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Plan

1. Colourful linear programming

2. Some algorithms

3. Counting questions
• A geometrical problem : the colourful simplicial depth
• A combinatorial approach : Octahedral systems
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Colourful linear programming
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The Carathéodory Theorem in dimension two
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Linear programming

The linear programming problem.

Input : A set S ⊂ Qd and a point p ∈ Qd .
Output : Decide whether there is a T ⊆ S, |T | ≤ d + 1, such
that p ∈ conv(T ). If “yes”, find it.

Carathéodory Theorem =⇒

If p ∈ conv(S), there is such a T .
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Complexity status

Theorem
Linear programming is in P.
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The colourful Carathéodory Theorem in dimension two
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The colourful Carathéodory Theorem [Bárány 1982]

Given a set of points S = S1 ∪ . . . ∪ Sd+1 and a point p in Qd

such that p ∈
⋂d+1

i=1 conv(Si), there is a T ⊆
⋃d+1

i=1 Si such that
|T ∩ Si | ≤ 1 for i = 1, . . . ,d + 1 and p ∈ conv(T ).

T ⊆
⋃d+1

i=1 Si such that |T ∩ Si | ≤ 1 for i = 1, . . . ,d + 1 is
colourful.
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Colourful linear programming [Bárány and Onn in 1997]

The colourful linear programming problem.

Input : k sets, or colours, S1, . . . ,Sk ⊂ Qd and a point p ∈ Qd .
Output : Decide whether there is a colourful T = {s1, . . . , sk}
such that p ∈ conv(T ). If “yes”, find it.

Colourful Carathéodory Theorem =⇒

If k = d + 1 and p ∈
⋂k

i=1 conv(Si), there is such a T .
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Complexity status

Theorem (Bárány and Onn, 1997)
Colourful linear programming is strongly NP-complete.
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Other colourful linear programming problems

Colourful feasibility problem.

Input : d + 1 sets S1, . . . ,Sd+1 ⊂ Qd and a point p ∈ Qd such
that, p ∈

⋂d+1
i=1 conv Si .

Output : Find a colourful simplex containing p.

Complexity : open question.
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Other colourful linear programming problems

Lemma (Octahedral Lemma)
Let X1, . . . ,Xd+1 be sets of points, with |Xi | = 2, and a point p.
There is an even number of colourful simplices generated by⋃d+1

i=1 Xi containing p.

In particular, if there is one there is another.
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Other colourful linear programming problems

Another colourful simplex.

Input : A colourful simplex σ containing p and a colourful
simplex σ′ disjoint from σ.
Output : Find another colourful simplex containing p generated
by points of σ ∪ σ′.

Complexity : It belongs to the PPAD class. It is an open
question whether it is PPAD-complete.
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Some algorithms 1

1In this section, p is the origin 0.
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An algorithm for the colourful feasibility problem.
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Bárány’s algorithm (1982)

Consider S1, . . . ,Sd+1, sets of points, each containing 0.
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Bárány’s algorithm (1982)

Consider a colourful simplex.
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Bárány’s algorithm (1982)

Consider the closest point to the 0 in this simplex.

This point lies on a facet of the colourful simplex. A colour i is
missing on this facet.
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Bárány’s algorithm (1982)

Replace the vertex of colour i with another vertex of the same
colour, getting a point closer to 0
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Bárány’s algorithm (1982)

Iterate...
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Bárány’s algorithm

Complexity for rational data :
Given ρ > 0 and S1, . . . ,Sd+1 ⊂ Qd of bit size L, with
B(0, ρ) ⊂ conv(Si).

This algorithm find a colourful simplex containing 0 in
polynomial time in L and 1/ρ.
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An algorithm for the problem another colourful simplex
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Reminder : the simplex algorithm

A point in the convex hull of d + 2 points in Rd is in exactly two
simplices generated by those points.
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Pivoting algorithm

Consider a colourful simplex σ containing 0, and a disjoint
colourful simplex i.e. one point of each colour not in σ.
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Pivoting algorithm

Consider a colour, called the pivoting colour.
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Pivoting algorithm

Apply the argument of the simplex algorithm.
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Pivoting algorithm

Consider the other simplex containing the origin.

