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(FMO) min
ti∈Sdim

max
`=1...k
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
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` S−1(t)f`
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bijtib
T
ij

⇔ min
t,τ
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2
fT

` S−1(t)f` ≤ τ,
ti < 0

ΣTr(ti) 4 w





⇔ Schur complement

min τ

(m + 1)× (m× 1)

matrix


 2τ −fT

`

−f` ΣΣbijtib
T
ij


 < 0 ` = 1, . . .K

spectrahedron ΣTr(ti) ≤ w, ti < 0

τ ∈ IR .



• The dual problem is

−2
k∑

`=1

fT
` v` + wγ → min




α1 vT
1 bi1

. . . · · ·
α1 vT

1 biS

. . . · · ·
αk vT

k bi1

. . . · · ·
αk vT

k biS

bT
i1v1· · · bT

iSv1 · · · bT
i1vk· · · bT

iSvk γI3




º 0, i = 1, . . . , n;

2
k∑

`=1

α` = 1 .

[α`, γ ∈ IR, v` ∈ IRm]

• E.g., for planar shape with 14×14 cells and 3 loads:

Setting Design dimension Effort of analyzing LMI’s
at a point, a.o.

(Pr) 1,177 37,309,230

(D1) 1,264 71,608
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Optimization in Flight...

4













Based on computational results for maximum stiffness and quite a
bit of engineering interpretation a new type of structure was 
devised for the ribs which gave a weight benefit against traditional 
and competitive honeycomb/ composite designs (up to 40% !) 

A total weight saving of more than 500 kg per wing was obtained 
by optimizing the ribs in the area shown. These are now — since 
April 27, 2005 - the first topology optimized parts in flight.



Recovery of signals

from noisy outputs



The Estimation Problem

y = Hx + w

Given y, find an estimator x̂, which is as “close” as
possible to x.

w random vector

E(w) = 0, cov(w) = C positive definite

CLASSICAL METHODS are based on minimizing
data error ‖y −Hx‖ .

2



CLASSICAL APPROACH (Gauss,. . .)

Closeness measured by (standardized) data error

‖C−1/2(y −Hx̂)‖2
Least Squares Estimator

x̂LS = arg min
x
‖C−1/2(y −Hx)‖2 convex

optimization

SOLUTION (H full column rank)

x̂LS = (HT C−1H)−1HT C−1y

a linear estimator
x̂ = Gy

CLASSICAL MODIFICATION (Tikhonov,. . .)

x̂T = arg min
x

{‖C−1/2(y −Hx)‖2 + λ‖x‖2}
still

convex

optimization

SOLUTION

x̂T = (HT C−1H + λI)−1HT C−1y

also a linear estimator.

3



True signal Observations

LS
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MSE estimator

min
x̂

E‖x− x̂‖2

With a linear estimator x̂ = Gy problem becomes

min
G

{
xT (I −GH)T (I −GH)x + Tr(GCG)

}
bias variance

but x unknown!

“Solution”: minimal variance unbiased estimator
GH = I

Solution: Same as x̂LS
· · ·

Our approach: minmax MSE linear estimator:
x̂ = Gy, where:

min
G

max
‖x‖T≤L

{
xT (I −GH)T (I −GH)x + Tr(GCG)

}



Employing conic optimization theory we proved:

Theorem I: Original MinMax MSE problem (1) is
equivalent to the SDP problem:

min
s.t.

L2λ + t


 λI T−1/2(I −GH)T

(I −GH)T−1/2 I


 º 0


 t gT

g I


 º 0

Variables G,λ, t

g = vec
(
GC1/2

)

2



Theorem II: For the special case T = I, SDP can be
solved explicitly. The optimal MMX MSE estimator is

x̂mmx = α (HT C−1H)−1HT C−1y︸ ︷︷ ︸
x̂LS

where α =
L2

L2 + Tr((HT C−1H)−1)

3



Proof Structure

(I) Establish the structure of the optimal solution

G = V DV T (HT C−1H)−1HT C−1

where V is the orthogonal matrix diagonalizing
HT C−1H, i.e.,

HT C−1H = V ΣV ∗

Σ = diag(σ1, . . . , σn)

This is obtained by optimality condition. Using
this, we end up with an equivalent problem in
variable (matrix) D (Problem B below).

(II) Show that ∃ an optimal matrix D which is
diagonal.

(III) Find the diagonal elements of D.

