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Application Example: Free Material Optimization

& FMO is a methodology for design of mechanical structures. In FMO,
one seeks how to distribute a given amount of elastic material over a
given domain in order to get a structure capable to withstand best of
all a given collection of external loads. It is assumed that

e the mechanical properties of the material (its rigidity tensor)
may vary, in an arbitrary fashion, from point to point;

e the rigidity of a construction w.r.t. a given external load is
measured by the compliance — potential energy capacitated by

the construction at the static equilibrium corresponding to the
load;

& The goal is, given the weight of the construction, to minimize its
largest, over a given set of loading scenarios, compliance.

& Usually it is technically impossible or too expensive to implement an
FMO design “as it is”. The role of FMO is in providing a good guess
for the structure of the would-be construction. After the structure
is guessed, the construction is designed from traditional materials via
standard engineering techniques.




% With Finite Element discretization, the Multi-Load FMO problem
is
( . ]
min ) max fESTH ) fo: ts = 0, = Tr(ty) < 1} (FMO)
| E=Lyeeny ? J

where

eti,i=1,.. N, are symmetric 3x3 (in 2D) or 6x6 (in 3D) variable
matrices (rigidity tensors of the material in Finite Element cells),
o fy, L = 1,..., K, are M-dimensional data vectors representing
loading scenarios,

o S(t) = Zbi;tz-bz-s is the M x M stiffness matrix of the construction.
.5

]

& In a realistic 2D FMO problem,

e the number N of Finite Element cells is tens of thousands
= design dimension of (FMO) is of order of 50,000 — 200,000
e the size M of the stiffness matrix is ~ 2N

= it is a nontrivial problem just to compute the objective!
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e The dual problem is
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e LE.g.. for planar shape with 14 x 14 cells and 3 loads:

Setting | Design dimension | Effort of analyzing LMI’s
at a point, a.o.

(Pr) 1,177 37,309,230

(D1) 1,264 71,608
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Optimization in Flight...



Design of stiffeners: MOPED & MBB-LAGRANGE




Design of stiffeners: MOPED & MBB-LAGRANGE




Reference design

FMO based design
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Wing element for Aerobus A380 Implementation, Erlangen
FMO design by NERML University and European Aero
80 iterations Defence and Space Co.
n = 39,780, N =6,630, M =13,84

Free Material Optimization: element of aircraft wing
FMO allowed for 17% reduction in element’s weight






Based on computational results for maximum stiffness and quite a
bit of engineering interpretation a new type of structure was
devised for the ribs which gave a weight benefit against traditional
and competitive honeycomb/ composite designs (up to 40% !)

A total weight saving of more than 500 kg per wing was obtained
by optimizing the ribs in the area shown. These are now — since
April 27, 2005 - the first topology optimized parts in flight.



Recovery of signals

from noisy outputs



'The Estimation Problem

y=Hzx+w

Given y, find an estimator z, which is as “close” as

possible to z.

w random vector

E(w) =0, cov(w)=C positive definite

CLASSICAL METHODS are based on minimizing
data error ||y — Hz||



CLASSICAL APPROACH (Gauss,. . .)

Closeness measured by (standardized) data error
G2 (y — HE)|ls
Least Squares Estimator

convex

rps = arg mxm | (y z)|2 optimization

SOLUTION (H full column rank)

trs = (H'CIH)"1HTC™ 1y

a linear estimator

T =Gy

CLASSICAL MODIFICATION (Tikhonov,. . )
still

>

T = argm:gn {‘]0_1/2@ — Hz)|]? + )\HZCHQ} convex

optimization

SOLUTION
tr=H'"CT'H+X)'H'C™y

also a linear estimator.



Observations

True signal

]



MSE estimator

min El|x — :%||2
€Z

With a linear estimator T = Gy problem becomes

mén {z'(I - GH)"(I - GH)x + Tr(GCG)}

bias variance
but z unknown!