This simplex is “almost” colourful. The pivoting colour is duplicated,
and a colour i is missing.
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Pivoting algorithm

Add the vertex of colour i not in σ, and obtain a new simplex
containing 0.
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Pivoting algorithm

Iterate...
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Pivoting algorithm

Iterate...
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Pivoting algorithm

Open questions :
• How many steps in the pivoting algorithm ?
• Where do the colourful and almost colourful solutions lie

on the polytope ?
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Counting feasible bases
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Original motivation : simplicial depth

Let S be a set of points in Rd .

Simplicial depth of a point p = number of d-simplices generated
by S and containing p.

22/41



Original motivation : simplicial depth

Let S be a set of points in Rd .

Simplicial depth of a point p = number of d-simplices generated
by S and containing p.

22/41



Original motivation : simplicial depth

Let S be a set of points in Rd .

Simplicial depth of a point p = number of d-simplices generated
by S and containing p.

22/41



Original motivation : simplicial depth

Let S be a set of points in Rd .

Simplicial depth of a point p = number of d-simplices generated
by S and containing p.

22/41



Original motivation : simplicial depth

Let S be a set of points in Rd .

Simplicial depth of a point p = number of d-simplices generated
by S and containing p.

22/41



Original motivation : simplicial depth

Let S be a set of points in Rd .

Simplicial depth of a point p = number of d-simplices generated
by S and containing p.

22/41



Original motivation : simplicial depth

Let S be a set of points in Rd .

Simplicial depth of a point p = number of d-simplices generated
by S and containing p.

22/41



Original motivation : simplicial depth

Let S1, . . . ,Sd+1 be (d + 1) sets of points in Rd .

Colourful simplicial depth of a point p is :
depthS1,...,Sd+1

(p) = number of colourful d-simplices generated
by
⋃d+1

i=1 Si and containing p.
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Original motivation : simplicial depth

Let S1, . . . ,Sd+1 be (d + 1) sets of points in Rd .

Colourful simplicial depth of a point p is :
depthS1,...,Sd+1

(p) = number of colourful d-simplices generated
by
⋃d+1

i=1 Si and containing p.

µ(d) = min
S1,...,Sd+1,p

depthS1,...,Sd+1
(p).
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A lower bound on simplicial depth

For S ∪ {p} in general position

[Bárány1982]

max
p

depthS(p) ≥ 1
(d + 1)d+1

(
n

d + 1

)
with n = |S|.

Proof combines the Tverberg theorem and the colourful
Carathéodory theorem.
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A new lower bound for simplicial depth

µ(d) = min
S1,...,Sd+1

p∈
⋂d+1

i=1 conv(Si )

#{T : T colourful and p ∈ conv(T )}.

Strong version of Colourful Carathéodory Theorem : each point
in
⋃d+1

i=1 Si is part of a colourful simplex containing the origin.

max
p

depthS(p) ≥ µ(d)

(d + 1)(d+1)

(
n

d + 1

)
with n = |S|.

What is the exact value of µ(d) ?
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Upper bound on the colourful simplicial depth

Unfortunately,
[Deza et al., 2006]

µ(d) ≤ d2 + 1.
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Gromov’s bound

max
p

depthS(p) ≥ µ(d)

(d + 1)(d+1)

(
n

d + 1

)
with n = |S|,

with µ(d) = d2 + 1 at best.

[Gromov, 2010]

max
p

depthS(p) ≥ 2d
(d + 1)!(d + 1)

(
n

d + 1

)
with n = |S|.

