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Abstract

Game theory studies interactions between agents with specific aims,

be they rational actors, genes, or computers. This course is intended

to provide the main mathematical concepts and tools used in game

theory with a particular focus on their connections to learning and

convex optimization. The first part of the course deals with the basic

notions: value, (Nash and Wardrop) equilibria, correlated equilibria.

We will give several dynamic proofs of the minmax theorem and

describe the link with Blackwell’s approachability. We will also study

the connection with variational inequalities.



The second part will introduce no-regret properties in on-line learning

and exhibit a family of unilateral procedures satisfying this property.

When applied in a game framework we will study the consequences

in terms of convergence (value, correlated equilibria). We will also

compare discrete and continuous time approaches and their analog

in convex optimization (projected gradient, mirror descent, dual

averaging). Finally we will present the main tools of stochastic

approximation that allow to deal with random trajectories generated

by the players.



Part A

BASIC TOOLS AND RESULTS



A.2 Extensions and related topics

This section deeply relies on the books:

Mertens J.- F., S. Sorin and S. Zamir, (2015) Repeated Games,

Cambridge University Press.

Laraki R., J. Renault and S. Sorin (2019) Mathematical Foundations

of Game Theory, Springer.
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Correlated equilibria
This section deals with “correlated equilibrium”, Aumann, 1974 [3],

which is an extension of Nash equilibrium that has good properties

from strategic, analytic and dynamic viewpoints.

Examples

Example 1 :
l r

T 0,0 3,1
B 1,3 0,0

This game has two 2 pure equilibria that are not symmetrical and a

mixed, symmetric one (3/4,1/4) which is dominated in terms of

payoff.

The use of a public fair coin and of the plan: (T,r) if Head and (B, l) if

Tail, induces the following distribution on profiles:

0 1/2

1/2 0

thus an efficient symmetric outcome, immune to unilateral deviations.



Example 2 :
l r

T 2,7 6,6
B 0,0 7,2

Introduce a signal space Ω = (X,Y,Z), with uniform probability

(1/3,1/3,1/3).
Assume that the players get private messages:

1 knows a = {X,Y} or b = {Z},

2 knows α = {X} or β = {Y,Z}.

Consider the strategies:

T if a, B if b for Player 1;

l if α, r if β for player 2.

They induce on the set of profiles S the correlation matrix:

1/3 1/3

0 1/3

and no deviation is profitable.

The formal model is as follows.



Information structure

An information structure I is given by:

- a probability space (Ω,A ,P)
- a measurable map θ i from (Ω,A ) to Ai (signals of i), for each i ∈ I.

Let G be a finite game defined by g : S = ΠiS
i → R

I.

The game G extended by I , denoted [G,I ], is the game played in 2

stages:

- stage 0 : the random variable ω is selected according to P and the

signal θ i(ω) is sent to player i.

- stage 1 : the players play the game G.



A strategy µ i of player i in the game [G,I ] is a map from Ai to Si.

A profile µ of such elements is called a correlated strategy.

Definition 1.1
A correlated equilibrium of G is a Nash equilibrium of some extended

game [G,I ].

A profile µ of strategies in [G,I ] maps the probability P on Ω to a

probability Q(µ) on S:

random variable → signals → profile of moves.
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Explicitly, for each ω, Q(ω,µ) is the probability on S given by

∏i µ i(θ i(ω)) and Q(µ) is the expectation w.r.t. P.



CED(G) is the set of correlated equilibria distributions in G:

CED(G) = ∪I {Q(µ); µ equilibrium in [G,I ]}

CED(G) is a convex set: simply consider the convex combination of

information structures.

A canonical information structure for G is given by:

Ω = S; θ i : S → Si,θ i(s) = si.

Thus P is a probability on S and each player is informed upon his

component.

A canonical correlated equilibrium is an equilibrium of [G,I ] where:

i) I is a canonical information structure and

ii) equilibrium strategies are given by:

µ i(ω) = µ i(s) = µ i(si) = si.

“Each player follows his signal (recommendation)".

The induced canonical correlated equilibrium distribution (CCED) is

obviously P.



Properties

The main result is the following.

Theorem 1.1 (Aumann, 1974 [3])

CCED(G) = CED(G)

Proof :

Let µ be an equilibrium profile in an extension [G,I ] and Q = Q(µ)
the induced distribution.

Then Q belongs to CCED(G).
In fact, each player i get less information: her move si rather than the

signal ai such that µ i(ai) = si.

But si is a best reply to the correlated strategy of −i, conditional to ai.

It is then enough to use the convexity of BRi on ∆(S−i).



The characterization in the finite case is given by:

Theorem 1.2
CED = ∩iCED i, with Q ∈ CED i iff:

∑
s−i∈S−i

[gi(si,s−i)−gi(ti,s−i)]Q(si,s−i)≥ 0, ∀si, ti ∈ Si.

Proof :

Let Q ∈ CCED(G).
Assume si is announced (i.e. its marginal Qi(si) = ∑s−i Q(si,s−i)> 0)

and consider the conditional distribution on S−i, Q(.|si).
Then the equilibrium condition writes:

si ∈ BRi(Q(.|si).

si is a best reply of player i to the distribution of the moves of −i,

conditionally to si.