4



(B)
min
D,λ

L2λ + Tr(DT DΣ−1)

(I −D)T (I −D) 4 λI

Second part of the proof (“optimal D can be chosen
diagonal”).

Let Jn be the set of 2n matrices which are n× n,
diagonal, with the entries in the diagonal being +1 or
−1.

Claim If D∗ is an optimal solution of (B), then so is

JD∗J, ∀ J ∈ Jn

Proof

Tr[(JDJ)T (JDJ)Σ−1 = Tr(DT DΣ−1)]

(I − JDJ)T (I − JDJ) ¹ λI ⇔ (I −D)T (I −D) 4 λI

Conclusion Since (B) is a convex problem ⇒ its
optimal solution set is convex, so if D∗ is an optimal
solution, so is

1
2n

∑

J∈Jn

(JD∗J)



D =


 a, b

c, d




J2 =






 1 0

0 1


 ,


 −1 0

0 1


 ,


 1 0

0 −1





 −1 0

0 −1




J1 J2 J3 J4

J1DJ1 =


 a b

c d


 J2DJ2 =


 a −b

−c d




J3DJ3 =


 a −b

−c d


 J4DJ4 =


 a b

c d




1

4

4∑

i=1

JiDJi =
1

4


 4a 0

0 4d


 =


 a 0

0 d




General result
1

2n

∑
J∈Jn

JDJ = diag D

Part 3 of the proof with D = diag(d1, . . . , dn) problem (A)

⇔ (B) reduces to

min
di,λ

L2λ +
∑

(d2
i /σi)

s.t. (1− di)
2 ≤ λ , ∀ i

This problem can be solved analytically, which gives the

final result claimed in Theorem II. 16



True signal Observations

LS Minmax Use
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Dynamic Robust Optimization



open loop dynamics:







xt+1 = Atxt + Btut + Rtdt

yt = Ctxt

x0 = z

control law: ut = ξt0 +
t∑

τ=0
Ξtτyτ

⇓
w := (u0, ..., uT , x0, ..., xT+1) = W (ξ; d, z)

⇓
min

ξ
{f (W (ξ; d, z)) : DiW (ξ; d, z) − bi ∈ Qi, i = 1, ..., m} (U)

Note: Due to presence of uncertain input trajectory d and possible

uncertainty in the initial state, (U) is an uncertain problem.

Difficulty: While linearity of the dynamics and the control law make

W (ξ; d, z) linear in (d, z), the dependence of W (·, ·) on the parameters

ξ = {ξt0, Ξtτ}0≤τ≤t≤T of the control law is highly nonlinear

⇒ (U) is not a bi-affine problem, which makes inapplicable the theory

we have developed. In fact, (U) seems to be intractable already when

there is no uncertainty in d, z!

26



16

Dynamic Control Problems

Example:

Control wanted: when dt≤1 then ut≤3 for t=0,1,2
Since:
is not bi-affine 
the control coefficients have a
highly non convex domain.
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Remedy: suitable re-parameterization of affine control laws.

♣ Consider a closed loop system along with its model:

closed loop system: model:

xt+1 = Atxt + Btut+Rtdt
̂xt+1 = At

̂xt + Btut

yt = Ctxt
̂yt = Ct

̂xt

x0 = z ̂x0 = 0

ut = Ut(y0, ..., yt)

♠ Observation: We can run the model in an on-line fashion, so that

at time t, before the decision on ut should be made, we have in our

disposal purified outputs
vt = yt − ̂yt.

♠ Fact I [Equivalence]: Every transformation (d, z) 7→ w which can be

obtained from an affine control law based on outputs:

ut = ξt0 +
t∑

τ=0
Ξtτyτ (∗)

can be obtained from an affine control law based on purified outputs:

ut = ηt0 +
t∑

τ=0
Htτvτ (∗∗)

and vice versa.

28



system: model:

xt+1 = Atxt + Btut+Rtdt
̂xt+1 = At

̂xt + Btut

yt = Ctxt
̂yt = Ct

̂xt

x0 = z ̂x0 = 0

control law:

vt = yt − ̂yt

ut = ηt0 +
t∑

τ=0
Htτvτ (∗∗)

(S)

♠ Fact II [bi-affinity]: The state-control trajectory w = W (η; d, z) of (S)

is affine in (d, z) when the parameters η = {ηt0, Htτ}0≤τ≤t≤T of the control

law (∗∗) are fixed, and is affine in η when (d, z) is fixed.

