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PGMO project and PhD thesis

I Crucial problem in energy management: hydro
valley management.

I Combinatorial elements leads to far tougher hydro
valley problems.

I French Hydro valleys (see last hour).
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Notation

Sets:
(N ,V) = directed graph representing the hydro
valley.
T = set of time steps.
U = set of turbines.
P = set of pumping stations.
S = set of active power and spinning reserves.
Fn = {m ∈ N|amn = 1} (n ∈ N ).
Dn = {m ∈ N|anm = 1} (n ∈ N ).
Xut = set of operational levels for turbine u at time
period t (u ∈ U , t ∈ T )
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Notation
Parameters:

Anm = connection matrix element (it is 1 when the water
released from reservoir n flows into reservoir m, 0 otherwise).

T = time step size [hours].

Dv = the number of time steps the water takes to flow (get
pumped) through arc v (v ∈ V).

Int = inflows at period t to reservoir n (t ∈ T , n ∈ N ) [m3/h]

G = gradient slopes [m3/h2]

Xuti = i-th operational level for turbine u at time period t
(u ∈ U , t ∈ T , i ∈ Xut ) [m3/h]

X u = upper bound on the water flow passing through turbine u
(u ∈ U ) [m3/h]

Y p = upper bound on the water pumped by pump p (p ∈ P)
[m3/h]

µu = {v ∈ V| turbine u represents arc v}
µ′p = {v ∈ V| pump p represents arc v}
ρu(x , v) = efficiency function of turbine u [MW]

θp(y) = efficiency function of pump p [MW]
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Variables

xut = water flow passing through turbine u in period t
(u ∈ U , t ∈ T ) [m3/h].
ypt = water pumped by pump p in period t
(p ∈ P, t ∈ T ) [m3/h].
vnt = water volume in reservoir n in period t
(n ∈ N , t ∈ T ) [m3].
zuti = auxiliary binary variable (1 when turbine u has
operational level ≥ i in period t , 0 otherwise)
u ∈ U , t ∈ T .
z ′pti = auxiliary binary variable (1 when pump p has
operational level ≥ i in period t , 0 otherwise)
u ∈ U , t ∈ T .
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Constraints
I Equilibrium constraint (∀n ∈ N , t ∈ T ):

vnt = vn(t−1) +
∑

m∈Fn :D(m,n)≤t

∑
u∈U :µu=(m,n)

xu(t−D(m,n))
T −

∑
m∈Fn

∑
u∈U :µu (n,m)

xut T

+
∑

m∈Dn :D(m,n)≤t

∑
p∈P:(n,m)

yp(t−D(m,n))
T −

∑
m∈Dn

∑
p∈P:µ′p=(m,n)

ypt T + Int T

with vn0 = initial volume of reservoir n (n ∈ N ).
I Gradient constraint (∀u ∈ U, t ∈ T ):

−GT ≤ xut − xu(t−1) ≤ GT

with xu0 is the initial flow in turbine u (∀u ∈ U ).
I Discrete operational levels constraints (u ∈ U, t ∈ T ):

xut =
∑

i=Xut

zuti (Xuti − Xut(i−1))

zut(i+1) ≤ zuti (i ∈ Xut )

−1 ≤ zuti − zu(t−1)i − zu(t+1)(i+1) ≤ 0 (i ∈ Xut )

0 ≤ zut1 + z′pt1 ≤ 1 ∀u ∈ U, p ∈ P : i(u, p) = 1

0 ≤ zut1 + z′p(t+1)1 ≤ 1 1∀u ∈ U, p ∈ P : i(u, p) = 1

0 ≤ zu(t+1)1 + z′pt1 ≤ 1 ∀u ∈ U, p ∈ P : i(u, p) = 1

where i(u, p) = 1 when turbine u is reversable and acts also as pump p.
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Objective function

Minimizing:
I Cost incurred by pumping∑

t∈T λtT
∑

p∈P θp(ypt)

I Cost of using water expressed by the water-values
[different modeling possibilities]

Minus
I Gain generated by turbining

∑
t∈T

λt T
∑

u∈U
ρu(xut , vnt )

+
∑
s∈S

∑
t∈T

λt T
∑

u∈U
(ρu(

∑
s′∈S:s′≤s

fS(xut ), vmt )

+ρu(
∑

s′∈S:s′<s

f ′s (xu t), vnt ))

where λt are price signals.
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Solution Approaches

Practically difficult: complicated constraints, and large
size of real instances.