The approach in terms of equilibrium of an extended game is

“ex-ante”.

The previous characterization corresponds to an “ex-post” criteria.



Corollary 1.1

The set of CED is the convex hull of finitely many points.

Proof :

It is a subset of ∆(S) defined by a finite set of linear inequalities.

Complements

1) There exist correlated equilibria distributions outside the convex

hull of (Nash) equilibria distributions. In the game:

0,0 5,4 4,5
4,5 0,0 5,4
5,4 4,5 0,0

the only equilibrium is symmetrical : (1/3,1/3,1/3) with payoff 3.

The following is a CED:

0 1/6 1/6

1/6 0 1/6

1/6 1/6 0

inducing the payoff 9/2.



2) The same property holds in two-person zero-sum games: there

exist correlated equilibria distributions outside the convex hull of

optimal distributions, Forges, 1990 [12].

In the game:
0 0 1

0 0 −1

−1 1 0

the following is a CED:

1/3 1/3 0

1/3 0 0

0 0 0

while for optimal strategies p(2,2) = 0 implies p(1,1)≥ 1/2 and

similarly for convex combinations.



3) Let us give an elementary proof of existence of correlated

equilibrium via the minmax theorem: CED corresponds to the set of

optimal strategies of a player in a finite 0-sum game, Hart and

Schmeidler, 1989 [17].

Let G be a finite I-player game with payoff g : S = ∏i Si −→ R
I.

Consider now the two player zero-sum game Γ with strategy sets S

and L = ∪i(S
i ×Si) and payoff γ : S×L → R defined by:

γ(s;(ti,ui)) = [gi(ti,s−i)−gi(ui,s−i)]I{ti=si}.

Player 1 proposes s and player 2 tests ti against ui if {ti = si}.

Γ has a value v and optimal strategies.

Clearly one has:

Proposition 1.1

If v ≥ 0 and Q ∈ ∆(S) is an optimal strategy of Player 1, then Q is a

correlated equilibrium distribution in G.



Let us prove that v ≥ 0.

Let π ∈ ∆(L), a mixed strategy of player 2. Define ρ i, a transition

probability on Si, by:

ρ i(ti
;ui) = π(ti,ui), if ti 6= ui

ρ i(ti
; ti) = 1− ∑

ui 6=ti

π(ti,ui).

Let now µ i be a probability on Si invariant by ρ i:

µ i(ti) = ∑
ui

µ i(ui)ρ(ui
; ti).

Let µ =⊗iµ
i ∈ ∆(S).

Note that the payoff γ(µ;π) can be decomposed as follows:

γ(µ,π) = ∑
s∈S

×jµ
j(sj)∑

i∈I
∑

(ti,ui)∈Li

π(ti,ui)γ(s;(ti,ui)).

Let Ai be the term corresponding to i.



A1 = ∑
s∈S

⊗jµ
j(sj) ∑

(ti,ui)

π(ti,ui)γ(s;(ti, ui))

= ∑
si

µ i(si)∑
ui

π(si,ui)∑
s−i

⊗j 6=iµ
j(sj)γ(s;(si, ui))

= ∑
si

µ i(si) ∑
ui 6=si

ρ i(si,ui)∑
s−i

⊗j 6=iµ
j(sj)[gi(si,s−i)−gi(ui,s−i)]

= ∑
si

µ i(si)∑
ui

ρ i(si,ui)[gi(si,µ−i)−gi(ui,µ−i)]

= ∑
si,ui

µ i(si)ρ i(si,ui)gi(si,µ−i)− ∑
si,ui

µ i(si)ρ i(si,ui)gi(ui,µ−i)

= ∑
si

µ i(si)gi(si,µ−i)−∑
ui

µ i(ui)gi(ui,µ−i)

= 0

Hence γ(µ,π) = 0.

Thus ∀π ∈ ∆(L),∃µ ∈ ∆(S) such that γ(µ,π)≥ 0, so that the value of Γ

is non negative, hence Q is a CED.



4) A superset of the set of correlated equilibria distributions which is

important in applications is the Hannan set H, Hannan, 1957 [15].

Like the set of CED, it is a subset of ∆(S) obtained by intersection.

Definition 1.2
H = ∩iH

i with:

Hi = {Q ∈ ∆(S);gi(si,Q−i)≤ gi(Q), ∀si ∈ Si}.

This corresponds to distributions "immune to deviation before getting

the signal".

In the case of a 0-sum game one has, for z ∈ H with marginals z1,z2:

f (z)≥ f (s1,z2), ∀s1 ∈ S1,

and the opposite inequality for player 2 hence the marginals z1,z2 are

optimal strategies and f (z) is equal to the value of the game.



Example :

For the 2-person 0-sum game:

0 1 −1

−1 0 1

1 −1 0

the distribution:

1/3 0 0

0 1/3 0

0 0 1/3

is in the Hannan set, but not a CED.



5) General formulation

Consider the framework of a game G on compact convex sets :

Hi : X = ∏j Xj → R, i ∈ I.

Definition 1.3
A correlated equilibrium distribution µ ∈ ∆(X) satisfies :

∫
X

Hi(x)dµ(x)≥
∫

X
Hi(α i(xi),x−i) dµ(x) ∀i ∈ I (1)

for every measurable function α i : Xi → Xi.

