX) = Law(X))

o U differentiable if U Fréchet differentiable
° ’ Differential of U ‘

o Fréchet derivative of U/
DUX) = 3, UWX), 8, UW) : R 3 x5 8, Uw)(x) p= LX)
o derivative of U in p~> 9, U(u) € L2(R?, 11; RY)

. ’ Finite-dimensional projection ‘ @)

N

o fuly 370.) = gy Do o e

= J=1



First-order differentiability

o[ Example | Uw) = f, h(y)du(y)

o h C' and Vh at most of linear growth

UX +Y) =E[hX + Y)] = E[h(X)] + E[VAX) - Y] + o(||Y]}2)
= DUX) = Vh(X) = 3, Uu)(v) = Vh(v)

¢ | Equivalent form ‘ (close to geometric approach, Tudorascu (17))

o action of U along measure transported by a vector field
b:R?— R?
dX; = b(X)d1, Xo ~ po € Pa(RY)

o action of U along (u; = L(X;))?

d

EII:O E[(LA{(XI)] = E[0, Uw)(Xo) - b(Xp)]

(L{(/Jt) =

dt|=0

_ fR BuUGHE) - )duo(v)



Second-order differentiability

e Need for existence of second-order derivatives
o asking the lift to be twice Fréchet is too strong
o only discuss the existence of second-order partial derivatives
:
o 0, U(u)(v) is differentiable in v and u
0 UWE)  GUWE, V)

0 0,0, U(u)(v) and 6,21%((;1)(\/, v") continuous in (u, v,v") (for W5 in
) with suitable growth

e Finite-dimensional projection

1 < 1 1<
Ul 20)] = oot 2o o

2

Xi Xj

N
oty Z5xk)(xi,xj)



1t6’s formula on P,(RY)

o Process dX; = bydt + dW, + dB; with E [ [b/2dr < oo

o u; = conditional law of X, given B

e U Fréchet differentiable with RY 5 v 0, U(u)(v) differentiable in
vand u

o Itd’s formula for (U(u;))s0?

e | Space discretization ‘: Approximation of y, by a particle system

N
1 : . .
[~ = 0,; with (X}); conditionally i.i.d. given B
Him N £ ‘
Jj=1

e Limit on standard Itd’s formula for d,[‘LI( 1%, Zj]i 1 0 x’)

dUu) = E[b; - 9, U)X, | B] + E[ Trace(3,8,U(u)(X,) | Bldt
+ %E[Trace(a,%wmtxx} X)) | Bldt + E[0,U(u)(X;}) | B] - dB;



Form of the master equation

° ’ Formal identification \ in the dynamic programming expansion

e Master equation at order 2

O Ut x, 1) — £ ) OyU(t, v, ) - O, U, x, 1, v)du(v)
= 310U, x 0 +f (e, ) + 51+ 7)) Trace( U x, )
+id+77) fR ) Trace(d, 0, U(t, x, 1)(v) )du()
+ 1 jﬂé ) Trace(x0, U, x, 1)(v))du(v)
+ 1 fR ) fR ) Trace(A;U(t, x, 11)(v, V") )du(v)du(v') = 0

o Not a HIB! (MFG # optimization) (©)



Typical statement

e Lions, Chassagneux-Crisan-D., Cardaliaguet-D.-Lasry-Lions,
Gangbo Swiech (T <« 1)

e Require monotonicity and bounded coefficients
e Require first-order smoothness of the coefficients (same for g)
o 0,f (x, ) bounded and Lipschitz in (x, u)
o 0,f (x, u)(v) bounded and Lipschitz
e Require second-order smoothness of the coefficients (same for g)
o 02f(x, ) bounded and Lipschitz in (x, u)
o d,f (x, u)(v) is differentiable in x, v and u
0 0x0,f (x, ) (v), 0,0,f (x, u)(v) are bounded and Lipschitz
o 6l2f(x, w)(v,v") is bounded and Lipschitz
° existence and uniqueness of a classical solution with

o U(t,-,-) having the same smoothness as f and g and
continuously differentiable in time



Extensions



Part VI. Master Equation

b. Linearization (1 = 0)



Road map to regularity of U

e To proceed with the ‘ analysis ~» torus ‘
e Look at U as
U - [0, T X P(TY) 3 (1, 10) = (T 3 x > Uty x, 1))
U(to, -, 1)
o typical example ~> U(to, -, u) € C"**(T9)

o n, @ depending on the smoothness of f and g

e Objective is to ‘ understand smoothness w.r.t. u ‘

o recall ~> U(t, -, i) = ut o= (1, )
—_—

HJB with FP initialized at (#.u)

o differentiability w.r.t. u® ~> use
d

de le=0+

d

== U, (I —ap+er) p e P(T?)
Ele=0+

convex perturbation ‘

U= (1, )



