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Knapsack problem under uncertainty

min
∑
i∈N

cixi

s.t.
∑
i∈N

aixi ≤ b

x ∈ {0, 1}n

Suppose that the parameters (c , a) are uncertain:

They vary over time

They must be predicted from historical data

They cannot be measured with enough accuracy

...

Let’s do something clever (and useful)!
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How much do we know?

Stochastic programming︷ ︸︸ ︷
A lot ⇔

Robust programming︷ ︸︸ ︷
A little

E [a ]

a

f (a)

Mean value                         Robust    Stochastic                
(Deterministic)

a∈A
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How much do we know?

Robust pr. Uncertain parameters are merely assumed to belong to an
uncertainty set Ξ ⇒ one wishes to optimize some worst-case
objective over the uncertainty set

Distributionally robust pr. Uncertain parameters are described by classes
of probability distributions F ⇒ one wishes to optimize some
worst-case objective over the ambiguity classes

F is a singleton Stochastic programming
F contains all distributions over Ξ Robust optimization

Stochastic pr. Uncertain parameters are precisely described by probability
distributions ⇒ one wishes to optimize some expectation,
variance, Value-at-risk, . . .
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When do we take decisions?

Now All decisions must be taken before the uncertainty is known
with precision ⇒ probability constraints, (static) robust
optimization

Delayed Some decisions may be delayed until the uncertainty is
revealed ⇒ multi-stage stochastic programming, adjustable
robust optimization
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Why Robust Optimization (RO)

Stochastic programming suffers from two drawbacks:

Precise information about the distribution is required.

The resulting optimization problems are usually very large-scale (and
intractable).

Robust Optimization (and distributionally RO):

Require less information about how parameters vary.

Leads to tractable optimization problems (less true for distributionally
RO).
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Uncertainty sets

ξ1

ξ2

(a) ‖ξ‖∞ ≤ 1, ‖ξ‖1 ≤ κ1

ξ1

ξ2

(b) ‖ξ‖2 ≤ κ2

ξ1

ξ2

(c) ‖ξ‖∞ ≤ 1, ‖ξ‖2 ≤ κ2
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Consider a static robust linear optimization problem

min cTx

s.t. x ∈ X
A(ξ)x ≤ b ξ ∈ Ξ. (1)

with the following notation
ξ : uncertain parameter

Ξ ⊂ RK : uncertainty polytope
X ⊂ RI : intersection of a polyhedron with integer restrictions

A : affine function of ξ, i.e., A(ξ) := A0 +
∑
k

A1kξk .

Can be solved in two ways:

Cutting-planes Let Ξ∗ ⊂ Ξ. We relax (1) to A(ξ)x ≤ b ξ ∈ Ξ∗. We
generate additional constraints on demand by solving
max
ξ∈Ξ

Ai (ξ)x for each constraint i .

Dualization Using duality in linear programming, we can reformulate (1)
as a polynomial number of linear constraints.
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Dualization

Theorem

Let Ξ :=

{
ξ ∈ RK : ξ ≥ 0,

∑
k∈K

ekj ξ
k ≤ dj , j ∈ J

}
. A vector x is feasible

for
aT (ξ)x ≤ b(ξ), ξ ∈ Ξ

if and only if there exists dual variables z ∈ RJ such that x is feasible for
the system of constraints∑

i∈I
a0
i xi +

∑
j∈J

djzj ≤ b0

∑
j∈J

ekj zj ≥
∑
i∈I

aki xi − bk , k ∈ K

z ≥ 0.
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Proof.

aT (ξ)x ≤ b(ξ), ξ ∈ Ξ ⇔
∑
i∈I

(a0
i +

∑
k∈K

aki ξ
k)xi ≤ b0 +

∑
k∈K

bkξk , ξ ∈ Ξ

⇔
∑
i∈I

a0
i xi + max

ξ∈Ξ

∑
k∈K

(
∑
i∈I

aki xi − bk)ξk ≤ b0

⇔
∑
i∈I

a0
i xi + min

z≥0

∑
j∈J

djzj ≤ b0

s.t.
∑
j∈J

ek
j zj ≥

∑
i∈I

aki xi − bk , k ∈ K

⇔
∑
i∈I

a0
i xi +

∑
j∈J

djzj ≤ b0

∑
j∈J

ek
j zj ≥

∑
i∈I

aki xi − bk , k ∈ K

z ≥ 0.
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Which approach is best ?