Proposition 1.2 (Neyman, 1997 [28])

If a C 1 game G has a concave potential W, then for every CED µ:

supp(µ)⊂ argmaxXW.

In particular if W is strictly concave there is a unique CED.



Proof :

Let us prove that µ ∈ CED iff :

∫
X

W(x)dµ(x)≥ W(y), ∀y ∈ X. (2)

1) Assume (2), then for any α : X → X measurable :

∫
X
[W(x)−W(α(x))]dµ(x)≥ 0

and in particular :

∫
X
[Hi(x)−Hi(α i(xi),x−i)]dµ(x) =

∫
X
[W(x)−W(α i(xi),x−i)]dµ(x)≥ 0

so that µ ∈ CED.



2) Assume by contradiction:
∫

X W(x)dµ(x)< W(y) for some y ∈ X.

By concavity:

∑
i∈I

〈∇iW(x),yi − xi〉 ≥ W(y)−W(x),

hence integrating w.r. t. µ, there exists i ∈ I with :

∫
X
〈∇iW(x),yi − xi〉dµ(x)> 0.

thus : ∫
X
〈∇iH

i(x),yi − xi〉dµ(x)> 0,

and for ε > 0 small enough :

∫
X

Hi((xi + ε(yi − xi),x−i)dµ(x)>
∫

X
Hi((x)dµ(x)

so that µ is not a correlated equilibrium distribution.

6) For more notions of extensions of games, corresponding equilibria

and representation properties, see Forges, 1986 [10], 1990 [11].



Approachability theory

We follow Blackwell, 1956 [7], see also MSZ, II.4 and Sorin, 2002

[31], Appendix B.

Presentation

Consider a two person game defined by A, a I × J-matrix with entries

in R
K : Aij ∈ R

K is the vector payoff, or outcome, if Player 1 plays i ∈ I

and player 2 plays j ∈ J.

The game is played in discrete time for infinitely many stages: at

each stage n = 1,2, ..., after having observed the past history hn−1 of

actions used from stage 1 to stage n−1, i.e.

hn−1 = (i1, j1, ....., in−1, jn−1) ∈ Hn−1 = (I × J)n−1, Player 1 chooses

xn ∈ X = ∆(I) and player 2 chooses yn ∈ Y = ∆(J).
Then a couple (in, jn) ∈ I × J is selected according to the product

probability xn ⊗ yn, and the game goes to stage n+1 with the history

hn = (i1, j1, ....., in, jn) ∈ Hn.



A strategy σ of Player 1 in the repeated game is a sequence

σ = (s1, ...,sn, ...) with sn : Hn−1 → ∆(I) for each n.

(Similarly for a strategy τ of player 2).

A couple (σ ,τ) naturally defines a probability distribution Pσ ,τ over

the set of plays H∞=(I × J)∞, endowed with the product σ -algebra,

and Eσ ,τ is the associated expectation.

Every play h = (i1, j1, ..., in, jn, ...) of the game induces a sequence of

vector outcomes z(h) = (z1 = Ai1j1 , ..., zn = Ainjn , ...) with values in R
k.

Denote by z̄n the Cesaro-average outcome up to stage n:

z̄n(h) =
1

n

n

∑
k=1

Aikjk =
1

n

n

∑
k=1

zk.



Definition 2.1
A set C ⊂ R

K is approachable by Player 1 if, for any ε > 0, there exists

a strategy σ and N such that, for any strategy τ of Player 2 and any

n ≥ N:

Eσ ,τ(dn)≤ ε,

where dn is the euclidean distance d(zn,C).

A set C ⊂ R
K is excludable by Player 1 if for some δ > 0, the set

Cc
δ = {z; d(z,C)≥ δ} is approachable by her.

A dual definition holds for Player 2.

From the definitions it is enough to consider closed sets C and even

their intersection with the closed ball of radius ‖A‖.

Given x in X(= ∆(I)), define [xA] = co {∑i xiAij; j ∈ J}, and similarly

[Ay], for y in Y(= ∆(J)). If Player 1 uses x, his expected payoff will be

in [xA], whatever being the move of player 2.



B-sets and sufficient condition

The first result is a sufficient condition for approachability based on

the following notion:

Definition 2.2
A closed set C in R

K is a B-set for Player 1 if:

for any z/∈C, there exists a closest point w = PC(z) in C to z and a

mixed move x = x(z) in X, such that the hyperplane trough w

orthogonal to the segment [wz] separates z from [xA]. Explicitly:

〈z−w,u−w〉 ≤ 0, ∀u ∈ [xA].





Theorem 2.1
Let C be a B-set for Player 1.

Then C is approachable by that player.

Explicitly, a strategy satisfying σ(hn+1) = x(zn), whenever zn /∈C, gives:

Eστ(dn) ≤ 2‖A‖√
n
, ∀τ strategy of player 2,

and dn converges Pστ a.s. to 0, more precisely:

P(∃n ≥ N;d2
n ≥ ε)≤ 8‖A‖2

εN
.

Proof :

Let Player 1 use a strategy σ as above. Denote wn = w(zn).