“Solution”: minimal variance unbiased estimator

GH =1

Solution: Same as Zp - -

Our approach: minmax MSE linear estimator:

T = Gy, where:

mci;n | rﬁla}éL {z'(I - GH)" (I - GH)x + Tr(GCG)}



Employing conic optimization theory we proved:

Theorem I: Original MinMax MSE problem (1) is
equivalent to the SDP problem:

m%n L)+t
Vi T-Y2(1 - GH)T
=0
(I -GH)T~'/? I
¢ T
g 0
g 1

Variables G, \,t
g = vec (GCl/Z)



Theorem II: For the special case I'= I, SDP can be
solved explicitly. The optimal MMX MSE estimator is

Tomx = @ (HYCT H)THYC™y

Ve

TLs

L2
T L2+ Tr((HTC-TH)™ )

where Q0



Proof Structure

(I) Establish the structure of the optimal solution

G =VDVT(HTC-'H)"'HTC-!

where V' is the orthogonal matrix diagonalizing
HTYC7'H, i.e.,

H'C'H=VxV*

Y, = diag(oq,...,0,)

This is obtained by optimality condition. Using
this, we end up with an equivalent problem in
variable (matrix) D (Problem B below).

(IT) Show that 3 an optimal matrix D which is

diagonal.

(IIT) Find the diagonal elements of D.



min L°\ + Tr(D'DX™1)
(B) D)\
(I —-D)T'(I-D)=< M

Second part of the proof (“optimal D can be chosen

diagonal”).

Let 7, be the set of 2" matrices which are n x n,
diagonal, with the entries in the diagonal being +1 or
—1.

Claim If D* is an optimal solution of (B), then so is

JD*J, VY JeJg,

Proof

Tr((JDNHY(JDHL™t = Tr(D'DY™1)]
(I—-JDNY(I—-JDJ)=X < ([I-D)Y(I—-D)=<M

Conclusion Since (B) is a convex problem = its
optimal solution set is convex, so if D* is an optimal

solution, so is
1 *
on E (JD*J)

JETn



( 1 0
«72 — { )
\ 0 1

1< 1
—ZJiDJi:—
4= 41 0 4d

General result

1 .
o Y JDJ = diag D
JEjn

Part 3 of the proof with D = diag(ds,...,dy,) problem (A)
< (B) reduces to

rdr;if\l LN+ > (d? /o)

St (1—d)? <A, Vi

This problem can be solved analytically, which gives the

final result claimed in Theorem II. 16
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Dynamic Robust Optimization



T = Ay + By + Ridy
open loop dynamics: vy = Ciay
Xy — <2
control law: up = & + éo =t Yr
Y
w = (Ug, ..., U, Tq, ..., T711) = W(E: d, 2)

]
uin {f(V(€d,2)): DW(&d 2] b € Q. i=1,.om}  (U)

Note: Due to presence of uncertain input trajectory d and possible
uncertainty in the initial state, (U) is an uncertain problem.
Difficulty: While linearity of the dynamics and the control law make
W(&;d, z) linear in (d, z), the dependence of W(-,:) on the parameters
¢ = {&0, Ztr o<r<t<r Of the control law is highly nonlinear

= (U) is not a bi-affine problem, which makes inapplicable the theory
we have developed. In fact, (U) seems to be intractable already when
there is no uncertainty in d, 2!
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Istael Institute of

& Technion
— Dynamic Control Problems

@ Example: X, =X +u+d

Y =4,
X, =0
ut:KtJ;t

@ Control wanted: when |d,|<I then |u,|<3 for t=0,1,2
@ Since: u, =K,X, = k,(X, +k,d, +d )=, |1+ ,)d, +d, |
1s not bi-affine

the control coefficients have a
highly non convex domain.

S o
\//




Remedy: suitable re-parameterization of affine control laws.

& Consider a closed loop system along with its model:

closed loop system: model:

Ti1 = Ay + B+ Rydy | T = ATy + By
yr = Chay gy = CiTy
o = <2 .7?\0 =0
ur = U(yo, - Y1)

® Observation: We can run the model in an on-line fashion, so that
at time ¢, before the decision on u; should be made, we have in our
disposal purified outputs

U = Yt — Yt
# Fact I [Equivalence]: Every transformation (d, z) — w which can be
obtained from an affine control law based on outputs:

t —
ur = o + Zo StrYr (%)
can be obtained from an affine control law based on purified outputs:
t
Up = Mo + E—:O Hy v, (**)

and vice versa.

