Optimality for Tough Combinatorial Hydro Valley Problems

Claudia D'Ambrosio

CNRS LIX, Ecole Polytechnique, France

PGMO seminars 2012, November 20th, 2012

Optimality for Tough Combinatoria Hydro Valley Problems

C. D'Ambrosio

ntroduction Example

Mathematical Model

Solution Approaches

Heuristics

Decompositions

Approximations Piecewise linear approximation Multiple piecewise linear approximation Standard Triangulation Optimistic approximation MILP Model Properties Comparison MILP size Computational Results

・ロト・日本・日本・日本・日本・日本

- Crucial problem in energy management: hydro valley management.
- Combinatorial elements leads to far tougher hydro valley problems.
- French Hydro valleys (see last hour).

Optimality for Tough Combinatoria Hydro Valley Problems

C. D'Ambrosio

ntroduction Example

Mathematical Model

Solution Approaches

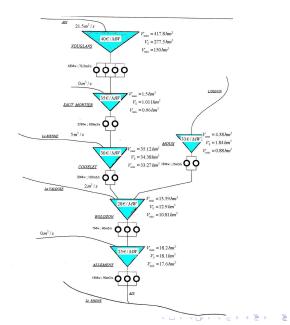
Heuristics

Decompositions

Approximations Piecewise linear approximation Multiple piecewise linear approximation Standard Triangulation Optimistic approximation MLP Model Properties Comparison MILP size Computational Results

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Example



Optimality for Tough Combinatoria Hydro Valley Problems

C. D'Ambrosio

Introduction Example

Mathematical Model

Solution Approaches

Heuristics

Decompositions

Approximations Piecewise linear approximation Multiple piecewise linear approximation Standard Triangulation Optimise approximation MILP Model Properties Comparison MILP size Computational Results

Sets:

 $(\mathcal{N},\mathcal{V})=$ directed graph representing the hydro valley.

 $\mathcal{T}=\text{set of time steps.}$

 $\mathcal{U} = set of turbines.$

 $\mathcal{P} = \text{set of pumping stations.}$

 $\mathcal{S} = set of active power and spinning reserves.$

$$\mathcal{F}_n = \{m \in \mathcal{N} | a_{mn} = 1\} \ (n \in \mathcal{N}).$$

$$\mathcal{D}_n = \{m \in \mathcal{N} | a_{nm} = 1\} \ (n \in \mathcal{N}).$$

$$\mathcal{X}_{ut} = \text{set of operational levels for turbine } u \text{ at time period } t \ (u \in \mathcal{U}, t \in \mathcal{T})$$

Optimality for Tough Combinatorial Hydro Valley Problems

C. D'Ambrosio

ntroduction

Mathematica Model

Solution Approaches

Heuristics

Decompositions

Approximations Piecewise linear approximation Multiple piecewise linear approximation Optimistic approximation MLP Model Properties Comparison MILP size Computational Results

Notation

Parameters:

 A_{nm} = connection matrix element (it is 1 when the water released from reservoir *n* flows into reservoir *m*, 0 otherwise).

T =time step size [hours].

 D_v = the number of time steps the water takes to flow (get pumped) through arc v ($v \in V$).

 I_{nt} = inflows at period t to reservoir n ($t \in T$, $n \in N$) [m³/h]

G = gradient slopes [m³/h²]

 $X_{uti} = i$ -th operational level for turbine u at time period t $(u \in U, t \in T, i \in X_{ut})$ [m³/h]

 \overline{X}_u = upper bound on the water flow passing through turbine u ($u \in U$) [m³/h]

 \overline{Y}_p = upper bound on the water pumped by pump $p \ (p \in \mathcal{P})$ [m³/h]

 $\mu_u = \{ v \in \mathcal{V} | \text{ turbine } u \text{ represents arc } v \}$

 $\mu'_p = \{ v \in \mathcal{V} | \text{ pump } p \text{ represents arc } v \}$

 $\rho_u(x, v) = \text{efficiency function of turbine } u \text{ [MW]}$

 $\theta_{\rho}(y) =$ efficiency function of pump p [MW]