The property of x(zn) implies that:

〈E(zn+1|hn)−wn,zn −wn〉)≤ 0

since E(zn+1|hn) belongs to [x(zn)A].
Hence the previous equation in the deterministic case (see Part A1):

d2
n+1 ≤ (1− 2

n+1
) d2

n +(
1

n+1
)2‖zn+1 − zn‖2,

gives here by taking conditional expectation with respect to the

history hn:

E(d2
n+1|hn)≤ (1− 2

n+1
) d2

n +(
1

n+1
)2E(‖zn+1 − zn‖2|hn). (3)



So that we obtain:

E(d2
n+1)≤ (

n−1

n+1
) E(d2

n)+(
1

n+1
)2

4‖A‖2,

and by induction:

E(d2
n)≤

4‖A‖2

n
.

This gives in particular the convergence in probability of dn to 0.

Now introduce the random variable:

Wn = d2
n +‖A‖2 ∑

∞
m=n+1(

1

m2
E(‖zm − zm‖2|hn). We have from (3):

E(Wn+1|hn)≤ Wn,

thus Wn is a positive supermartingale hence converges P a.s. to 0.

More precisely Doob’s maximal inequality, see e.g. Neveu, 1972 [27],

gives :

P(∃n ≥ N; d2
n ≥ ε)≤ E(WN)

ε
≤ 8‖A‖2

εN
.



In particular one obtains:

Corollary 2.1

For any x in X, [xA] is approachable by Player 1, with the constant

strategy x.

It follows that a necessary condition for a set C to be approachable by

Player 1 is that for any y in Y, [Ay] ∩C 6= /0, otherwise C would be

excludable by Player 2.

In fact this condition is also sufficient for convex sets.



Convex case

Theorem 2.2
Assume C closed and convex in R

K .

C is either approachable or excludable.

More precisely C is a B-set for Player 1 iff :

[Ay] ∩ C 6= /0, ∀y ∈ Y. (4)

In particular a set is approachable iff it is a B-set.

Proof :

By the previous Corollary, it is enough to prove that (4) implies that C

is a B-set.

The idea is to reduce by projection the property to the

one-dimentional case and to use the minmax theorem.



In fact, let z /∈ C, w = ΠC(z) its projection on C , and consider the

game with real payoff matrix B = 〈w− z,A〉. Since [Ay] ∩ C 6= /0 for all

y ∈ Y, this implies that its value is at least minc∈C 〈w− z,c〉= 〈w− z,w〉.
Hence there exists an optimal strategy x ∈ X of Player 1 such that

〈w− z,∑i xiAij〉 ≥ 〈w− z,w〉 for any j ∈ J, which shows that xA is on

the opposite side of the hyperplane H to z, and the result follows.



The previous proof gives also the following practical criteria:

Corollary 2.2

A closed convex set C is a B- set for Player 1 iff, for any α in R
K :

val〈α,A〉 ≥ min
c∈C

〈α,c〉,

where val is the maxX minY = minY maxX operator.



Extensions

1. In dimension 1, any set is either approachable or excludable.

More precisely let v (resp. v′) be the value of A when Player 1

maximizes (resp. minimizes).

If v ≥ v′, C is approachable by Player 1 iff C∩ [v′,v] 6= /0 and excludable

by Player 2 otherwise.

If v ≤ v′, C is approachable iff [v,v′]⊂ C and excludable by Player 2

otherwise.

2. Extension to random payoffs, uniformly bounded in L2.

3. There exist sets that are neither approachable nor excludable.

Consider the game:
l r

T (0,0) (0,0)
B (1,0) 1,1)

and the set C = {(1/2,y); 0 ≤ y ≤ 1/4}∪{(1,y); 1/4 ≤ y ≤ 1}.



If Player 1 plays n times Bottom and then Bottom or Top for the next n

stages depending whether z2
n is greater than 1/2 or not, the average

z2n will be in C.

However Player 2 can prevent the average payoff to remain near C by

either playing left (and forcing the horizontal axis) or right (and forcing

the diagonal).

This leads to the following definition of weak approachability.



4. Weak approchability

Definition 2.3
A set C in R

K is weakly approachable by Player 1 if for any ε > 0

there exists N such that for any n ≥ N there is a strategy σ = σ(n)
satisfying, for any strategy τ of Player 2:

Eσ ,τ(dn) ≤ ε.

C is weakly excludable by Player 1 if for some δ > 0, the set

Cc
δ = {z; d(z,C)≥ δ} is weakly approachable by her.

The main difference is that the strategy may now depend of the

lenght of the game.



In the example above the described strategy of Player 1 shows that C

is weakly approachable.

In fact, the sequence of un-normalized cumulative outcomes,

(1
n ∑ℓ ≤ mzℓ), m = 1, . . .,n defines a piecewise linear curve and Player

1’s objective is to reach C at stagen.

It is thus natural to consider the game played in continuous time

between times 0 and 1 with position
∫ t

0zudu at time t.

Again in the previous example, Player 1 can generate a curve with

slope between 0 and 1 (controlled by Player 2) and horizontal speed

1, but he can also stop the game. Clearly he is thus able to reach C

at time 1.

This result is general since one has:



Theorem 2.3 (Vieille, 1992 [34])

Any set is either weakly approachable or weakly excludable.

Sketch of the proof:

The proof uses the theory of differential games of fixed duration.