Other approach of differentiation on P(T¢)
e We say that V : P(T¢) - Ris C' if

d
—  V(-epu+e)= f —(ﬂ)(V)d(ﬂ - )

de le=0+

6—m(,u)(-) =

0
for a continuous map % cP(T9) x T > R (@) (@) (®)

o unique up to an additive constant ~» impose zero mean under tg

e | Connection with Wasserstein derivative ‘( )

oV
WV(v) = 5v6—(ﬂ)(V)
m
o J conditions under which equality holds true
e VisC*if
d d oV o ol
oforallveT¢ P(T )3ﬂ|—>6—m(,u)(v)1sC



Linearized MFG system

e Assume that f and g are C! w.r.t. m with

O 98y p(1hy T 5 (e prv) 1> —f(x W), 5
sm’ om

(x W)
smooth enough in x and v
° ’ Formal differentiation of the MFG system ‘
o perturbation of y along a direction u’ — u
owe let z, = d B T N d 51—8)/1+g#/
de|s=0+

de le=0+

function

distribution
o | should solve

om; — %Am, - div(m,@xu(t, X) + p0,2(t, x)) =
J
8i2(t,X) + $AZ(t,x) — Byu(t, x) - Bez(t,x) + —’J;(x, M) -y () = 0

o
() = ﬁ(xw)(-) (")



Linearized MFG system

e Assume that f and g are C! w.r.t. m with

o g
om’ om
smooth enough in x and v

LT X PTY x T 5 (x, 1, v) —f(x W), —(x W)

° ’ Formal differentiation of the MFG system ‘

o perturbation of u along a direction u’ — u

d _ ’ d — 4
o we let 7= — M(] E)U+EU (l, _)’ m = — §1 e)u+eu
£le=0+ dele=0+
function distribution

o | should solve

oim; — %Am, - div(mtaxu(t, X) + u0,z(t, x)) =

0i2(t,) + 3A2(t, X) = Oyu(t, X) - Dz(t, X) + %(x, pO() -my() =0

balance reg in v / singularity m



Initialization of the linearized system

of o
«[assume] L 2 2w in ey, n>0.a €01
m om

e Fix initial condition of linearized system m,(-) € C~"*1+)(T9)

o ~» J! solution to linearized system with
(Z(l‘, ')’”f('))togsT c C([O, 7], Cn+2+a(Td) % C—(n+1+a)(Td))

o more than uniqueness ~» stability

. My = 8~ 2010, = Vi, x p)(0)

o if m, () is finite signed measure ~» linearity

0, = fT Vo, )V 1)



Initialization of the linearized system

5 6
o(sid—gC"+2+“in(x,y), n>0,ac(,1)
nm om

e Fix initial condition of linearized system m,(-) € Cntl+a) ()

o ~» J! solution to linearized system with
(Z(t, .)’ﬂt(‘))tosth € C([O’ T], Cn+2+(l(Td) X C—(n+l+a/)(Td))

o more than uniqueness ~» stability

df
 [Esampl = 1) S €01

2(t0,x) = V{10, x, o) (v)
N e’
OV (1o, x, o) (v)

o if m,, () is finite signed measure ~» linearity
2000 = [V lx )01, 0)
T

e Distributions in C"* 1+ (T4 ~s V0 is ¢ 1+ (T9Y in v



General strategy

e | Aim at solving

om; — %Am, - div(m,&xu(t, X) + p0,2(t, x)) =0

O0rz(t, x) + %Az(r, X) — Oxu(t,x) - 0xz(t, x) + %(x, uy) -my(-) =0
AT,2) = <5 ) ()
m

o deterministic case ~» Schauder’s theorem for 3 and
monotonicity for !

o common noise ~» | continuation method

o progressive augmentation of coupling parameter



General strategy

e | Aim at solving

dmy = S Amy, — div(mdu(t, x) + pd,2(t,x)) = 0

B2t %) + L Az(t,x) — But, x) - D21, ) +ﬁ%(x, ) - () =0
o

T, %) =,35—g(x,/ur) (")
m

o deterministic case ~» Schauder’s theorem for 3 and
monotonicity for !

0 COMMON Noise ~» ’ continuation method‘

o progressive augmentation of coupling parameter
o =0 = z =0 and (m,), solved separately

o proof of A! by induction 8 = 0, ¢, 2¢, . . ., 1, € small enough






O | First order condition of optimality with noise ‘

dX[ = b(Xl’I'll" Clt)dt + O'dW[
~» Pontryagin system (Peng)

t
X[ = XO + f b(Xs, //L\‘? a/*(Xs’ M‘V’ YS)) ds
0

+ oW,

T
Y, = 0x8 (X, pi7) + f OuH (X s 0 (Xy 15, Y,). Ys) dis
t

T
- f Z,dW,
t



O | First order condition of optimality with noise ‘

dX[ = b(Xl’I'll" Clt)dt + O'dW[
~» Pontryagin system (Peng)

t
X[ = XO + f b(Xs, //L\‘? a/*(Xs’ M‘V’ YS)) ds
0

+ oW,

T
Y, = 0x8 (X, pi7) + f OuH (X s 0 (Xy 15, Y,). Ys) dis
t

T
- f Z,dW,
t



O | First order condition of optimality with noise ‘

dX[ = b(Xl’I'll" a/t)dl‘ + G'dW[
~» Pontryagin system (Peng)
t
X, =Xo + f b(Xs,L(X‘\.),a*(XS,L(XX), YS)) ds
0
+ U'W[

T
Yt = axg(XT’ L(XT)) + f axH( s L(Xi)a Cl* XS’ L(XY)9 Ys)’ YS) ds
t

T
- f Zs d Wv
1



O Summary: Forward-Backward systems may be ill-posed! But:
~» Noise restores uniqueness!