Optimality for Tough Combinatoria Hydro Valley Problems

C. D'Ambrosio

ntroduction Example

Mathematica Model

Solution Approaches

Heuristics

Decompositions

Approximations Piecewise linear approximation Multiple piecewise linear approximation Standard Triangulation Optimistic approximation MLP Model Properties Comparison MILP size Computational Results

・ (同) ・ ミ) ・ ミ ・ シ へ ()

 x_{ut} = water flow passing through turbine u in period t ($u \in U, t \in T$) [m³/h].

 y_{pt} = water pumped by pump p in period t ($p \in \mathcal{P}, t \in \mathcal{T}$) [m³/h].

 v_{nt} = water volume in reservoir *n* in period *t* ($n \in \mathcal{N}, t \in \mathcal{T}$) [m³].

 z_{uti} = auxiliary binary variable (1 when turbine *u* has operational level $\geq i$ in period *t*, 0 otherwise) $u \in \mathcal{U}, t \in \mathcal{T}$.

 z'_{pti} = auxiliary binary variable (1 when pump *p* has operational level $\geq i$ in period *t*, 0 otherwise) $u \in \mathcal{U}, t \in \mathcal{T}$.

Optimality for Tough Combinatorial Hydro Valley Problems

C. D'Ambrosio

ntroduction Example

Mathematic<mark>a</mark> Model

Solution Approaches

Heuristics

Decompositions

Approximations Piecewise linear approximation Multiple piecewise linear approximation Standard Triangulation Optimistic approximation MILP Model Properties Comparison MILP size Computational Results

Constraints

Equilibrium constraint ($\forall n \in \mathcal{N}, t \in \mathcal{T}$):

$$\begin{aligned} v_{nt} &= v_{n(t-1)} + \sum_{m \in \mathcal{F}_n: D_{(m,n)} \le t} \sum_{u \in \mathcal{U}: \mu_u = (m,n)} x_{u(t-D_{(m,n)})} T - \sum_{m \in \mathcal{F}_n} \sum_{u \in \mathcal{U}: \mu_u(n,m)} x_{ut} T \\ &+ \sum_{m \in \mathcal{D}_n: D_{(m,n)} \le t} \sum_{p \in \mathcal{P}: (n,m)} y_{p(t-D_{(m,n)})} T - \sum_{m \in \mathcal{D}_n} \sum_{p \in \mathcal{P}: \mu'_p = (m,n)} y_{pt} T + l_{nt} T \end{aligned}$$

with v_{n0} = initial volume of reservoir $n (n \in \mathcal{N})$.

Gradient constraint ($\forall u \in U, t \in T$):

$$-GT \leq x_{ut} - x_{u(t-1)} \leq GT$$

with x_{u0} is the initial flow in turbine $u \ (\forall u \in U)$.

Discrete operational levels constraints ($u \in U, t \in T$):

$$\begin{aligned} x_{ut} &= \sum_{i = \mathcal{X}_{ut}} z_{uti} (X_{uti} - X_{ut(i-1)}) \\ &z_{ut(i+1)} \leq z_{uti} \quad (i \in \mathcal{X}_{ut}) \\ -1 \leq z_{uti} - z_{u(t-1)i} - z_{u(t+1)(i+1)} \leq 0 \quad (i \in \mathcal{X}_{ut}) \\ 0 \leq z_{ut1} + z'_{pt1} \leq 1 \quad \forall u \in \mathcal{U}, p \in \mathcal{P} : i(u, p) = 1 \\ 0 \leq z_{ut1} + z'_{p(t+1)1} \leq 1 \quad 1 \forall u \in \mathcal{U}, p \in \mathcal{P} : i(u, p) = 1 \\ 0 \leq z_{u(t+1)1} + z'_{pt1} \leq 1 \quad \forall u \in \mathcal{U}, p \in \mathcal{P} : i(u, p) = 1 \end{aligned}$$

where i(u, p) = 1 when turbine *u* is reversable and acts also as pump *p*.