29



♠ Corollary: With parameterization (∗∗) of affine control laws, the problem

Find an affine control law (∗) which ensures that the resulting state-control
trajectory w satisfies the system of convex inclusions

Diw − bi ∈ Qi, i = 1, ..., m

and minimizes, under this restriction, a given linear objective f (w).

becomes an uncertain bi-affine optimization problem and as such can be processed
via the CRC approach.

In particular, in the case when Qi are one-dimensional, the CRC of the problem
is computationally tractable, provided that the normal range U of (d, z) and the
associated cone L are so. If U , L and the norms used to measure distances are
polyhedral, CRC is just an explicit LP program.

30



2

The Supply chain Problem

xt
j=amount echelon j orders from j-1 at the beginning of period t

Yt
j =inventory level in echelon j at the end of period t

zj =initial inventory level at echelon j
dt =external demand at period t

I(j)= Information delay, M(j)= manufacturing delay, L(j)= Lead time
TL(j) =I(j) +M(j-1) +L(j) the delay between the time an order is placed 
and received in echelon j
TM(j) =I(j+1) +M(j)  the delay between the time an order is placed and 
shipped from echelon j
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The Supply chain Problem

Main objective : minimizing cost
Sub objective:
stabilizing the system
Problem Characteristics:

Finite horizon
Multi echelon
Delays
Backlogging
Demand must be satisfied
and is uncertain

Eliminating the equalities
recursively yields a LP
with only inequalities
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4

The Bullwhip effect

This problem has a well known phenomenon associated with it 
called “Bullwhip effect”
The Bullwhip effect is described as “amplification of oscillation 
from down stream demands to upstream echelons”
Such amplification can occur both in orders and inventory levels.
Large variations in these measures are disruptive to the system and 
generates high cost.
One of the aims of good control is to reduce the Bullwhip effect.
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LV control

Let’s assume we take the control 
suggested by Love [Love,1979] using  
target inventory:
Resulting in the LP problem :

We can further improve this 
method by making the 
reference inventory a 
decision variable rather than 
a constant. – ILV control
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6

Example

[Love, 1979], Oscillating demand:

Horizon: n=20
Echelons: m=3
Cost: c=2, p=3,h=1
Initial inventory: z=12
Lead time: L=2
No other delays
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The importance of good control

The Bullwhip effect –

These are deterministic methods which do not work well with 
varying demand a more robust method is needed

LV
OFV: 4795

ILV
OFV: 3140



Purified output-based 
AARC control
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The supply chain problem 
as a control problem

The dynamics of the supply chain problem is given by:

with initial state: 
whose form matches the classical dynamic  control problem
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The purified outputs corresponding to the dynamic system
(1) – (3) are here

The affine control law is here

where (non anticipativity)
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Inventory Behavior – “amplification of 
oscillation”

RC
OFV: 1207

AARC
OFV: 1165

GRC
OFV: 1065

LV
OFV: 4795

ILV
OFV: 3140



Chance Constraints

p(w) ≡ Prob

{
w0 +

d∑
`=1

z`w` ≥ 0

}
≥ 1− ε (C)

• In general, (C) can be difficult to process:

– The feasible set X of (C) can be nonconvex, which makes

it problematic to optimize under the constraint.

– Even when convex,X can be “computationally intractable”:

Let z ∼ Uniform([0.1]d). In this case, X is con-

vex (Lagoa et al., 2005); however, unless P = NP ,

there is no algorithm capable to compute p(w) within

accuracy δ in time polynomial in the size of the (ra-

tional) data w and in ln(1/δ) (L. Khachiyan, 1989).

• When (C) is difficult to process “as it is”, one can look for

a safe tractable approximation of (C) — a computationally

tractable convex set Uε such that Uε ⊂ X ≡ {w : p(w) ≥ ε}.



Robust Optimization to the

Rescue of Chance

Constraints . . .



Probabilistic Guarantees via RO

f0(x) +

d∑
l=1

zlfl(x) ≤ 0 . (1)

Assumption

z1, z2, . . . , zd independent rv’s

zl ∼ Pl ∈ Pl (compact all prob. dist. in Pl has common support

= [−1, 1]).

Definition A vector x satisfying, for a given 0 < z < 1:

Pr{f0(x) + Σzlfl(x) ≤ 0} ≥ 1− ε (chance constraint) (2)

provides a safe approximation of (1).