28



system: model:
T = Ay + By +Redy |0y = ATy + By
v = Cixy v = Ci1y
rg = 2 o = 0 (S)
control law:
Uy = Yt — Yt
U = 77t0+éOHtTUT (**)

# Fact II [bi-affinity]: The state-control trajectory w = W (n;d, z) of (S)
is affine in (d, z) when the parameters n = {n, H;: }o<r<t<7 of the control
law (xx) are fixed, and is affine in n when (d, z) is fixed.

29



& Corollary: With parameterization (xx) of affine control laws, the problem

Find an affine control law (%) which ensures that the resulting state-control
trajectory w satisfies the system of convex inclusions

Dw—0b€9;, 1=1,....m
and minimizes, under this restriction, a given linear objective f(w).

becomes an uncertain bi-affine optimization problem and as such can be processed

via the CRC approach.
In particular, in the case when Q,; are one-dimensional, the CRC of the problem

is computationally tractable, provided that the normal range U of (d, z) and the
associated cone L are so. If U, L and the norms used to measure distances are

polyhedral, CRC' is just an explicit LP program.

30
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Technion
W iz The Supply chain Problem
o T——

Erternal Erternal
supply IE.-:.h.EIur |Ec'.h.2£r:.|ﬂ o E[:heiﬂr demand
1 2 m

& x/=amount echelon j orders from j-1 at the beginning of period t
® Y/=inventory level in echelon j at the end of period ¢

@ 7 =initial inventory level at echelon j

@ d, =external demand at period ¢

@ /(j)= Information delay, M(j)= manufacturing delay, L(j)= Lead time

@ TM(j) =I(j) tM(j-1) +L(j) the delay between the time an order is placed
and received in echelon j

@ TM(j) =I(j+1) +M(j) the delay between the time an order is placed and
shipped from echelon |

2




\=y Technion
g Istael Institute of

e The Supply chain Problem
o TIS—S——S—S

@ Main objective : minimizing cost

. Sllb Objective: minZ[ctjxtj +wtj J
oq o . X,y it
stabilizing the system ot
4 o =yl +x) , —x Vjie{l,m-1}
@ Problem Characteristics: 0 TV T X ey T X

m

m __ _.m _
Ve =Vt X g1y dt—TM(m)
. . . 3
J J 3yJ
w2 hy,
j Jyi
W, 2 —P:):

@ Finite horizon
® Multi echelon

® Delays ylzd
e Backlogging vl 5‘_’]: Vi€ {1,..,m)}
® Demand must be satisfied i‘j il(;]
and is uncertain Wtf_Z 0
@ Eliminating the equalities yo=2

recursively yields a LP
with only inequalities
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Tcolony The Bullwhip effect
o ———

@ This problem has a well known phenomenon associated with it
called “Bullwhip effect”

@ The Bullwhip effect is described as “amplification of oscillation
from down stream demands to upstream echelons”

@ Such amplification can occur both in orders and inventory levels.

@ Large variations in these measures are disruptive to the system and
generates high cost.

@ One of the aims of good control is to reduce the Bullwhip effect.



Technology

fg Technion
Istael Institute of

LYV control

@ Let’s assume we take the control
suggested by Love [Love,1979] using
target inventory:

@ Resulting in the LP problem :

mln Z|_C x +W J

X, X,V W Tt

s.z.

R A Nl

yt = yt—l +xt_TL(j)
J J 5,
w! 2 hly]

Jj+1

—d

Vj € {1,ym —1}

t—=TY (m)
3

Vje{l,.,m}

_ j+1
=X, +-///

.th

@ We can further improve this
method by making the
reference inventory a
decision variable rather than
a constant. — ILV control



?g e
Technalogy Example

o ——
@ [Love, 1979], Oscillating demand:

tl1l(2(3|4|5(6]|7|8|9|10)11 1213|1415 |16 |17 18] 149 |20
d, |6 |6|6|6|6|6|6|6|7]|8 |8 |09 |8 | T|6 5|45 |6