~» Monotonicity (¢ convexity) restores uniqueness!



O Hint: Either use monotonicity or interpret the FB system as the
Pontryagin system of a standard optimal control problem with
linear—convex coefficients

~ b(t,x, @) = (ax + ay)x + by,
~ g(x) = 34(q + ¢

~ f(tx, @) = %[a2 + m,(m; + m;)xz]



O : What does monotonicity for the MFG mean for the
control problem?

O : Write monotonicity as
[ rec=vam = [ Fec=syant o aton - 'y > 0
R4 R4 R4
& f f F(x —y)d(m —m")(y)d(m —m")(x) > 0
R JR4

~» second-order term is positive in linearization < convexity!

~w F(z) = —|z]?

~» F(z) = f exp(iz - s)dA(s), where A is symmetric positive
Rd

finite measure
(take A a Gaussian, take A a Cauchy, take A a combination of
two Dirac masses...)



O Make a convex perturbation of u € P(RY)

~s take v € P(R?) and expand

3 fRd fRd F(x = y)d((1 = e)u(x) + ev(x))d((1 — e)u(x) + ev(x))

4 [, [ Fo=pducoauo
R4 JRA
e f f Fx = y)du(od(y — 1))
R4 JRY

S| fR d fR = y)d( = pd(r - )

~» regard v — u as direction of linearization



O Think of
X, = Fi((Boosszi W), -+, Wi )osezt)

~» B constructed on Q% and W', --- , W" constructed on Q! and
equip Q° x Q! with product measures P° @ P!

~s take W’ € Q¥ = L(X,|(By)o<s<) at w? is the law on Q' of

Fi((Bs(@"ogssir W+, Wi ozszi)

O Take sequence (X,,),=1 of r.v. on Q¥ x Q! with values in R¢
~» assume, PY a.s., (Xn(a)o, Nn>1 are under p!

~» take ¢ : R = R bounded continuous

P’ ®P‘(lgg«go % D) = El[saom]) =1

N
n=1



O Optimality says that

([, oo+ [ [ () + Hoauts.oP)aacos)

should be a martingale

<t<T

~» but bracket in the product le, u(t, x)du,(x)!

d d
-n Ld Z vi(t, x)0x, (dus(x)) =1 fRd Z 8x[vi(t, x)du(x)
i=1 i=1
=n f divv(t, x)du,(x)
R‘l

~» cancels out with Ito-Wentzell!



O Prove

1 1 1
ax,.[fu(]—v ' %)] = Naﬂ(l/{(ﬁ . 6xj)(x:‘), Xly...,xy € R?
j=1 Jj=1
0 Choose 6 r.v. with values in {1, - - - , N}$ equipped with uniform
probability

~s forx = (xq,- - ,an),y =01, ,IN) € R", expand
U(xg + yg) = Uxg) + E[DU(xg) - yo] + o(llysll2)
= U(xg) + E[0,U(L(x0))(x0) - yo] + o(llyell2)

N 1
= Uwe) + 5 D UGGy + olllyell)

i=1--N



m| : Assume that
3,5 )
m
is smooth and expand
(L(Y)) = (LX)
1
- f E[i(/w(Y) L (1= VLX), Y)
0 67’)’[
- i(/LE(Y) +(1 - DLX),X)|dA
om

Deduce that sV
V) = 8, (V)



O : Choose 1 = 0 and take a potential game

~» write the HIB equation on the space of probability measures
for the social optimization problem

~» derive formally the value function w.r.t. m
~» show that this coincides with the master equation for the MFG

~» see [Gangbo and Swiech], see [C D L L]



] : Adapt the notion of derivative to R? and check that it is
consistant with the linearization procedure used for potential games!

ke Vi =4 [ [ R yduoducy)

~ take u, v € P(R?) and expand
! fR d fR RO (1~ () + ev@)d(1 - ) + ()
=3 f f F(x = y)dp(0)du(y)
Rd Rd
+e& f f F(x = y)du(x)d(v — p)(y)
R4 JRY

+e?l f f F(x = y)d(v — )@d(v - ()
R JRI

5V
~» deduce — () = f F(v — x)du(x)
om Rd



O : Consider a more general social optimization problem
T T
J(@) = G(LX7) + f F(L(X)) + 3E f ot
0 0

over dX; = b(X;, L(X,), a;)dt + o-dW;

~» show the first order condition is given by the MFG system

oF
Oty (x) = =20 A (x) + 310, (x)F - 5 (L))

oG
with terminal condition u7(x) = 6—(,uT)(x) and with
m

Oty = div(du(t, X)p;) + %o-zAx,ut



	Appendix