Challenge Find uncertainty set for z, Uε s.t. the Robust Counter-

part of (1):

f0(x) + Σzlfl(x) ≤ 0, ∀ z ∈ Uε (3)

is a safe approximation of (1), i.e., every x satisfying (3) satisfies
the CC (2).



Theorem

Uε = B ∩ (M + Eε)

B = {u ∈ IRd | ‖u‖∞ ≤ 1}

where M = {u|µ−l ≤ ul ≤ µ+
l , l = 1, . . . , d} (4)

E = {u|Σu2
l /σ

2
l ≤ 2 log(1/ε)}

µ−l , µ
+
l and σl are such that

Al(y) ≤ max(µ−l y, µ
+
l y) +

σ2
l

2
y2
l , ∀ l = 1, . . . , d

where

Al(y) = max
Pl∈Pl

log

(∫
exp(ys)dPl(s)

)
.



Basic theory

Ambiguity set P

Ambiguity set P should be such that it is possible to obtain good,
computationally tractable upper bounds on

sup
P∈P

EPf (x, z)

Most frequently, P consists of P with known:

mean

(co)variance matrix

possibly, higher order moment information

Major works: Scarf (1958), Dupačová (1977), Birge and Wets (1987),
Birge and Dulá (1991), Gallego (1992), Gallego, Ryan & Simchi-Levi
(2001), Delage and Ye (2010), Wiesemann et al. (2014) and many
others...

Postek et al. (2015) 6 / 34
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Basic theory

Forgotten result of Ben-Tal and Hochman (1972)

An exact upper bound when the dispersion measure is the mean absolute
deviation (MAD).

Theorem
Assume that a one-dimensional random variable z has support included in
[a, b] and its mean and mean absolute deviation are µ and d:

P = {P : supp(z) ⊆ [a, b], EPz = µ, EP|z − µ| = d} .

Then, for any convex function g : R→ R it holds that

sup
P∈P

EPg(z) = p1g(a) + p2g(µ) + p3g(b),

where p1 = d
2(µ−a) , p3 = d

2(b−µ) , p2 = 1− p1 − p3.

Postek et al. (2015) 9 / 34



Basic theory

Generalization to multiple dimensions

The result of Ben-Tal and Hochman (1972) generalizes to
multidimensional z with independent components.

P = {P : supp(zi ) ⊆ [ai , bi ], EPzi = µi , EP|zi − µi | = di , zi ⊥ zj} .

Independence implies that the worst-case distribution is a product of the
per-component worst-case distributions.

For each convex g(·) it holds that

sup
P∈P

EPg(z) =
∑

α∈{1,2,3}nz

(
nz∏
i=1

piαi

)
g(τ1α1

, . . . , τnzαnz
)

where piαi
and τ iαi

depend only on ai , bi , µi , and di (not on g(·)).

Postek et al. (2015) 10 / 34



Worst-case chance constraints

Safe approximations

As such, (WC-CC) is intractable and we need a safe approximation - a
computationally tractable set S of deterministic constraints such that

x feasible for S ⇒ x feasible for (WC-CC)

How to construct safe approximations?
The crucial step is a construction of an upper bound on the moment
generating function (MGF) of z (Ben-Tal et al. (2009)):

sup
P∈P

EP exp(wTz).

.

Postek et al. (2015) 24 / 34



Recall: For each convex g(·) it holds that

sup
P∈P

EPg(z) =
∑

α∈{1.2.3}n

(
n∏
i=1

piαi

)
g
(
τ 1
α1, . . . , τ

nz
αnz

)
where piαi and τ iαi depend only on ai, bi, µi, and di (not on g(·)).

This formula has 3n terms!

However:

sup
P∈P

log
(
EP exp(wTz)

)
= sup

P∈P
log
(
EP
(
ew1z1+···+wnzn

))
= sup

P∈P
log

(
EP

n∏
i=1

ewizi

)
= due to zi’s being independent

= sup
P∈P

log

(
n∏
i=1

E ewizi

)
= sup

P∈P

n∑
i=1

(logE ewizi) .

So here we need to apply the (B-H) upper (lower) bound separately

to each on the n one-variable convex functions E ewizi!