@ Horizon: n=20

@ Echelons: m=3

@ Cost: ¢c=2, p=3,h=1

@ Initial inventory: z=12
@ Lead time: L=2

@ No other delays




=7 Technion
¥ 55 The importance of good control

@ The Bullwhip effect —

LV ILV
OFV: 4795 OFV: 3140
150 . : 150 : .
196} 100} ; -
— — 'F!
£ s 2 s 2 |
E e ¥
L] 2 _— it
E il E i x@w =
£ E o
-5t -5 1
10 5 1o 15 20 10 5 10 Is 20
fime fime

@ These are deterministic methods which do not work well with
varying demand > a more robust method is needed



Purified output-based
AARC control
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gTech"iﬂﬂ The supply chain problem

Istael Institute of
Technology

as a control ﬂroblem

@ The dynamics of the supply chain problem 1s given by:

J— i j j+l :
Vi =Vt X =X Vje{l,.,m—1}
m _ ..m m _
Ve =Y+ X o =4 g,
with initial state: vy =7

whose form matches the classical dynamic control problem

13



The purified outputs corresponding to the dynamic system
(1) — (3) are here

t—TM(m) _
zpb— X dp It j=m
: t=1
v =
Zé J<m




Inventory Behavior — “amplification of
oscillation”

inventory level

= - - - 1500 :
N @ LV |
_-i' /] E:-E
sof _
0 3 10 I 20 1% ; 10 13 20
fime fime
i3 . . . 150 . . . 150 . .
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Chance Constraints

d
p(w) = Prob {wo + Zzgwg > O} >1—c€ (O)

(=1

e In general, (C) can be difficult to process:

— The feasible set X of (C) can be nonconvex, which makes

it problematic to optimize under the constraint.
— Even when convex, X can be “computationally intractable”:

Let z ~ Uniform([0.1]9). In this case, X is con-
vex (Lagoa et al., 2005); however, unless P = N P,
there is no algorithm capable to compute p(w) within

accuracy ¢ in time polynomial in the size of the (ra-

tional) data w and in In(1/6) (L. Khachiyan, 1989).

e When (C) is difficult to process “as it 1s”, one can look for
a safe tractable approximation of (C) — a computationally

tractable convex set U, such that U, C X = {w : p(w) > €}.



Robust Optimization to the

Rescue of Chance

Constraints ...



Probabilistic Guarantees via RO

d
fol)+ > afilr) <0. (1)
=1

Assumption
21, 29, .. ., 24 iIndependent rv’s
21~ P; € P, (compact all prob. dist. in P; has common support

= [=11).
Definition A vector z satisfying, for a given 0 < z < 1:

Pr{fo(x) + Xz fi(r) <0} > 1—¢€ (chance constraint) (2)
provides a safe approximation of (1).

Challenge Find uncertainty set for z, U, s.t. the Robust Counter-
part of (1):
folz)+ Xz fi(x) <0, Vz e U (3)

is a safe approximation of (1), i.e., every x satisfying (3) satisfies
the CC (2).



Theorem

U =Bn(M+E,)
B={ueR||lulw <1}
where M = {ulyf <w < i, =1, .d} @
E = {u[Xuj/o} < 2log(1/€)}
{7, 44 and oy are such that
2
z

T2 yi=1,....d

Ai(y) < max(py y, ' y) + 5

where

Ai(y) = max log ( / exp(yS)sz(S)) :

PePp



Ambiguity set P

Ambiguity set P should be such that it is possible to obtain good,
computationally tractable upper bounds on

sup Epf(x, z)
PeP
Most frequently, P consists of IP with known:
@ mean
@ (co)variance matrix

@ possibly, higher order moment information

Postek et al. (2015) 6 /34



Ambiguity set P

Ambiguity set P should be such that it is possible to obtain good,
computationally tractable upper bounds on

sup Epf(x, z)
PeP
Most frequently, P consists of IP with known:
@ mean
@ (co)variance matrix

@ possibly, higher order moment information

Major works: Scarf (1958), Dupatova (1977), Birge and Wets (1987),
Birge and Duld (1991), Gallego (1992), Gallego, Ryan & Simchi-Levi
(2001), Delage and Ye (2010), Wiesemann et al. (2014) and many
others...

Postek et al. (2015) 6 /34



Forgotten result of Ben-Tal and Hochman (1972)

An exact upper bound when the dispersion measure is the mean absolute
deviation (MAD).