A) The idea is to consider vn as the value of the discretisation of a

differential game Γ played between time 0 and 1.

Formally the deterministic dynamic in R
K is given by:

żt = αt Aβt

where α and β are the controls of the players with αt ∈ ∆(I) and

βt ∈ ∆(J) for t ∈ [0,1], and the terminal payoff is r(z1) (there is no

payoff on the trajectory), where r is a smooth function like

r(z) = 1−d(z,C).



For any initial point z ∈ R
K and time ξ ∈ [0,1], one defines two

discretisations Γ−
n (ξ ,z) (resp. Γ+

n (ξ ,z)) of Γ played on the time interval

[ξ ,1], where the state starts from z at time ξ , the controls are constant

on (m
n
(1−ξ ), m+1

n
(1−ξ )) and Player 1 (resp. Player 2) is playing first.

Their values W−
n (ξ ,z) (resp. W+

n (ξ ,z)) satisfy:

W−
n (ξ ,z) = max

α1∈∆(I)
min

β1∈∆(J)
... max

αn∈∆(I)
min

βn∈∆(J)
r (z+(1−ξ )

1

n
∑

n

m=1
αmAβm)

W+
n (ξ ,z) = min

β1∈∆(J)
max

α1∈∆(I)
... min

βn∈∆(J)
max

αn∈∆(I)
r (z+(1−ξ )

1

n
∑

n

m=1
αmAβm)



Moreover the following recursive equations (dynamic programming)

hold:

W−
n (ξ ,z) = max

α∈∆(I)
min

β∈∆(J)
W−

n−1
(ξ +

1

n
(1−ξ ),z+

1

n
(1−ξ )αAβ )

W+
n (ξ ,z) = min

β∈∆(J)
max

α∈∆(I)
W+

n−1
(ξ +

1

n
(1−ξ ),z+

1

n
(1−ξ )αAβ )



The main results from the theory of differential games with fixed

duration that we use are, see e.g. Souganidis, 1999 [32]:

1) W−
n and W+

n converge to some functions W− and W+ as n → ∞.

2) W− is a viscosity solution, see e.g. Crandall, Ishii and Lions (1992)

[9], on [0,1] of the equation:

∂U

∂ t
+ max

α∈∆(I)
min

β∈∆(J)
〈∇U,α Aβ 〉= 0

U(1,z) = r(z)

3) this solution is unique.



A similar result for W+ and the property (Isaacs):

max
α∈∆(I)

min
β∈∆(J)

〈∇U,α Aβ 〉= min
β∈∆(J)

max
α∈∆(I)

〈∇U,α Aβ 〉

finally imply:

W− = W+.

Denote this value by W.

Hence if W(0,1) = 1, for any ε > 0 there exists N such that if n ≥ N

Player 1 can force an outcome within ε of C in Γ−
n .

B) The second part of the proof consists in showing that Player 1 can

generate almost the same trajectory in the initial discrete time

repeated game.



Consider first Grn.

Inductively Player 1 will play by blocks of length r: on the m-th block

he computes the optimal control αm of stage m in Γ−
n (given a past

generated in the differential game by βℓ, ℓ < m, which is the average

behavior of Player 2 on block ℓ) and play the mixed move αm i.i.d. for

r stages.

Use the approachability theorem to prove that if dm denotes the

distance between αm Aβm and the average outcome on block m in Grn,

one has: E(dm) ≤ 2‖A‖√
r

.

It follows that for r large enough the average payoff in Grn is within ε

of one trajectory compatible with an optimal strategy in Γ−
n hence

within 2ε of C.

Finally if m = rn+q the error in approximating Gm by Grn is at most of

the order 1/r.

C) If W(0,1)< 1, Player 2 can force the outcome to belong to the

complement of a δ -neighborhood of C for δ small enough and a

similar construction shows that C is weakly excludable.



5. The B-sets are the minmal approachable sets.

Proposition 2.1 (Spinat, 2002 [33])

Any approachable set contains a B-set.

In particular this implies that the “light" definition of approachability

(convergence in expectation) is in fact equivalent to the “heavy " one

(cv a.s.).

This also shows that there are always robust approachability

strategies (for example: independent of ε and of the previous own

moves).

Note however that the a.s. convergence does not extend to a

stochastic framework.

6. Extension to infinite dimension, Lehrer, 2002 [19].

7. General active states, Lehrer, 2003 [20].



8. A dual representation of B-sets.

Definition 2.4
The set of proximal normals to C ⊂ R

K at w ∈ C is:

PC(w) = {p ∈ R
K

;w = PC(w+p)}. (5)

Recall:

A closed set C in R
K is a B-set for Player 1 if:

for any z/∈C, there exists a closest point w = PC(z) in C to z and a

mixed move x = x(z) in X, such that the hyperplane trough w

orthogonal to the segment [wz] separates z from [xA].

〈z−w,u−w〉 ≤ 0, ∀u ∈ [xA].



Lemma 2.1 (As Soulaimani, Quincampoix and Sorin, 2009 [1])

C is a B-set iff :

min
x∈X

max
y∈Y

〈p,xAy−w〉 ≤ 0, ∀w ∈ C,∀p ∈ PC(w). (6)





8. Approachability and viability [second link with differential games]:

As Soulaimani, Quincampoix and Sorin, 2009 [1].