Worst-case chance constraints

MGF with our distributional assumptions

We know exactly the worst-case value of the MGF (not just an upper
bound):

sup
P∈P

EP exp(wTz) =
nz∏
i=1

sup
P∈P

EP exp(wizi )

=
nz∏
i=1

(
d

2
exp(−wi ) + 1− d +

d

2
exp(wi )

)

=
nz∏
i=1

(d cosh(wi ) + 1− d)

Using this fact, we are able to construct three safe approximations of
increasing tightness and increasing complexity.

Postek et al. (2015) 25 / 34



Worst-case chance constraints

An example of a safe approximation

Theorem
Let

[a(z); b(z)] = [a0; b0] +
nz∑
i=1

zi [a
i ; bi ].

If there exists α > 0 such that (x, α) satisfies the constraint

(a0)Tx− b0 + α log

(
nz∑
i=1

(
di cosh

(
(ai )Tx− bi

α

)
+ 1− di

))
+α log(1/ε) ≤ 0,

then x satisfies the (WC-CC): sup
P∈P

P
(
aT (z)x > b(z)

)
≤ ε.

The approximating constraint is convex in (x, α)!

Postek et al. (2015) 26 / 34



Worst-case chance constraints

Desired diagram graphically
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Optimization problem to be solved

min τ

s.t. −τ ≤
n∑

i=1

xiDi (φ) ≤ τ, 0 ≤ φ ≤ 70◦

−1 ≤
n∑

i=1

xiDi (φ) ≤ 1, 70◦ ≤ φ ≤ 77◦

0.9 ≤
n∑

i=1

xiDi (φ) ≤ 1, 77◦ ≤ φ ≤ 90◦

Typically, decisions xi suffer from implementation error zi :

xi 7→ x̃i = (1 + zi )xi

We want each constraint to hold with probability at least 1− ε!



Worst-case chance constraints

Implementation error

Typically, decisions xi suffer from implementation error zi :

xi 7→ x̃i = (1 + ρzi )xi

We want each constraint to hold with probability at least 1− ε for all
P ∈ P, for example:

P

(
n∑

i=1

xi (1 + ρzi )Di (φ) ≤ 1

)
≥ 1− ε, 77◦ < φ ≤ 90◦, ∀P ∈ P

Two solutions:

nominal: no implementation error

robust: ρ = 0.001 and ε = 0.001.
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Ben-Tal and Hochman (1972)

Assume f : R 7→ R is convex and z follows distribution P belonging
to ambiguity set P such that

P =
{
P : supp(z) = [a−, a+], EPz = µ, EP|z − µ| = d

}
Then it holds that:

sup
P∈P

EPf (zi ) = p1f (a−) + p2f (µ) + p3f (a+)

where p1 = d
2(a+−µ) , p3 = d

2(µ−a−) , p2 = 1− p1 − p3.

Using this to the MGF problem with our assumptions on z1, . . . , zn
we have

sup
P∈P(µ,d)

EP exp
(
wTz

)
=

n∏
i=1

(di cosh(wi ) + 1− di )



How does it apply to antenna implementation error

We need µ−i , µ
+
i , σi such that:

di cosh(t) + 1− di ≤ exp

(
max{µ+i t, µ

−
i t}+

1

2
σ2i t

)
for all t ∈ R.
We easily find the right values µ−i = µ+i = 0 and

σi = sup
t∈R

√
2 log (di cosh(t) + 1− di )

t2

to satisfy this requirement.



Worst-case chance constraints

Nominal solution - dream and reality
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Worst-case chance constraints

Robust solution - dream and reality
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Reconstruction AlgorithmsReconstruction Algorithms





MIRROR DESCENT METHOD

(Black-Box setting)

Problem

f∗ = min
x∈X

f(x)

X convex compact set

f convex Lipschitz continuous on X:

|f(x)− f(y)| ≤ L‖x− y‖ ∀x, y ∈ X

f is given by a first-order oracle — a routine which,
given x ∈ X, returns the value f(x) and a subgradient
f ′(x).

1



Iteration t given xt, f(xt), f ′(xt)

xt+1 = arg min
y∈X

{
`xt(y) +

1
γt

ωxt(y)
}

`xt(y) = f(xt) + (y − xt)T f ′(xt) linearization of f

ωxt(y) = “distance”(y, xt) localizer

1/γt = penalty parameter

Classical Gradient Projection Method:

ωx(y) = ‖x− y‖22

• Best method for X = {x | ‖x‖2 ≤ 1}.

2



For X being a simplex :

X = {x | Σxi = 1, x ≥ 0}

(xi are “probabilities”) a classical distance function in
statistical information theory, etc. is the relative
entropy

ωx(y) = Σyi log(yi/xi) .