Optimality for Tough Combinatoria Hydro Valley Problems

C. D'Ambrosio

ntroduction Example

Mathematica Model

Solution Approaches

Heuristics

Decompositions

Approximations Precevise linear approximation Multiple piecevise linear approximation Standard Triangulation Optimistic approximation MLP Model Properties Comparison MILP size Computational Results

Objective function

Minimizing:

- Cost incurred by pumping $\sum_{t \in \mathcal{T}} \lambda_t T \sum_{p \in \mathcal{P}} \theta_p(y_{pt})$
- Cost of using water expressed by the water-values [different modeling possibilities]

Minus

Gain generated by turbining

$$\sum_{t \in \mathcal{T}} \lambda_t T \sum_{u \in \mathcal{U}} \rho_u(x_{ut}, v_{nt})$$

$$+ \sum_{s \in \mathcal{S}} \sum_{t \in \mathcal{T}} \lambda_t T \sum_{u \in \mathcal{U}} (\rho_u(\sum_{s' \in \mathcal{S}: s' \leq s} f_s(x_{ut}), v_{mt})$$

$$+ \rho_u(\sum_{s' \in \mathcal{S}: s' < s} f_s'(x_ut), v_{nt}))$$

where λ_t are price signals.

Optimality for Tough Combinatoria Hydro Valley Problems

C. D'Ambrosio

ntroduction Example

Mathematica Model

Solution Approaches

Heuristics

Decompositions

Approximations Precevise linear approximation Multiple piecewise linear approximation Standard Triangulation Optimistic approximation MILP Model Properties Comparison MILP size Computational Results

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Practically difficult: **complicated constraints**, and **large size of real instances**.

Looking for provable high accuracy in a limited amount of time.

Different research lines:

- modeling and reformulations: formulation strengthening, cuts, decomposition methods, and approximations to efficiently provide effective lower bounds on the optimal value;
- heuristics: matheuristics, possibly exploiting the formulations/decompositions/approximations of point 1, to efficiently provide good quality feasible solutions.

Optimality for Tough Combinatorial Hydro Valley Problems

C. D'Ambrosio

Introduction Example

Mathematical Model

Solution Approaches

Heuristics

Decompositions

Approximations Piecewise linear approximation Multiple piecewise linear approximation Standard Triangulation Optimistic approximation MLP Model Properties Comparison MLP Size Comparison

Heuristics

Already tested (and presented) different heuristic algorithms.

- Improve the currently available algorithms.
- Design new algorithms.
 For example, use the "local branching" constraint (Fischetti & Lodi, 2003)

$$\sum_{i: ilde{x}_i=0} x_i + \sum_{i: ilde{x}_i=1} (1-x_i) \leq \Pi$$

where Π is the number of binary variables that we allow to change value wrt the rounded LP solution \tilde{x} . We might re-define the objective function as

min Π

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(where Π becomes an integer variable \geq 0).

Optimality for Tough Combinatorial Hydro Valley Problems

C. D'Ambrosio

ntroduction Example

Mathematical Model

Solution Approaches

Heuristics

Decompositions

Approximations Piecewise linear approximation Multiple piecewise linear approximation Standard Triangulation Optimistic approximation MLP Model Properties Comparison MLP Size Comparison

Decompositions

ν

The subproblem might be itself decomposed into smaller sub-subproblems.

For example, the only constraints that link the different hydro plants are the

Equilibrium constraint ($\forall n \in \mathcal{N}, t \in \mathcal{T}$):

$$Y_{nt} = V_{n(t-1)} + \sum_{m \in \mathcal{F}_n: D_{(m,n)} \le t} \sum_{u \in \mathcal{U}: \mu_u = (m,n)} x_{u(t-D_{(m,n)})} T$$
$$- \sum_{m \in \mathcal{F}_n} \sum_{u \in \mathcal{U}: \mu_u(n,m)} x_{ut} T$$
$$+ \sum_{m \in \mathcal{D}_n: D_{(m,n)} \le t} \sum_{p \in \mathcal{P}: (n,m)} y_{p(t-D_{(m,n)})} T$$
$$- \sum_{m \in \mathcal{D}_n} \sum_{p \in \mathcal{P}: \mu'_p = (m,n)} y_{pt} T + I_{nt} T$$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Optimality for Tough Combinatoria Hydro Valley Problems