Recall: [first link with differential games] Weak approachability and

differential games with fixed duration

The analysis using these two points of view - asymptotic approach

versus uniform approach - is fundamental in the study of all

dynamical models.



Consider a differential game with dynamics wt ∈ R
K given by :

ẇt = f (wt,αt,βt), w0 = w(0).

where (αt,βt) ∈ U×V with U,V convex, compact.

Assume in addition i) f : RK ×U×V → R
K continuous, ii) f (.,u,v)

L-Lipschitz for all (u,v) ∈ U×V, (iii) f affine w.r.t. u.

Given strategies (α,β ), let {Wt(w(0),α,β ); t ≥ 0} be the associated

trajectory.

Theorem 2.4 (Cardaliaguet, 1996 [8])

Let C be closed in R
K and Cε be a closed ε−neighborhood.

C is a discriminating domain for Player 1, i.e. :

∀w(0) ∈ C, ∀ε > 0, ∃α, ∀β : Wt(w(0),α,β ) ∈ Cε , ∀t ≥ 0, (7)

iff

max
v∈V

min
u∈U

〈p, f (w,u,v)〉 ≤ 0, ∀w ∈ C,∀p ∈ PC(w). (8)



Consider the average expected outcome in the continuous version of

the approachability game:

wt =
1

t

∫ t

0

xs Ays

so that :

wt + t ẇt = xt Ayt

hence :

ẇt =
1

t
[xt Ayt −wt].

With a time change we obtain the differential game with dynamics :

f (w,u,v) = uAv−w.

Thus we deduce, using:

max
v∈V

min
u∈U

〈p, uAv−w〉= min
u∈U

max
v∈V

〈p, uAv−w〉

the following :

Lemma 2.2
A discriminating domain for the differential game defined by f is a

B-set for the repeated game defined by A.



Corollary 2.3

A B-set is approachable.

Proof :

Let C be a B-set hence a discriminating domain.

Let w(0) ∈ C and any ω(0) ∈ R
K . Let α be a discriminating strategy

for Player 1, given w(0) and β any strategy of Player 2.

One has:

Ẇt(w(0),α,β ) = αt Aβt −Wt(w(0),α,β )

Ẇt(ω(0),α,β ) = αt Aβt −Wt(ω(0),α,β ),

thus :

Ẇt(w(0),α,β )− Ẇt(ω(0),α,β ) = Wt(w(0),α,β )−Wt(ω(0),α,β )

and ‖Wt(w(0),α,β )−Wt(ω(0),α,β )‖ ≤ e−t‖w(0)−ω(0)‖.

But Wt(w(0),α,β ) ∈ C hence d(Wt(ω(0),α,β ),C)→ 0 uniformy in β .

Finally the same property holds in the discrete time game with

random trajectories.



Corollary 2.4

If C is approachable in the expected deterministic repeated game, C

contains a B-set.

Proof :

Consider a strategy σ that approach C and show that the closure of

the set of limit points of all trajectories compatible with σ , is a

discriminating domain.

9. Approachability with signals, Perchet, 2011 [29] (see Part B.1).

10. Approachability plays a crucial role in games with incomplete

information, Aumann and Maschler,1995 [4], Kohlberg, 1975 [18],

MSZ.



Fictitious play

Discrete fictitious play and continuous best reply

Consider the repetition of a game g : S = ∏Si → R
I.

The discrete fictitious play procedure (DFP) satisfies the following:

given an n-(stage) history hn = (x1 = {xi
1
}i=1,...,I,x2, ...,xn) ∈ Sn, the

move xi
n+1

of each player i at stage n+1 is a best reply to the

“average moves" of her opponents.

For n ≥ 3 there are two variants:



- independent FP:

for each i, let xi
n =

1
n ∑

n
m=1xi

m and x−i
n = {x

j
n}j 6=i.

Player i computes, for each of her opponents j ∈ I, the empirical

distribution on her moves and considers the product distribution.

Then, her next move satisfies:

xi
n+1 ∈ BRi(x−i

n )

so that:

xi
n+1 − xi

n =
xi

n+1
− xi

n

n+1

which can also be written as :

xi
n+1 − xi

n ∈
1

(n+1)
[BRi(x−i

n )− xi
n]. (9)



- correlated FP:

one defines a point x̃−i
n in ∆(S−i) by :

x̃−i
n =

1

n
∑

n

m=1
x−i

m

which is the empirical distribution of joint moves of the opponents −i.

Here the dynamics is given by:

xi
n+1 ∈ BRi(x̃−i

n )

We will consider here the first approach (unless otherwise specified).



The continuous counterpart of this difference inclusion, is the

differential inclusion called continuous fictitious play (CFP):

Ẋi
t ∈

1

t
[BRi(X−i

t )−Xi
t ]. (10)

The change of time Zs = Xes leads to :

Żi
s ∈ [BRi(Z−i

s )−Zi
s] (11)

which is the (continuous time) best response (or best reply) dynamic

(BR) introduced by Gilboa and Matsui, 1991 [14].