With this choice, we get the MD algorithms for

min
x∈X

f(x) X = simplex.

3





Jaszczak Phantom (n=515,871)
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Jaszczak Phantom (reconstruction by MD and OSMD)



Brain  study -clinical (reconstruction by MD and OSMD)
GE Advance Tomograph,  n=2,763,635, # bins=25,000,000



SVM (Support Vector Machine)

PRIMAL

min
w,b,ε

1
2
‖w‖2 + c Σ ξi

yi(wT xi + b) ≥ 1− ξ ∀ i

DUAL

max
α

(
Σαi − 1

2
αT Y KY α

)

α ∈ Sn = {α | 0 ≤ αi ≤ c, Σαiyi = 0}

Y =diag(yi . . . yn) Kij = K(xi, xj) [e.g. xixj ]

Uncertainty in kernel matrix

Kij = Kij + Zij

Chance constraint approach:

Dual ⇔ max
α,t

Σαi − 1
2

t

α ∈ Sn

Prob
(
αT Y

(
K + Z

)
Y α ≤ t

) ≥ 1 − ε



Th. 1 Zij ∼ N(0, σij)

CC: Prob
(
αT Y

(
K + Z

)
Y α ≤ t

) ≥ 1− ε

holds if

αT Y KY α− φ−1(ε)


∑

i,j

σijα
2
i α

2
j




1/2

≤ −t

Th. 2 Zij independent r.v.

E Zij = 0, suppZij = [aij , bij ]

CC holds if

αT Y KY α + ρ(ε)


∑

i,j

βijα
2
i α

2
j




1/2

≤ t

ρ(ε) =
√

2 log(1/ε)

0 ≤ βij simple functions of aij , bij .

Denote Q = Y K Y



CC dual SVM problem is then approximated by

max
α∈Sn





Σαi − αT Qα− ρ


∑

i,j

βijα
2
i α

2
j




1/2




(1)

⇔ min
α,v

{
αT Qα + ρ [Σβijvivj ]

1/2 − Σαi

}

α ∈ Sn, vi = α2
i

We can use vi ≥ α2
i (recall βij ≥ 0)

min
α∈Sn


αT Qα− Σαi + min

v

{
ρ(vT Bv)1/2 | vi ≥ α2

i

}

︸ ︷︷ ︸
v∗




Result:

v∗ = max
µ≥0

{
Σµiα

2
i | µT B−1µ ≥ ρ

}

So, finally (1) becomes

min
α∈Sn

max
µ≥0

{
Σµiα

2
i + αT Qα− Σαi | µT B−1µ ≤ ρ

}

(2)
convex concave saddle function



Saddle function problem

(P)
min
α∈A

max
µ∈M

{
K(α, µ) = Σµiα

2
i + αT Qα− Σαi

}
= SadVal

A = {α | 0 ≤ αi ≤ c, Σαiyi = 0}
M =

{
µ ≥ 0 | µT B−1µ ≤ ρ

}

PROPERTIES

K(α, µ) is strongly convex in α, linear in µ

constraint sets are convex, compact

∇K is Lipschitz continuous on A×M

Define φ(α) = max
µ∈M

K(α, µ) φ(µ) = min
α∈A

K(α, µ)

Error at a feasible point (α, µ):

εSad = φ(α)− φ(µ) . (α, µ optimal if εsad = 0)

Algorithm [Juditski, Nemirovski, 2010].

Solves SadVal problems under the above properties
with εsad at iteration t being of order O(1/t2).



For our specific problem (P), the main computational
effort is to solve at iteration t the following generic
problems:

(i) min
µ≥0

{
1
2
(µ− µt)T B−1(µ− µt)− pT x | µT B−1µ ≤ ρ

}

(ii) min
α

{
1
2
(α− αt)T (α− αt)− qT

t α | 0 ≤ αi ≤ c, Σαiyi = 1
}

Solution of (i) is:

µt+1 = ρ
Bbt

(bT
t Bbt)1/2

, (bt = p + B−1µt)

Solution of (ii) is:

∀i : (αt+1)i =





0 if (αt)i + (qt)i + λ∗yi ≤ 0

c if (αt)i + (qt)i + λ∗yi ≥ c

(αt)i + (qt)i + λyi otherwise

where λ∗ is root of

Σαt+1(λ)yi = 0
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