C. D'Ambrosio

ntroduction Example

Mathematical Model

Solution Approaches

Heuristics

Decompositions

Approximations Preceives linear approximation Multiple piecewise linear approximation Standard Triangulation Optimistic approximation MILP Model Properties Comparison MILP size Computational Results

- Real-world optimization problem can be often modeled as a MINLP problem.
- What makes MINLP problem difficult?
 - 1. non-linear functions;
 - 2. integer variables.
- MILP solvers more efficient than MINLP ones and handle large-scale instances.
- ► Trying to get rid of the non-linear functions → "linearize" and use MILP solvers!!!!
- Piecewise linear approximation: Beale & Tomlin, 1970 (Special Ordered Sets).

For the moment, focus on MINLP with non-linear objective function and linear constraints .

Optimality for Tough Combinatorial Hydro Valley Problems

C. D'Ambrosio

ntroduction Example

Mathematical Model

Solution Approaches

Heuristics

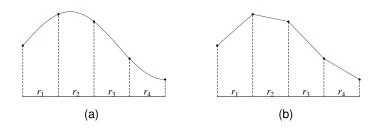
Decompositions

Approximations Piecewise linear approximation Multiple piecewise linear paproximation Standard Triangulation Optimistic approximation MLP Model Properties Comparison MLP size Computational Results

Starting simple: univariate function

Consider a function f(x) and construct its piecewise linear approximation.

- ► Divide the domain of *f* in *n* − 1 intervals of coordinates *x*₁,..., *x_n*.
- Sample *f* at each point x_i with i = 1, ..., n.
- The piecewise linear approximation of f is given by the convex combination of the samples.



Optimality for Tough Combinatorial Hydro Valley Problems

C. D'Ambrosio

ntroduction Example

Mathematical Model

Solution Approaches

Heuristics

Decompositions

Approximations

Multiple piecewise linear approximation Standard Triangulation Optimistic approximation MILP Model Properties Comparison MILP size

Computational Results

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

- 1. Simply fix the value of one of the 2 variables and obtain a univariate function: $f(x, \tilde{y})$.
- 2. Apply methods for approximating univariate functions (previous slide).

The quality of the approximation depends on the function at hand.

Choose to fix the "less nonlinear" variable.

Optimality for Tough Combinatoria Hydro Valley Problems

C. D'Ambrosio

ntroduction Example

Mathematical Model

Solution Approaches Heuristics

Decompositions

Approximations

Multiple province wise linear approximation Standard Triangulation Optimistic approximation MILP Model Properties Comparison MILP size Comparison Baselo

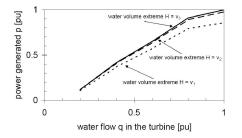
・ロト・四ト・ヨト・ヨー もくの

Function of 2 variables: Method 2

In Conejo et al. (2002) the function $f^a = f(x, y)$ was approximated by considering three prefixed water volumes, say \tilde{y}^1 , \tilde{y}^2 , \tilde{y}^3 and interpolating, for each \tilde{y}^r , the resulting function

$$f^a = f(x, \widetilde{y}^r)$$

by piecewise linear approximation.



It can be **generalized** by approximating a prefixed number *m* of values of *y*.

Optimality for Tough Combinatorial Hydro Valley Problems

C. D'Ambrosio

ntroduction Example

Mathematical Model

Solution Approaches

Heuristics

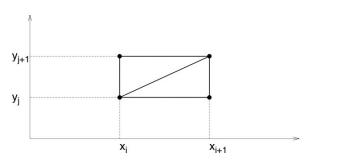
Decompositions

Approximations Piecewise linear approximation Standard Triangulation Optimistic approximation MILP Model Properties Comparison MILP Size Comparison

Function of 2 variables: Method 3

Consider a function f(x, y) and construct its piecewise linear approximation.

- ► Divide the domain of *f* in a (*n* − 1) × (*m* − 1) grid of coordinates *x*₁,..., *x_n*, *y*₁,..., *y_m*.
- Divide the rectangles in the (x, y)-space in triangles.
- Sample f at each point (x_i, y_j) with i = 1, ..., n and j = 1, ..., m.