Theorem

Assume that a one-dimensional random variable z has support included in
[a, b] and its mean and mean absolute deviation are j and d:

P = {P : supp(z) - [3, b]7 Epz = p, EP|Z - H’ = d}

Then, for any convex function g : R — R it holds that

sup Epg(z) = p1g(a) + pag(p) + psg(b),
S

WhereP1=ﬁ7 P3=ﬁ, p2=1—p1 — ps.

Postek et al. (2015) 9 /34



Generalization to multiple dimensions

The result of Ben-Tal and Hochman (1972) generalizes to
multidimensional z with independent components.

P ={P:supp(z) C [ai, bj], Epzi =pi, Eplzi —pi|=d;, z Lz}.
Independence implies that the worst-case distribution is a product of the

per-component worst-case distributions.

For each convex g(-) it holds that

nz
supEpg(z) = ) P | &y i)
PeP i—1

a€e{1,2,3}"z

where p;’_ and Tél_ depend only on a;, b;, uj, and d; (not on g(-)).

Postek et al. (2015) 10 / 34



Worst-case chance constraints

Safe approximations

As such, (WC-CQ) is intractable and we need a safe approximation - a
computationally tractable set S of deterministic constraints such that

x feasible for S = x feasible for (WC-CC)

How to construct safe approximations?

The crucial step is a construction of an upper bound on the moment
generating function (MGF) of z (Ben-Tal et al. (2009)):

sup Ep exp(w z).
PeP

Postek et al. (2015) 24 / 34



Recall: For each convex ¢(-) it holds that

sup Epg(z) = Z (Hp%) (7'17“'77_3;2)

Pep ac{1.2.3}n

where p!, and 7, depend only on a;, b;, y1;, and d; (not on g(-)).

This formula has 3" terms!

However:
sup log (Ep eXp(wTZ)) = sup log (Ep ("1 Hnen))
PeP PeP
= sup log | Lp H e" | = due to z;’s being independent
PeP i1
= sup log E ez sup log E %) |
PeP (H ) PE'P Z )

So here we need to apply the (B-H) upper (lower) bound separately

to each on the n one-variable convex functions F e%Vi%i)



Worst-case chance constraints

MGF with our distributional assumptions

We know exactly the worst-case value of the MGF (not just an upper
bound):

nz
sup Epexp(w’z) = H sup Ep exp(w;z;)
PEP i PeP

= H (g exp(—w;)+1—d+ Zexp(w,-))
i=1

= H (d cosh(w;) + 1 — d)

i=1

Using this fact, we are able to construct three safe approximations of
increasing tightness and increasing complexity.

Postek et al. (2015)

25 / 34



An example of a safe approximation

Theorem
Let

[a(z); b(z)] = [a% B°] + ) _ z[a’; b].
i=1
If there exists o > 0 such that (x, ) satisfies the constraint

(@%)Tx — b + alog (i (d cosh<( I)Ta +1_ >>

i=1
+a Iog 1/e) <0

then x satisfies the (WC-CC): sup P (a” (z)x > b(z)) < e.
PeP

The approximating constraint is convex in (x, a)!

Postek et al. (2015) 26 / 34



Desired diagram graphically
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Optimization problem to be solved

min T

n
st.  —-7< ZX;D,-(¢) <7, 0<¢<T70°
i=1
n
1<) xDi(¢) <1, 70°<¢<T77°
i=1
n
0.9< ) xDi(¢) <1, 77°< ¢ <90°
i=1
Typically, decisions x; suffer from implementation error z;:

xi— xi = (14 zi)x;

We want each constraint to hold with probability at least 1 — ¢!



Worst-case chance constraints

Implementation error

Typically, decisions x; suffer from implementation error z;:
xi = xi = (14 pzi)x;

We want each constraint to hold with probability at least 1 — € for all
P € P, for example:

P (Zx;(l + pzi)Di() < 1) >1—¢ T7°<@p<90°, VPeP
i=1

Two solutions:

@ nominal: no implementation error
@ robust: p = 0.001 and ¢ = 0.001.