We refer to the recent paper:

Dimitris Bertsimas, Iain Dunning, and Miles Lubin: “Reformulations versus
cutting planes for robust optimization: A computational and machine
learning perspective”. Available at Optimization Online.

Table : Results for linear programs.

Table : Results for mixed-integer linear programs.
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Adjustable situation

min cTx

s.t. x ∈ X
(P) A(ξ)x + E (ξ)y(ξ) ≤ b ξ ∈ Ξ.

where y represents the vector of adjustable variables.

Remark

We consider 2-stage problems only: network design problems, facility
location problems, ...

x ξ

y(ξ1)

y(ξ2)

y(ξ3)

y(ξ4)

ξ1

ξ2

ξ3

ξ4
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Remark

We suppose that all recourse variables y are continuous. Very recent works
from Bertsimas et al. (2014) and Hanasusanto et al. (2014) consider the
case of integer recourse (both available at Optimization Online):

Dimitris Bertsimas and Angelos Georghiou “Design of Near Optimal
Decision Rules in Multistage Adaptive Mixed-Integer Optimization”.
Grani A. Hanasusanto, Daniel Kuhn, and Wolfram Wiesemann
“Two-Stage Robust Integer Programming”

We present next approaches for two types of problems:

Exact solution algorithms for (P) when E is constant.

Solution algorithms based on affine decision rules when E depends
affinely on ξ.
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Affine decision rules

A classical approach for (P) is to restrict y to affine functions of ξ:

y(ξ) = y0 +
∑
k∈K

ykξk .

when E is constant, (P) becomes

min cTx

s.t. x ∈ X(
A0 +

∑
k

A1kξk
)

x + E

(
y0 +

∑
k∈K

ykξk
)
≤ b ξ ∈ Ξ.

Disadvantage Provides a conservative solution. When Ξ is a simplex, the
conservative solution is optimal.

Advantage The resulting optimization problems have the same structure
as static RO problems.

M. Poss (Heudiasyc) Decomposition in adjustable robust optimization: illustrations on network design problems22nd of May 2014 17 / 49



Affine decision rules

Theorem

Let Ξ be an uncertainty polytope, A be an affine function of ξ, x be a
vector of optimization variables, and

y(ξ) = y0 +
∑
k∈K

ykξk

be a vector of affine adjustable optimization variables. Then, robust
constraint

A(ξ)x + E (ξ)y(ξ) ≤ b ξ ∈ Ξ

is equivalent to
Â(ξ)x̂ ≤ b ξ ∈ Ξ,

where Â is an affine function and x̂ is a vector of optimization variables.
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Classical network design problem

a

b

d

c

c
ab

  c
bc

c
ac

c
cd

  
c
ad

a

b

d

c

c
ab

  c
bc

c
ac

c
cd

  
c
ad

a

b

d

c

c
ab

  c
bc

c
ac

c
cd

  
c
ad

Commodities are routed according to shortest paths. In the example, we
assume cac + cbc ≤ cab and cac + ccd ≤ cad .
Solution cost: ξab(cac + cbc) + ξad(cac + ccd).
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Robust network design problem: dynamic
recourse/routing

Demands vectors ξ1, . . . , ξn must be routed non-simultaneously.
The problem becomes a two-stages program:

1 decide of the capacities

2 decide of the routing.

a

b
2

  
1

c a

b
1

  
2

c a

b
3

  2
2

c

Demands for scenario 1 Demands for scenario 2 Capacity cost per unit

a

b
1

                 1 
1

1
c a

b
1

  

2
c a

b
1

  1
2

c

Routing for scenario 1 Routing for scenario 2 Capacity installation
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Robust network design problem: static recourse/routing

Allowing for dynamic/arbitrary recourse may not be a good idea:

Yield NP-hard optimization problems, see Chekuri et al. (2007),
Gupta et al. (2001), Mattia (2010).