Optimality for Tough Combinatorial Hydro Valley Problems

C. D'Ambrosio

ntroduction Example

Mathematical Model

Solution Approaches

Heuristics

Decompositions

Approximations Piecewise linear approximation Multiple piecewise linear approximation Optimistic approximation

MILP Model Properties

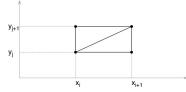
Comparison

MILP size

Computational Results

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

Function of 2 variables: Method 3 (cont.d)



Any point (\tilde{x}, \tilde{y})

- belongs to one of the triangles;
- can be written as a convex combination of its vertices with weights α_{ij}; and
- the value of function f at (\tilde{x}, \tilde{y}) is approximated as

$$f^{a} = \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{ij} f(\mathbf{x}_{i}, \mathbf{y}_{j}).$$

1 triangle \leftrightarrow 1 binary variable $\rightarrow O(n \times m)$ binaries.

Optimality for Tough Combinatoria Hydro Valley Problems

C. D'Ambrosio

ntroduction Example

Mathematical Model

Solution Approaches

Heuristics

Decompositions

Approximations Piecewise linear approximation Multiple piecewise linear approximation

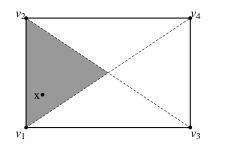
Optimistic approximation MILP Model Properties Comparison MILP size Computational Results

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 = のへで

Method 3: Standard Triangulation

Given a rectangle identified by the four points v_1 , v_2 , v_3 , v_4 we can divide it in 2 triangles in 2 different ways by selecting:

- 1. diagonal [*v*₁, *v*₄]; or
- 2. diagonal [*v*₂, *v*₃].



Non-linear $f(x, y) \rightarrow 2$ different f^a for choice 1 and 2 !

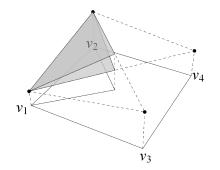
Optimality for Tough Combinatorial Hydro Valley Problems

C. D'Ambrosio

Mathematical **Approaches** Heuristics MILP Model MILP size

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

Method 3: Standard Triangulation



Diagonal [v_1 , v_4]:

Diagonal $[v_2, v_3]$:

$$\begin{split} &\alpha_{v_{1}} \leq \beta_{[v_{1},v_{2},v_{4}]} + \beta_{[v_{1},v_{3},v_{4}]} \\ &\alpha_{v_{2}} \leq \beta_{[v_{1},v_{2},v_{4}]} \\ &\alpha_{v_{3}} \leq \beta_{[v_{1},v_{3},v_{4}]} \\ &\alpha_{v_{4}} \leq \beta_{[v_{1},v_{2},v_{4}]} + \beta_{[v_{1},v_{3},v_{4}]} \\ &\beta_{[v_{1},v_{2},v_{4}]} + \beta_{[v_{1},v_{3},v_{4}]} = 1 \end{split}$$

$$\begin{split} &\alpha_{\mathbf{v}_{1}} \leq \beta_{[v_{1},v_{2},v_{3}]} \\ &\alpha_{\mathbf{v}_{2}} \leq \beta_{[v_{1},v_{2},v_{3}]} + \beta_{[v_{2},v_{3},v_{4}]} \\ &\alpha_{\mathbf{v}_{3}} \leq \beta_{[v_{1},v_{2},v_{3}]} + \beta_{[v_{2},v_{3},v_{4}]} \\ &\alpha_{\mathbf{v}_{4}} \leq \beta_{[v_{2},v_{3},v_{4}]} \\ &\beta_{[v_{1},v_{2},v_{3}]} + \beta_{[v_{2},v_{3},v_{4}]} = \mathbf{1} \end{split}$$

Optimality for Tough Combinatorial Hydro Valley Problems

C. D'Ambrosio

Introduction Example Mathematical Model Solution Approaches

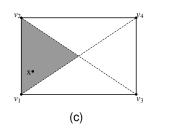
Heuristics

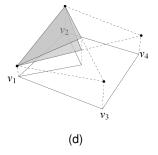
Decompositions

Approximations Piecewise linear approximation Multiple piecewise linear approximation Optimistic approximation

MILP Model Properties Comparison MILP size Computational Besults

Method 4: Optimistic Approximation





▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Observation is simple:

Why do we need to decide the triangle "offline"?