Postek et al. (2015) 30/ 34



Ben-Tal and Hochman (1972)

Assume f : R — R is convex and z follows distribution P belonging
to ambiguity set P such that

P={P:supp(z) = [a~,a"], Epz=p, Eplz—p|=d}
Then it holds that:

ﬂgugEPf(z;) = pif(a”) + pof () + p3f(a™)
(S

where p; = 2(35,#), p3 = 2(%37), p2=1—p1—ps3.

Using this to the MGF problem with our assumptions on z, ..., z,
we have

n

sup Epexp (sz) = H (di cosh(w;) + 1 — d;)
PEP(,,,q) i1



How does it apply to antenna implementation error

We need u; , u;, 0; such that:
tio- 1,
dicosh(t) + 1 —d; < exp | max{pt,pu; t} + S0it

for all t € R.
We easily find the right values y; = ,u;r =0 and

o1 = sup \/2Iog(d,- cosh(t) + 1 — d;)

teR t2

to satisfy this requirement.



Worst-case chance constraints

Nominal solution - dream and reality

Nominal solution — no implementation error No implementation error — polar plot
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Worst-case chance constraints

Robust solution - dream and reality

Robust solution — no implementation error  No implementation error - polar plot

1 JaN=
§
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8
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0
0 20 40 60 80
Angle
Robust solution — implementation error p=0.001 Implementation error — polar plot
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§
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Convex Optimization in the
Service of Medicine



Application Example: 3D Imaging in Positron Emission Tomography

e -

% PET is a powerful non-invasive medical diagnostic imaging technique
for measuring the metabolic activity of cells in human body.

PET imaging is unique in that it shows the chemical functioning of
organs and tissues, not just anatomic structures.



% An idealized mathematical model of the PET imaging problem is to
recover a 2D (or 3D) density from its Radon transform — collection
of integrals of the density along all lines in R? (or R?).

# In reality, the Radon transform data registered by PET scanner are
incomplete, noisy and discretized, which badly affects the quality of
the Inverse Radon Transform imaging.

% Applying the Maximum Likelihood method, one ends up with the
following convex optimization problem:

11-1)311{ f) = - % yiln ( ) pij)\j) A20, %< 1} (PET)
1= J= 1=

e A € R™ discretized tracer’s density (design vector)
e y;, > 0 — # of LORs registered by i-th pair of detectors (data)
e p;; > 0 — probability for LOR originating from j-th grid point
to be registered by i-th pair of detectors (data)

& PET Imaging problems are extremely large-scale: in 3D,

e the design dimension n varies from 500,000 to 3,000,000
e the number m of log-terms in the objective varies from 3,000,000
to 25,000,000



econstruction Algorithm




& When solving typical nonlinear convex problems, the “price of ac-
curacy digit” for all known polynomial time algorithms is as large as
O(n?). With n ~ 10°, this price is by six (!) orders of magnitude larger
than the performance of modern computers (~ 1 Gfl/sec).

= With known polynomial time methods, one cannot solve in a realis-
tic time nonlinear convex problems with tens/hundreds of thousands
design variables: just the very first iteration will last forever...

Example: 3D Positron Emission Tomography Imaging by the ‘“best
fitting” IP method:

CPU time per iteration

(performance 1 Gfl/sec)
64 x 64 x 64 262,144 2,5 hours

128 x 128 x 128 | 2,097,152 > 13 days

image resolution n




MIRROR DESCENT METHOD
(Black-Box setting)

Problem
fr = SIC%I)I% f(x)
X convex compact set

f  convex Lipschitz continuous on X:

flx) —f)l < Lllz —yl]  Vz,yeX

f is given by a first-order oracle — a routine which,

given z € X, returns the value f(x) and a subgradient

().



Iteration ¢t given xy, f(x¢), f'(x¢)

. 1
LTi41 = argmin {th (y) + —Wwyg, (y)}

yex Yt
le,(y) = f(z)+ (y—x)" f'(z;) linearization of f
we, (y) = “distance” (y, x¢) localizer
1/ = penalty parameter

Classical Gradient Projection Method:

we(y) = |z — yl|5

e Best method for X = {z | ||z]|2 < 1}.



For X being a stmplex :

X={zx|Xx; =1, x>0}

(x; are “probabilities”) a classical distance function in
statistical information theory, etc. is the relative
entropy

w(y) = Xy log(yi/ ;) .