General properties

Convergence

Definition 3.1
A process zn (discrete) or zt (continuous) converges in a metric space

M to Z ⊂ M if d(zn,Z) or d(zt,Z) goes to 0 as n or t → ∞.

Proposition 3.1

If (DFP) or (CFP) converges to a point x, x is a Nash equilibrium.

Proof :

If x is not a Nash then d(x,BR(x)) = δ > 0.

Hence by uppersemicontinuity d(y,BR(z))≥ δ/2 > 0 for each y and z

in a neighborhood of x, which prevents convergence.

The dual property is clear:

Proposition 3.2

If x is a Nash equilibrium, it is a rest point of (DFP) and (CFP).



Remark

(DFP) is “previsible": in the game with payoffs

√
2 0

0 1

if Player 1 follows (DFP) her move is always pure, since the past

frequency of Left, say y, is rational; so that unilateral (DFP)

guarantees only 0.



Potential games

Recall that xn converges to NE(G) if d(xn,NE(G)) goes to 0.

Since g is continuous and X is compact, an equivalent property is that

for any ε > 0 and n large enough, xn is an ε-equilibrium.

Proposition 3.3 (Monderer and Shapley, 1996 [23])

In finite potential games (DFP) converges to NE(g).

Proof :

Let F be a potential for g. Since F is multilinear, one has:

F(x̄n+1)−F(x̄n) = F(x̄n +
1

n+1
(xn+1 − x̄n))−F(x̄n)

≥ ∑
i

1

n+1
[F(xi

n+1, x̄
−i
n )−F(x̄n)]−

K1

(n+1)2
(12)

for some constant K1 independent of n.



Let an+1 = ∑i[F(x
i
n+1

, x̄−i
n )−F(x̄n)] = ∑i[g

i(xi
n+1

, x̄−i
n )−gi(x̄n)] (≥ 0 by

definition of (DFP)).

Adding the previous inequality implies

F(x̄n+1)≥
n+1

∑
m=1

am

m
−K2

for some constant K2. Since am ≥ 0 and F is bounded, ∑
n+1
m=1

am

m

converges. This implies

lim
N→∞

1

N
∑

n≤N

an = 0, (13)

(In fact for M large enough, ∑m≥M
am

m
≤ ε hence a fortiori

1
N ∑

N
m≥M am ≤ ε and the remaining term is bounded.)



Now a consequence of (13) is that, for any ε > 0,

#{n ≤ N; x̄n /∈ NEε(F)}
N

→ 0, as N → ∞. (14)

In fact there exists δ > 0 such that x̄n /∈ NEε(F) implies an+1 ≥ δ .

Inequality (14) in turns implies that x̄n belongs to NE2ε(F) for n large

enough.

Otherwise x̄m /∈ NEε(F) for all m in a neighborhood of n of relative size

0(ε) non negligible.

(This is a general property of Cesaro mean of Cesaro means).



The next proof is due to Harris, 1998 [16], in the finite case and

Benaim, Hofbauer and Sorin, 2005 [5], in the compact case.

Assume (H): Hi is defined on a product X of compact convex subsets

Xi of an euclidean space, C 1 and concave in xi.

Proposition 3.4

Under (H), (BR) converges for potential games.

Proof

Let F be a potential for the game {Hi; i ∈ I} and

W(x) = ∑i[G
i(x)−F(x)] where Gi(x) = maxs∈Xi F(s,x−i).

Thus x is a Nash equilibrium iff W(x) = 0.

Let xt be a solution of (BR) and consider ft = F(xt). Then

ḟt = ∑
i

DiF(xt) ẋi
t.



By concavity one obtains:

F(xi
t,x

−i
t )+DiF(x

i
t,x

−i
t ) ẋi

t ≥ F(xi
t + ẋi

t,x
−i
t )

which implies :

ḟt ≥ ∑
i

[F(xi
t + ẋi

t,x
−i
t )−F(xt)] = W(xt)≥ 0,

hence f is increasing but bounded.

f is thus constant on the limit set L(x).

By the previous majoration, for any accumulation point x∗ one has

W(x∗) = 0 and x∗ is a Nash equilibrium.



Note that one cannot expect uniform convergence: see the standard

symmetric coordination game below.

The only attractor that contains NE(F) is the diagonal.

In particular convergence of (BR) or (CFP) does not imply directly

convergence of (DFP)
(1,1) (0,0))
(0,0) (1,1)

Note that the equilibrium (1/2,1/2) is unstable but the time to go from

(1/2+,1/2−) to (1,0) is not bounded.





Further results

Monderer, Samet and Sela, 1997 [21], introduce a comparison

between the anticipated payoff at stage n: Ei
n = Fi(xi

n, x̄
−i
n−1

), and the

average payoff up to stage n (excluded): Ai
n =

1
n−1 ∑

n−1
p=1

Fi(xp).

Proposition 3.5

Assume (DFP) for player i (with 2 players or correlated (DFP)), then

Ei
n ≥ Ai

n. (15)

Proof :

By definition of (DFP), one has:

n−1

∑
m=1

Fi(xi
n,x

−i
m )≥

n−1

∑
m=1

Fi(s,x−i
m ), ∀s ∈ Xi. (16)

Write (n−1)Ei
n = bn = ∑

n−1
m=1

a(n,m) for the left hand side.