Let the point (\tilde{x}, \tilde{y}) be a convex combination of all the 4 vertices of the rectangle and the MILP solver (optimistically) decide based on the objective function!

 $\alpha_{\mathbf{v}} \leq \beta_{[\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4]} \quad \forall \mathbf{v} \in \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$

Optimality for Tough Combinatorial Hydro Valley Problems

C. D'Ambrosio

ntroduction Example

Model

Solution Approaches

Heuristics

Decompositions

Approximations Piecewise linear approximation Standard Triangulation MLP Model Properties Comparison MILP size

Computational Results

Method 4: Optimistic Approximation (cont.d)

Let the MILP (optimistically) decide based on the objective function!

In each region:

$$\check{f}(x) = \min \sum_{j=1}^{\nu} \alpha_j f(v_j)$$
 or $\hat{f}(x) = \max \sum_{j=1}^{\nu} \alpha_j f(v_j)$

subject to

$$\alpha_j \geq \mathbf{0}$$

$$\sum_{j=1}^{\nu} \alpha_j = \mathbf{1}$$

$$\sum_{j=1}^{\nu} \alpha_j \mathbf{x}(\mathbf{v}_j) = \mathbf{x}$$

$$\sum_{j=1}^{\nu} \alpha_j \mathbf{y}(\mathbf{v}_j) = \mathbf{y}$$

Optimality for Tough Combinatorial Hydro Valley Problems

C. D'Ambrosio

ntroduction Example

Mathematical Model

Solution Approaches

Heuristics

Decompositions

Approximations Piecewise linear approximation Multiple piecewise linear approximation Standard Triangulation Optimistic approximation Properties Comparison

Comparison MILP size Computational Results

where ν is the number of vertices that characterize the region,

Method 4: Optimistic Approximation Properties

Theorem

The approximations \tilde{f} and \hat{f} are such that

- *f* (resp. *f*) is piecewise convex (resp. concave).
- ▶ *f* and *f* are continuous.
- if f is linear then $\check{f} = \hat{f} = f$.

Optimality for Tough Combinatorial Hydro Valley Problems

C. D'Ambrosio

ntroduction Example

Mathematical Model

Solution Approaches

Heuristics

Decompositions

Approximations Piecewise linear approximation Multiple piecewise linear approximation Standard Triangulation Optimistic approximation MILP Model

Comparison MILP size Computational Results

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Method 4: Optimistic Approximation Properties

Theorem

The approximations f and f are such that

- $\Delta_r(f,\check{f}) \leq D_{\max}(r)$ and $\Delta_r(f,\hat{f}) \leq D_{\max}(r)$ ($\forall r \in \mathcal{R}$).
- if f is convex (resp. concave) in any r ∈ R, then ť (resp. f) is the best possible linear interpolation of the samples f(v_i) in the sense of Δ_r (f, ·).

where

 $\ensuremath{\mathcal{R}}$ is the collection of rectangles,

 $\Delta_r(f,g) = \max_{(x,y)\in r} |f(x,y) - g(x,y)|$, and $D_{\max}(r)$ is the maximum $\Delta_r(f, \tilde{f})$ among all the possible linear interpolations \tilde{f} .

Optimality for Tough Combinatorial Hydro Valley Problems

C. D'Ambrosio

ntroduction Example

Mathematical Model

Solution Approaches

Heuristics

Decompositions

Approximations Piecewise linear approximation Multiple piecewise linear approximation Standard Triangulation Optimistic approximation MLP Model

Comparison MILP size Computational Results Besides the nice properties, the optimistic approximation provides huge advantages when modeled with a MILP.