Unpractical to change completely the routing according to the
demand variations.

⇒ Introduction of static routing described by routing templates.

a

b
2

  

1
c a

b
1

  

2
c a

b
2

  
2

c

Routing for scenario 1 Routing for scenario 2 Capacity installation

Cost Static = 10 > 9 = Cost Dynamic

See Ben-Ameur (2007) and Scutellà (2009,2010) for intermediary
(NP-hard) routing frameworks.
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Using the parlance of robust optimization

First stage: capacity variables x

Second stage: flow variables y

min
∑
a∈A

κaxa

s.t.
∑

a∈δ+(v)

yk
a(ξ)−

∑
a∈δ−(v)

yk
a(ξ) =


−ξk v = s(k)

ξk v = t(k),

0 else

v ∈ V , k ∈ K ,
ξ ∈ Ξ∑

k∈K
yk

a(ξ) ≤ xa, a ∈ A, ξ ∈ Ξ

yk
a(ξ) ≥ 0,

a ∈ A, k ∈ K ,
ξ ∈ Ξ

xa ≥ 0, a ∈ A,
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Routing function

Static routing: flow functions f k are independent linear functions for
each commodity:

yk
a (ξ) := yk

aξ
k , a ∈ A, k ∈ K

for some routing template vector yk ∈ RA.

Affine routing: flow functions yk are affine functions:

yk
a (ξ) := y0k

a +
∑
h∈K

ykh
a ξ

h, a ∈ A, k ∈ K

Dynamic routing: flow function yk : Ξ→ RA×K is arbitrary.
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Exact solution procedure

min cTx

s.t. x ∈ X
(P) A(ξ)x + Ey(ξ) ≤ b ξ ∈ Ξ. (2)

Let K(Ξ) be the set defined by (2).

Lemma

It holds that K(Ξ) = K(vert(Ξ)).

Idea of the proof:

A(ξ∗)x∗ + Ey(ξ∗) ≤ b ⇔
vert(Ξ)∑
s=1

λs (A(ξs)x∗ + Ey(ξs)) ≤
vert(Ξ)∑
s=1

λsb.
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Finite reformulation

min cTx

s.t. x ∈ X
A(ξ)x + Ey(ξ) ≤ b ξ ∈ vert(Ξ).

We shall consider an initial subset Ξ∗ of Ξ and generate additional
scenarios during decomposition algorithms:

Master problem

min cTx

(MP ′) s.t. x ∈ X .
Constraints corresponding to ξ ∈ Ξ∗
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Separation

Using the Farkas’ lemma, we obtain:

Theorem

Let x∗ ∈ Rn be given. Vector x∗ belongs to K(Ξ) if and only if the
optimal solution of the following optimization problem is non-positive

max (b − A(ξ)x∗)Tπ

(SP) s.t. ξ ∈ Ξ

ETπ = 0

1Tπ = 1

π ≥ 0.

Bilinear optimization problems are very difficult to solve. Mattia (2013)
proposed a MILP reformulation based on complementary slackness
conditions ⇒ still very hard to solve.
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We restrict ourselves to polytopes that can be obtained as affine projection of (0, 1)
polytopes (polytopes whose extreme points are binary vectors).

Assumption

There exists a (0, 1) polytope Ω and an affine projection A such that Ξ = A(Ω).

Example

Let vert(Ξ) = {ξ1, . . . , ξs} and let Ω be the unit simplex in Rs . Then, for any ω ∈ Ω,

A(ω) =

(
s∑

j=1

ξ1
j ωj , . . . ,

s∑
j=1

ξKj ωj

)

Example

(d) Ξ

(0, 1)

(1, 0)

(e) Ω

Figure : Example of polytope Ξ affinely equivalent to a (0, 1) polytope.
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There exists a (0, 1) polytope Ω and an affine projection A such that Ξ = A(Ω).