Looking for provable high accuracy in a limited
amount of time.

Different research lines:
1. modeling and reformulations: formulation

strengthening, cuts, decomposition methods, and
approximations to efficiently provide effective lower
bounds on the optimal value;

2. heuristics: matheuristics, possibly exploiting the
formulations/decompositions/approximations of point
1, to efficiently provide good quality feasible
solutions.



Optimality for
Tough

Combinatorial
Hydro Valley

Problems

C. D’Ambrosio

Introduction
Example

Mathematical
Model

Solution
Approaches

Heuristics

Decompositions

Approximations
Piecewise linear
approximation

Multiple piecewise linear
approximation

Standard Triangulation

Optimistic approximation

MILP Model

Properties

Comparison

MILP size

Computational Results

Heuristics

Already tested (and presented) different heuristic
algorithms.

I Improve the currently available algorithms.
I Design new algorithms.

For example, use the “local branching” constraint
(Fischetti & Lodi, 2003)∑

i:x̃i=0

xi +
∑

i:x̃i=1

(1− xi) ≤ Π

where Π is the number of binary variables that we
allow to change value wrt the rounded LP solution x̃ .
We might re-define the objective function as

min Π

(where Π becomes an integer variable ≥ 0).
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Decompositions

The subproblem might be itself decomposed into smaller
sub-subproblems.
For example, the only constraints that link the different
hydro plants are the
Equilibrium constraint (∀n ∈ N , t ∈ T ):

vnt = vn(t−1)

+
∑

m∈Fn:D(m,n)≤t

∑
u∈U :µu=(m,n)

xu(t−D(m,n))T

−
∑

m∈Fn

∑
u∈U :µu(n,m)

xutT

+
∑

m∈Dn:D(m,n)≤t

∑
p∈P:(n,m)

yp(t−D(m,n))T

−
∑

m∈Dn

∑
p∈P:µ′p=(m,n)

yptT + IntT
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Approximations

I Real-world optimization problem can be often
modeled as a MINLP problem.

I What makes MINLP problem difficult?
1. non-linear functions;
2. integer variables.

I MILP solvers more efficient than MINLP ones and
handle large-scale instances.

I Trying to get rid of the non-linear functions→
“linearize” and use MILP solvers!!!!

I Piecewise linear approximation: Beale & Tomlin,
1970 (Special Ordered Sets).

For the moment, focus on MINLP with non-linear
objective function and linear constraints .
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Starting simple: univariate function

Consider a function f (x) and construct its piecewise
linear approximation.

I Divide the domain of f in n − 1 intervals of
coordinates x1, . . . , xn.

I Sample f at each point xi with i = 1, . . . ,n.
I The piecewise linear approximation of f is given by

the convex combination of the samples.

r1 r2 r3 r4

(a)

r1 r2 r3 r4

(b)
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Function of 2 variables: Method 1

1. Simply fix the value of one of the 2 variables and
obtain a univariate function: f (x , ỹ).

2. Apply methods for approximating univariate functions
(previous slide).

The quality of the approximation depends on the function
at hand.

Choose to fix the “less nonlinear” variable.
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Function of 2 variables: Method 2

In Conejo et al. (2002) the function f a = f (x , y) was
approximated by considering three prefixed water
volumes, say ỹ1, ỹ2, ỹ3 and interpolating, for each ỹ r , the
resulting function

f a = f (x , ỹ r )

by piecewise linear approximation.

It can be generalized by approximating a prefixed
number m of values of y .
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Function of 2 variables: Method 3

Consider a function f (x , y) and construct its piecewise
linear approximation.

I Divide the domain of f in a (n − 1)× (m − 1) grid of
coordinates x1, . . . , xn, y1, . . . , ym.

I Divide the rectangles in the (x , y)-space in triangles .
I Sample f at each point (xi , yj) with i = 1, . . . ,n and

j = 1, . . . ,m.
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Function of 2 variables: Method 3 (cont.d)

Any point (x̃ , ỹ)

I belongs to one of the triangles;
I can be written as a convex combination of its

vertices with weights αij ; and
I the value of function f at (x̃ , ỹ) is approximated as

f a =
n∑

i=1

m∑
j=1

αij f (xi , yj).