- Standard triangulation: 1 binary variable for each triangle O(n × m).
- Optimistic approximation: 1 binary variable for each rectangle.
- ▶ Note: Each axis treated separately, i.e., *n* binaries for the *x* axis, and *m* binaries for the *y* axis. $\rightarrow O(n + m)$.
- For example, 3 × 3 grid → 6 vs 18 binaries 10 × 10 grid → 20 vs 200 binaries!

Optimality for Tough Combinatorial Hydro Valley Problems

C. D'Ambrosio

ntroduction Example

Mathematical Model

Solution Approaches

Heuristics

Decompositions

Approximations Piecewise linear approximation Multiple piecewise linear approximation Standard Triangulation Optimistic approximation MILP Model Properties Comparison

Computational Results

$f^a = f(x, y)$: Short-Term Hydro Scheduling

Finding the optimal scheduling of a multi-unit hydro power station in a short-term time horizon.

Maximize the revenue given by power selling.

Assumptions: price-taker situation, the electricity prices and inflows forecast .

Linear constraints, while the objective function has a non-linear part.

The power production is a non-convex, non-concave function $\psi(q, v)$ of the water flow q and the water volume v in the reservoir.

We considered a specific instance of the problem with 168 time periods to be planned.

Optimality for Tough Combinatorial Hydro Valley Problems

C. D'Ambrosio

ntroduction Example

Mathematical Model

Solution Approaches

Heuristics

Decompositions

Approximations Piecewise linear approximation Multiple piecewise linear approximation Standard Triangulation Optimistic approximation MILP Model Properties Comparison MILP size

・ロト・西ト・山田・山田・山下

	opt	imistic a	pproxim	nation	st	Mathematic			
	# va	ar.s	# con.s	# nzs	# v	ar.s	# con.s	# nzs	Model
n m	all	binary			all	binary			Solution
99	17,471	3,192	5,208	107,515	41,999	27,720	15,624	185,803	Approaches
				360,187		97,608	50,568	666,955	Heuristics
				1,317,115				2,532,427	Decomposit
65 65	732,479	22,008	24,024	5,037,307	2,130,575	1,420,104	711,816	9,876,043	Approximati

For n = m = 65:

- Number of binary variables: 22,008 vs 1,420,104.
- Number of constraints: 24,024 vs 711,816.

approximation

MILP Model

MILP size

Single processor of an Intel Core2 CPU 6600, 2.40 GHz, 1.94 GB of RAM under Linux.

Cplex 10.0.1.

Time limit of 1 hour.

		optim	istic a	oproximat	ion	sta	standard approximation				Decor
		solution	%	CPU	#	solution	%	final	CPU	#	Appro
п	т	value	error	time	nodes	value	error	%gap	time	nodes	Piecewi approxi
9	9	31,565.40	-2.34	14.71	1,507	31,565.40	-2.34	_	169.30	9,837	Multiple
17	17	31,577.20	-2.31	755.96	36,507	31,577.20	-2.31	0.19	3,600.00	73,401	Standar
33	33	31,626.20	-2.35	277.13	2,567	n/a	n/a	n/a	3,600.00	5,500	Optimis
65	65	31,640.30	-2.33	2,003.18	2,088	n/a	n/a	n/a	failure	failure	MILP N Proper

Number of solved instances: 4 vs 2.

Optimality for Tough Combinatorial Hydro Valley Problems

C. D'Ambrosio

ntroduction Example

Mathematical Model

Solution Approaches

Heuristics

Decompositions

Approximations Piecewise linear approximation Multiple piecewise linear approximation Standard Triangulation Optimistic approximation MLP Model Properties Comparison MILP size

$f^a = f(x, y)$: Going Logarithmic

Vielma & Nemhauser, 2011 : MILP model for the standard triangulations with a logarithmic number of variables (binary tree structure).