Example

Let vert(Ξ) = {ξ1, . . . , ξs} and let Ω be the unit simplex in Rs . Then, for any ω ∈ Ω,

A(ω) =

(
s∑

j=1

ξ1
j ωj , . . . ,

s∑
j=1

ξKj ωj

)

Example

(a) Ξ

(0, 1)

(1, 0)

(b) Ω

Figure : Example of polytope Ξ affinely equivalent to a (0, 1) polytope.
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Separation 2

Theorem

Let x∗ ∈ Rn be given. Vector x∗ belongs to K(Ξ) if and only if the optimal
solution of the following optimization problem is non-positive

max (b − A0x∗)Tπ −
∑
k∈K

(A1kx∗)Tvk

(SPL) s.t. ξ ∈ Ξ

ETπ = 0

1Tπ = 1

vk
m ≥ πm − (1− ξk) k ∈ K ,m ∈ M

vk
m ≤ ξk k ∈ K ,m ∈ M

π, vk
m ≥ 0,

ξ ∈ {0, 1}K .
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Two different approaches

Benders (b − A(ξ∗)x)Tπ∗ ≤ 0. (3)

Row and column generation A(ξ∗)x + Ey(ξ∗) ≤ b. (4)

Algorithm 1: RG and RCG

repeat
solve (MP ′);
let x∗ be an optimal solution;
solve (SPL);
let (ξ∗, π∗) be an optimal solution and z∗ be the optimal solution cost;
if z∗ > 0 then

RG : add constraint (3) to (MP ′);
RCG : add constraint (4) to (MP ′);

until z∗ > 0;
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Application to network design

SNDlib networks: janos-us, sun, and giul39

Two kinds of polytopes:

Ξ =

 ξk ∈ [ξ̄k − σk−ξ̂k , ξ̄k + σk+ξ̂
k ] for all k ∈ K∑

k∈K
σk− + σk+ ≤ Γ

Ξ+ =

 ξk ∈ [ξ̄k , ξ̄k + σk+ξ̂
k ] for all k ∈ K∑

k∈K
σk+ ≤ Γ

d̄

d̄+d̂ 2

d̄+d̂ 1

d̄−d̂ 2

d̄−d̂ 1

Ξ for Γ = 1 Ξ+ for Γ = 1
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Details

SNDlib networks: janos-us, sun, and giul39

Two kinds of polytopes:

Ξ =

 ξk ∈ [ξ̄k − σk−ξ̂k , ξ̄k + σk+ξ̂
k ] for all k ∈ K∑

k∈K
σk− + σk+ ≤ Γ

Ξ+ =

 ξk ∈ [ξ̄k , ξ̄k + σk+ξ̂
k ] for all k ∈ K∑

k∈K
σk+ ≤ Γ

d̄

d̄+d̂ 2

d̄+d̂ 1

d̄−d̂ 2

d̄−d̂ 1
d̄

d̄+d̂ 2

d̄+d̂ 1

Ξ for Γ = 1 Ξ+ for Γ = 1
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Average cost reduction

|K | ∈ {10, 20, 30, 40, 50} Γ ∈ {1, 2, 3, 4, 5, 6}

janos-us sun giul39
0

1

2

3

4
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9

Affine D
Affine D+
Dynamic
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Solution times: Performance profile
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Numerical results

K Γ optstat gapdyn(%) tRCG tSPL (%) iter tRG tP′

30 2 672665 8.7 150 64 18 4967 13
30 3 699279 7.0 301 78 19 T 213
30 4 699590 2.9 1500 90 27 T M
30 5 699590 0.7 1344 91 25 T M
40 2 732850 8.8 365 69 21 6523 49
40 3 763505 7.6 1037 88 22 T M
40 4 766293 4.1 6879 96 30 T M
40 5 766293 1.5 5866 95 31 T M
40 6 766293 – T – – T M
50 2 793295 8.9 694 73 23 T 98
50 3 827405 8.2 4446 94 27 T M
50 4 839656 6.0 22645 98 35 T M
50 5 841295 – T – – T M
50 6 841295 – T – – T M