1 triangle↔ 1 binary variable→ O(n ×m) binaries.
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Method 3: Standard Triangulation

Given a rectangle identified by the four points v1, v2, v3, v4
we can divide it in 2 triangles in 2 different ways by
selecting:

1. diagonal [v1, v4]; or
2. diagonal [v2, v3].

v1

v2

v3

v4

x

Non-linear f (x , y)→ 2 different f a for choice 1 and 2 !
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Method 3: Standard Triangulation

Diagonal [v1, v4]:

αv1 ≤ β[v1,v2,v4] + β[v1,v3,v4]

αv2 ≤ β[v1,v2,v4]

αv3 ≤ β[v1,v3,v4]

αv4 ≤ β[v1,v2,v4] + β[v1,v3,v4]

β[v1,v2,v4] + β[v1,v3,v4] = 1

Diagonal [v2, v3]:

αv1 ≤ β[v1,v2,v3]

αv2 ≤ β[v1,v2,v3] + β[v2,v3,v4]

αv3 ≤ β[v1,v2,v3] + β[v2,v3,v4]

αv4 ≤ β[v2,v3,v4]

β[v1,v2,v3] + β[v2,v3,v4] = 1
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Method 4: Optimistic Approximation

v1

v2

v3

v4

x

(c) (d)

Observation is simple:

Why do we need to decide the triangle “offline”?

Let the point (x̃ , ỹ) be a convex combination of all the 4
vertices of the rectangle and the MILP solver
(optimistically) decide based on the objective function!

αv ≤ β[v1,v2,v3,v4] ∀v ∈ {v1, v2, v3, v4}
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Method 4: Optimistic Approximation (cont.d)

Let the MILP (optimistically) decide based on
the objective function!

In each region:

f̌ (x) = min
ν∑

j=1

αj f (vj ) or f̂ (x) = max
ν∑

j=1

αj f (vj )

subject to

αj ≥ 0
ν∑

j=1

αj = 1

ν∑
j=1

αjx(vj ) = x

ν∑
j=1

αjy(vj ) = y

where ν is the number of vertices that characterize the region.
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Method 4: Optimistic Approximation
Properties

Theorem
The approximations f̌ and f̂ are such that

I f̌ (resp. f̂ ) is piecewise convex (resp. concave).

I f̌ and f̂ are continuous.
I if f is linear then f̌ = f̂ = f .
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Method 4: Optimistic Approximation
Properties

Theorem
The approximations f̌ and f̂ are such that

I ∆r

(
f , f̌
)
≤ Dmax(r) and ∆r

(
f , f̂
)
≤ Dmax(r) (∀r ∈ R).

I if f is convex (resp. concave) in any r ∈ R, then f̌
(resp. f̂ ) is the best possible linear interpolation of
the samples f (vj) in the sense of ∆r (f , ·).

where
R is the collection of rectangles,
∆r (f ,g) = max(x ,y)∈r |f (x , y)− g(x , y)|, and

Dmax(r) is the maximum ∆r

(
f , f̃
)

among all the possible

linear interpolations f̃ .
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Standard vs Optimistic Approach: MILP size

Besides the nice properties, the optimistic approximation
provides huge advantages when modeled with a MILP.

I Standard triangulation: 1 binary variable for each
triangle O(n ×m).

I Optimistic approximation: 1 binary variable for each
rectangle.

I Note: Each axis treated separately, i.e.,
n binaries for the x axis, and
m binaries for the y axis. → O(n + m).

I For example, 3 × 3 grid→ 6 vs 18 binaries
10 × 10 grid→ 20 vs 200 binaries!
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f a = f (x , y): Short-Term Hydro Scheduling

Finding the optimal scheduling of a multi-unit hydro power
station in a short-term time horizon.

Maximize the revenue given by power selling.

Assumptions: price-taker situation, the electricity prices
and inflows forecast .

Linear constraints, while the objective function has a
non-linear part.

The power production is a non-convex, non-concave
function ψ(q, v) of the water flow q and the water volume
v in the reservoir.