Doable also for the Optimistic approximation.

		opt	imistic a	pproxim	ation	logarithmic standard approximation			
		# va	ır.s	# con.s	# nzs	# va	r.s	# con.s	# nzs
п	m	all binary			all binary				
9	9	17,471	3,192	5,208	107,515	16,127	1,848	4,368	142,963
17	17	55,103	5,880	7,896	360,187	51,407	2,184	5,040	578,419 2,501,683
33	33	194,879	11,256	13,272	1,317,115	186,143	2,520	5,712	2,501,683
65	65	732,479	22,008	24,024	5,037,307	713,327	2,856	6,384	11,056,243

		optimi	istic a	oproximat	ion	logarithmic standard approximation			
		solution	%	CPU	#	solution	%	CPU	#
	т				nodes	value	error	time	nodes
		31,565.40				31,538.70			1,723
		31,577.20							369
33	33	31,626.20	-2.35	277.13	2,567	31,624.10	-2.35	231.99	1,531
65	65	31,626.20 31,640.30	-2.33	2,003.18	2,088	31,640.30	-2.34	530.56	435

Optimality for Tough Combinatoria Hydro Valley Problems

C. D'Ambrosio

ntroduction Example

Mathematical Model

Solution Approaches

Heuristics

Decompositions

Approximations Piecewise linear approximation Multiple piecewise linear approximation Standard Triangulation Optimistic approximation MLP Model Properties Comparison MLP size

$f^a = f(x, y)$: Going Logarithmic (cont.d)

	logarithmic optimistic approximation logarithmic standard approximation									
	# var.s	# con.s	# nzs	# var.s #	con.s	# nzs				
n m	all binary		[all binary						
99	16,127 1,848	4,032	135,907	16,127 1,848	4,368	142,963				
17 17	51,407 2,184	4,704	553,891	51,407 2,184	5,040	578,419				
33 33	186,143 2,520	5,376	2,409,955	186,143 2,520	5,712	2,501,683				
65 65	713,327 2,856	6,048	10,701,091	713,327 2,856	6,384	11,056,243				
	log optimis	tic appro	oximation	log standard approximation						
	solution %	6 initial	CPU a	# solution %	initial	CPU	#			
n m	value erro	r %gap	time node:	s value error	%gap	time nod	es			
99	31,565.40 -2.3	4 1.13	17.87 1,734	4 31,538.70 -2.26	1.14	18.69 1,72	23			
17 17	31,577.20 -2.3	1 1.35	21.08 450	31,577.20 -2.31	1.35	20.84 30	69			
33 33	31,626.20 -2.3	5 1.24 2	263.88 2,19	5 31,624.10 -2.35	1.25	231.99 1,53	31			
65 65	31,640.30 -2.3	3 1.206	664.15 796	31,640.30 -2.34	1.20	530.56 43	35			

Why? log(nm) = log(n) + log(m)Advantages of the optimistic approximation: MILP model of limited size (tractable) and easy to implement. Optimality for Tough Combinatoria Hydro Valley Problems

C. D'Ambrosio

ntroduction Example

Mathematical Model

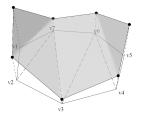
Solution Approaches

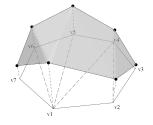
Heuristics

Decompositions

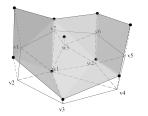
Approximations Piecewise linear approximation Multiple piecewise linear approximation Standard Triangulation Optimistic approximation MILP Model Proparties Comparison MILP size

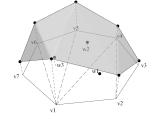
Oversampling





(e)





(h)

Optimality for Tough Combinatoria Hydro Valley Problems

C. D'Ambrosio

ntroduction Example

Mathematical Model

Solution Approaches

Heuristics

Decompositions

Approximations Piecewise linear approximation Multiple piecewise linear approximation Standard Triangulation Optimistic approximation MILP Model Properties Comparison MILP size

(g)

Visit the project web site:

http://www.lix.polytechnique.fr/~dambrosio/PGMO.php.

Optimality for Tough Combinatoria Hydro Valley Problems

C. D'Ambrosio

ntroduction Example

Mathematical Model

Solution Approaches

Heuristics

Decompositions

Approximations Piecewise linear approximation Standard Triangulation Optimistic approximation MLP Model Properties Comparison MILP size

・ロト・西ト・山田・山田・山下