By choosing s = xi
n−1

one obtains

bn ≥ a(n−1,n−1)+bn−1

hence by induction

Ei
n ≥ Ai

n =
n−1

∑
m=1

a(m,m)/(n−1).



Corollary 3.1

The average payoffs converge to the value for (DFP) in the zero-sum

case.

Proof :

Recall that in this case E1
n (resp. E2

n) converges to v (resp. −v), since

x̄−i
n converges to the set of optimal strategies of −i.



A last property is the following (the argument is already in Shapley,

1964 [30]). Note that it is not stated in the usual state variable (x̄n) but

is related to Myopic Adjustment Dynamics.

Proposition 3.6 (Monderer and Sela, 1996 [22])

Assume (DFP) for player i with 2 players.Then :

Fi(xi
n,x

−i
n−1

)≥ Fi(xn−1). (17)

Proof :

In fact the (DFP) property implies :

Fi(xi
n−1,x

−i
n−2

)≥ Fi(xi
n,x

−i
n−2

) (18)

and:

Fi(xi
n,x

−i
n−1

)≥ Fi(xi
n−1,x

−i
n−1

). (19)

Hence if equation (17) is not satisfied, adding to (18) and using the

linearity would contradict (19).
Remark

The two results above correspond to unilateral properties.



Shapley’s example

Shapley, 1964 [30], Monderer and Sela, 1996 [22].

(0,0) (a,b) (b,a)
(b,a) (0,0) (a,b)
(a,b) (b,a) (0,0)

Let a > b > 0.

Note that the only equilibrium is (1/3,1/3,1/3).

Proposition 3.7

(DFP) does not converge.

Proof 1:

Starting from a Pareto entry, the improvement principle (17) implies

that one will stay on Pareto entries. Hence the sum of the stage

payoffs will always be (a+b). If (DFP) converges then it converges to

(1/3,1/3,1/3) so that the anticipated payoff converges to the Nash

payoff a+b
3

which contradicts inequality (15).



Proof 2:

Add a line to the Shapley matrix G defining a new matrix:

G’ =

(0,0) (a,b) (b,a)
(b,a) (0,0) (a,b)
(a,b) (b,a) (0,0)
(c,0) (c,0) (c,0)

with 2b > a > b > c > a+b
3

.

By the improvement principle (17), starting from a Pareto entry one

will stay on the Pareto set, hence line 4 will not be played so that

(DFP) in G′ is also (DFP) in G.

If there were convergence it would be to a Nash equilibrium hence to

(1/3,1/3,1/3) in G, thus to ((1/3,1/3,1/3,0);(1/3,1/3,1/3)) in G′.
But a best reply for Player 1 to (1/3,1/3,1/3) in G′ is the fourth line,

contradiction.



Proof 3:

Following Shapley, 1964 [30], let us study explicitely the (DFP) path.

Starting from (12), there is a cycle : 12, 13, 23, 21, 31, 32, 12,..

Let r(ij) be the duration of the corresponding entry and a1,a2,a3 the

different cumulative payoffs of Player 1 at the beginning of the cycle

i.e. if it occurs at stage n+1, given by:

ai =
n

∑
m=1

Aijm

(proportional to the payoff of i against ȳn).



Thus, after r(12) stages of (12) and r(13) stages of (13)

a′1 = a1 + r(12)a+ r(13)b

a′2 = a2 + r(12)0+ r(13)a

and then Player 1 switches to move 2, hence one has:

a′2 ≥ a′1

but also:

a1 ≥ a2

(because 1 was played) so that :

a′2 −a2 ≥ a′1 −a1

which gives:

r(13)(a−b)≥ r(12)a

and by induction at the next round:

r′(11)≥ [
a

(a−b)
]6r(11)

so that exponential growth occurs and the empirical distribution does

not converge.



RSP and Shapley triangle

We follow the analysis of (BR) in RSP (rock-scissors-paper game)

done by Gaunersdorfer and Hofbauer, 1995 [13].

Consider the following symmetric game with a > 0,b > 0.

(0,0) (a,−b) (−b,a)
(−b,a) (0,0) (a,−b)
(a,−b) (−b,a) (0,0)

Note that the only Nash is (1/3,1/3,1/3) with payoff (a−b)/3.

Let V(x) = maxy yAx and define vt = V(xt) on a (BR) path.

Then, if ei = BR(xt) on some intervall:

v̇t = eiAẋt = eiAei − eiAxt

hence since eiAei = 0:

v̇t =−vt.



If a ≥ b then V(x)≥ (a−b)/3 ≥ 0 for all x, hence vt decreases to

(a−b)/3 and xt converges to the equilibrium which is reached in finite

time if a−b > 0.

In the other case, vt converges to 0 that is larger than (a−b)/3. Then

xt follows a cycle which is called the “Shapley triangle".

The coordinates are given by:

B3 = (0,
a+b

2a+b
,

a

2a+b
)

A3 = (
a2

a2 +b2 +ab
,

b2

a2 +b2 +ab
,

ab

a2 +b2 +ab
)

A1,A3 and e2 are on a line and the segment [A1,A3] is characterized by

F(2,x) = 0 ≥ F(i,x), i = 1,3.



a > b :E is stable



a < b: Shapley triangle (in red)
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