With this choice, we get the MD algorithms for

: Y o |
min f(x) simplex



& Fxperiment 1: noiseless measurements |(brighter image
correspond to higher tracer’s density )

"|0|®

Toue 1 II'lI,I:-l LD Sharl apoks” T pats
Jo= =387 Jo=A.1Ea

irsoes =f & wpais xb - poma breem of Wb spot =& 1ith rpot wiill miswing...
F=531M Fo=10dd F=2260

3

22 _jracw of ilkik wpot PR || LD spoks in placs = thet i ...
fo—-2E2E F=3E2H f=12154
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after 4 iterations after 10 iterations

after 2 iterations

Jaszczak Phantom (reconstruction by MD and OSMD)




B C aa——
Brain study -clinical (reconstruction by MD and OSMD)

GE Advance Tomograph, n=2,763,635, # bins=25,000,000




SVM (Support Vector Machine)

PRIMAL

1
min o |w® + cE¢,

yi(w 'z +b)>1-¢ Vi

DUAL
1 7
max Zai—ia YKY«

aeS,=1{a|0<a;<c Yay; =0}

Y =diag(y; ... yn) Kij = K(z4,25) [e.g. ziz;]

Uncertainty in kernel matrix

Kij = Kij + Zij

Chance constraint approach:

1
Dual & max Yo — 5 t

o €S,

Prob(ozTY (FJr Z) Ya < t) >1—c¢€



Th. 1 Zz’j ~ N(O, O'ij)

CC: Prob (ozTY (F+Z)Ya§t) >1—c¢

holds if

o'YKYa — ¢ (e) Z aija?a?
2]

Th. 2 Z;; independent r.v.

1/2

EZ;; =0, suppZ;; = |aij,bij]

CC holds if

o'YKY o+ p(e) Z ﬁija?a?
]

p(e) = v/2log(1/e)
0 < B;; simple functions of a;;, b;;.

Denote Q=Y KY

1/2

< —t



CC dual SVM problem is then approximated by

( - 41/2)

T 2 9
orz%%‘}i CYa; —a Qo —p Zﬂz’j% Q; , (1)

v,]
\ - - /

< min {ozTQoz +p [Eﬁijvivj:1/2 — X 047;}

We can use v; > af (recall (3;; > 0)

miSn ol Qa — Yoy + min {p(vTBv)l/2 | v; > oz?}
acOon v

\ 4

Vo
,U*

Result:

So, finally (1) becomes

i Spia? +al Qo —Yay; | p!' B u <
52%2%?8({ pio + " Qo — oy | uw<p}

(2)

convex concave saddle function



Saddle function problem

(P)

i K — Y0 + ol Qa — ;b = SadVal

gﬁﬁaﬁ{ (, ) = Bpiaf + o’ Qo — Ty } = SadVa
A={a|0<a; <c¢, Jazy; =0}

M={p>0]p" B u<p}

PROPERTIES

K(a, p) is strongly convexr in «, linear in p
constraint sets are convex, compact

V K is Lipschitz continuous on A x M

Define  §(a) = max K(a ) ¢() = min K (. )

Error at a feasible point («, p):

€sad = ¢(a) — ¢(p) . (o, p optimal if €544 = 0)

Algorithm [Juditski, Nemirovski, 2010].

Solves SadVal problems under the above properties
with €,44 at iteration ¢ being of order O(1/t?).



For our specific problem (P), the main computational
effort is to solve at iteration ¢ the following generic

problems:

~ . |1 _ _
(wggg{;ﬂ—ude10r—w>—ﬁ%ﬂuf31u§p}

(6

1
(41) min{i(a —a)(a—ay) —qglal0<a; <e, Doy = 1}

Solution of (i) is:

B
/’Lt‘|—1 _ p (b?Bbt)l/Q,

(be =p+ B~ uy)

Solution of (i) is:

f

0 if ()i + (qr)i + Xy <0
Vi (at—l—l)i =4 c if (Oét)z' + (Qt)i + Ay = ¢
\ ()i + (q)i + Ay; otherwise

where \* is root of

ZOéH_l ()\)yz = O
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