(simplification by Karasev, 2012).
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The conjecture

Conjecture.
µ(d) = d2 + 1.
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The successive improvements

Lower bound Conjecture true
for µ(d) for d up to

Bárány, 1982 d + 1 1

Deza et al., 2006 2d 2

Bárány and Matoušek, 2007 max(3d , 1
5 d2 + 1

5 d) 3

Stephen and Thomas, 2008 1
4 d2 + d + 1 ∅

Deza, Stephen, and Xie, 2011 1
2 d2 + d + 1

2 ∅

Deza, Meunier, and S., 2012 1
2 d2 + 7

2 d − 8 4
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A combinatorial counterpart : octahedral systems

An octahedral system Ω in an n-partite hypergraph
(V1, . . . ,Vn,E) satisfying parity condition : for any X ⊆

⋃n
i=1 Vi

such that |X ∩ Vi | = 2 for all i , the number of edges of Ω
induced by X is even.

Octahedral systems without isolated vertex generalize colourful
configurations.
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An octahedral system
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Two main properties for the geometrical approach

Octahedral Lemma

X ⊆ S, |X ∩ Si | = 2 for all i −→ an even number of colourful
simplices.

Strong colourful Carathéodory Theorem
If 0 ∈ conv(Si) for all i , each point is part of some colourful
simplices containing the origin.
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Combinatorial approach

Vertex set :
V = V1 ∪ · · · ∪ Vd+1.

Edge set : E .

Parity condition : The number
of edges induced by X , with
|X ∩ Vi | = 2 for all i , is even.

Octahedral systems without
isolated vertex : Every point in⋃d+1

i=1 Vi is in at least one edge.

Geometrical approach

A colourful configuration
S = S1 ∪ · · · ∪ Sd+1.

Colourful simplices
containing the origin.

Octahedral Lemma : The
number of colourful simplices
containing the origin generated
by points in X , with |X ∩ Si | = 2
for all i , is even.

Strong Colourful
Carathéodory Theorem :
Every point in

⋃d+1
i=1 S is part of

some colourful simplex
containing the origin.
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If Ω realizes a colourful configuration, the number of edges |E |
is the number of colourful simplices containing the origin.

Definition (ν)
ν(d) is the minimal number of edges of an octahedral system
without isolated vertex with |Vi | = d + 1 for i = 1, . . . ,d + 1.

ν(d) ≤ µ(d)
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Lower bounds

Theorem (Deza, Meunier, S.)

ν(d) ≥ 1
2

d2 +
7
2

d − 8
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Idea of the proof : induction
Inductive approach.

Given an octahedral system Ω = (V ,E) without isolated vertex
and one of its vertices v , use the bound for
Ω′ = (V ′,E ′) = Ω \ {v} :

|E | = |E ′|+ degΩ(v).

For any such Ω′, parity condition automatically satisfied.

We would like to ensure that Ω′ is again without isolated vertex.

Main Idea. Delete the vertices one after another until reaching
an octahedral system whose number of edges can be
estimated.
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Small instances

An octahedral system with n = 5, |V1| = . . . = |V5| = 5 and
without isolated vertex has at least 17 edges.

Proposition

µ(4) = 17.

Computational approach “branch-and-bound” µ(4) ≥ 14, (Deza, Stephen, and Xie, 2012).
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Small instances

n = 5, |V1| = . . . = |V5| = 5 =⇒ |E | ≥ 17.

|E | ≥ 3
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Realisability

Is any octahedral system Ω with |Vi | = d + 1 for i = 1, . . . ,d + 1
and without isolated vertex the combinatorial counterpart of
sets of points S1, . . . ,Sd+1 in Rd ?

No.

Counterexample.
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Consequence

It might be possible that the conjecture µ(d) = d2 + 1 cannot
be proven using octahedral systems...
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Open questions

• Complexity status of colourful linear programming under
the condition p ∈

⋂d+1
i=1 conv Si .

• Number of steps in the pivoting algorithm.

• µ(d)
?
= d2 + 1.
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Thank you.
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