We considered a specific instance of the problem with
168 time periods to be planned.
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f a = f (x , y): MILP size

optimistic approximation standard approximation
# var.s # con.s # nzs # var.s # con.s # nzs

n m all binary all binary
9 9 17,471 3,192 5,208 107,515 41,999 27,720 15,624 185,803

17 17 55,103 5,880 7,896 360,187 146,831 97,608 50,568 666,955
33 33 194,879 11,256 13,272 1,317,115 550,031 366,408 184,968 2,532,427
65 65 732,479 22,008 24,024 5,037,307 2,130,575 1,420,104 711,816 9,876,043

For n = m =65:
I Number of binary variables: 22,008 vs 1,420,104.
I Number of constraints: 24,024 vs 711,816.
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f a = f (x , y): Solving the MILP

Single processor of an Intel Core2 CPU 6600, 2.40 GHz,
1.94 GB of RAM under Linux.

Cplex 10.0.1.

Time limit of 1 hour.

optimistic approximation standard approximation
solution % CPU # solution % final CPU #

n m value error time nodes value error %gap time nodes
9 9 31,565.40 -2.34 14.71 1,507 31,565.40 -2.34 — 169.30 9,837

17 17 31,577.20 -2.31 755.96 36,507 31,577.20 -2.31 0.19 3,600.00 73,401
33 33 31,626.20 -2.35 277.13 2,567 n/a n/a n/a 3,600.00 5,500
65 65 31,640.30 -2.33 2,003.18 2,088 n/a n/a n/a failure failure

I Number of solved instances: 4 vs 2.
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f a = f (x , y): Going Logarithmic

Vielma & Nemhauser, 2011 : MILP model for the
standard triangulations with a logarithmic number of
variables (binary tree structure).

Doable also for the Optimistic approximation.

optimistic approximation logarithmic standard approximation
# var.s # con.s # nzs # var.s # con.s # nzs

n m all binary all binary
9 9 17,471 3,192 5,208 107,515 16,127 1,848 4,368 142,963

17 17 55,103 5,880 7,896 360,187 51,407 2,184 5,040 578,419
33 33 194,879 11,256 13,272 1,317,115 186,143 2,520 5,712 2,501,683
65 65 732,479 22,008 24,024 5,037,307 713,327 2,856 6,384 11,056,243

optimistic approximation logarithmic standard approximation
solution % CPU # solution % CPU #

n m value error time nodes value error time nodes
9 9 31,565.40 -2.34 14.71 1,507 31,538.70 -2.26 18.69 1,723

17 17 31,577.20 -2.31 755.96 36,507 31,577.20 -2.31 20.84 369
33 33 31,626.20 -2.35 277.13 2,567 31,624.10 -2.35 231.99 1,531
65 65 31,640.30 -2.33 2,003.18 2,088 31,640.30 -2.34 530.56 435
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f a = f (x , y): Going Logarithmic (cont.d)

logarithmic optimistic approximation logarithmic standard approximation
# var.s # con.s # nzs # var.s # con.s # nzs

n m all binary all binary
9 9 16,127 1,848 4,032 135,907 16,127 1,848 4,368 142,963

17 17 51,407 2,184 4,704 553,891 51,407 2,184 5,040 578,419
33 33 186,143 2,520 5,376 2,409,955 186,143 2,520 5,712 2,501,683
65 65 713,327 2,856 6,048 10,701,091 713,327 2,856 6,384 11,056,243

log optimistic approximation log standard approximation
solution % initial CPU # solution % initial CPU #

n m value error %gap time nodes value error %gap time nodes
9 9 31,565.40 -2.34 1.13 17.87 1,734 31,538.70 -2.26 1.14 18.69 1,723

17 17 31,577.20 -2.31 1.35 21.08 450 31,577.20 -2.31 1.35 20.84 369
33 33 31,626.20 -2.35 1.24 263.88 2,195 31,624.10 -2.35 1.25 231.99 1,531
65 65 31,640.30 -2.33 1.20 664.15 796 31,640.30 -2.34 1.20 530.56 435

Why? log(nm) = log(n) + log(m)
Advantages of the optimistic approximation: MILP model
of limited size (tractable ) and easy to implement .
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Oversampling

(e) (f)

(g) (h)



Optimality for
Tough

Combinatorial
Hydro Valley

Problems

C. D’Ambrosio

Introduction
Example

Mathematical
Model

Solution
Approaches

Heuristics

Decompositions

Approximations
Piecewise linear
approximation

Multiple piecewise linear
approximation

Standard Triangulation

Optimistic approximation

MILP Model

Properties

Comparison

MILP size

Computational Results

For more information...

Visit the project web site:

http://www.lix.polytechnique.fr/˜dambrosio/PGMO.php.

http://www.lix.polytechnique.fr/~dambrosio/PGMO.php
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