Table : Results for janos-us.
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Attention: not applicable to multi-stage problems

ξt Information available at period t (i.e. (ξ1, . . . , ξt−1))

yt Decision at period t

min cTx

s.t. x ∈ X
A(ξ)x + Ey(ξ) ≤ b ξ ∈ Ξ

yt(ξ) = yt(ξ
′) for all ξ, ξ′ ∈ Ξ s.t. ξt = ξ′t (5)

Constraints (5) prevents us from using Farkas’ Lemma as before!
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Outline

1 Introduction

2 Models

3 Robust network design: basic models

4 Exact solutions with fixed recourse

5 Affine decision rules and random recourse
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Random recourse: general case

min cTx

s.t. x ∈ X
A(ξ)x + E (ξ)y(ξ) ≤ b, ξ ∈ Ξ, (6)

where E (ξ) and y(ξ) are affine functions of ξ:

min cTx

s.t. x ∈ X(
A0 +

∑
k

A1kξk
)

x +

(
E 0 +

∑
k

E 1kξk
)(

y0 +
∑
k∈K

ykξk
)
≤ b, ξ ∈ Ξ

Example

Random recourse cost
rT (ξ)y(ξ) ≤ θ, ξ ∈ Ξ.
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“Easy” case: Ξ is an ellipsoid

(
A0 +

∑
k

A1kξk
)

x +

(
E 0 +

∑
k

E 1kξk
)(

y0 +
∑
k∈K

ykξk
)
≤ b, ξ ∈ Ξ

⇔ 0 ≤ α(x, y) + 2ξTβ(x, y) + ξTΓ(x, y)ξ, ξ ∈ Ξ
(7)

Theorem (Ben-Tal et al.)

Let Ξ = {‖ξ‖2 ≤ κ2}. Constraint (7) is equivalent to(
Γ(x, y) + κ−2

2 v Id β(x, y)
βT (x, y) α(x, y)− v

)
� 0

v ≥ 0,

where Id is the |K | × |K | identity matrix.
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Conic reformulation

Ellipsoidal uncertainty Semi-definite programming (SDP) reformulation

Other uncertainty No exact reformulation, SDP can provide an upper
bound.

⇒ Our objective is to address with decomposition algorithms for problems
that satisfy the following assumption:

Assumption

A(ξ)x + E (ξ)y(ξ) ≤ b ⇒ r(ξ)gT y(ξ) ≤ θ
A(ξ)x + E ′y(ξ) ≤ b
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Robust network design problem

Classical problem:

Input Directed graph G = (V ,A)
Capacity cost c
Set of point-to-point commodities K
Demand dk = ξ̄k + ξk ξ̂k

Uncertainty set Ξ
Outsourcing costs r

Output Network capacities x
Flow (routing templates) f
Outsourced fraction g

gk = 1−
∑

a∈δ−(t(k))

yk
a +

∑
a∈δ+(t(k))

yk
a

We consider uncertain outsourcing cost r(ξ)
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design variables x ≥ 0
flow variables f ≥ 0
outsourcing variables g ≥ 0
outsourcing cost θ ≥ 0

min
∑
a∈A

κaxa + θ

s.t. θ ≥ r(ξ)
∑
k∈K

dk(ξ)gk ξ ∈ Ξ COST∑
a∈δ−(v)

yk
a −

∑
a∈δ+(v)

yk
a = 0, k ∈ K , v ∈ V ∗ FLOW

∑
k∈K

dk(ξ)yk
a ≤ xa a ∈ A, ξ ∈ Ξ CAPACITY

gk = 1−
∑

a∈δ−(t(k))

yk
a +

∑
a∈δ+(t(k))

yk
a k ∈ K REJECTION
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Master problem

Ξ∗0 and Ξ∗a are finite subsets of Ξ

Relax capacity and cost constraints outside these subsets

min
∑
a∈A

κaxa + θ

(MP) s.t. θ ≥ r(ξ)
∑
k∈K

dk(ξ)gk ξ ∈ Ξ∗0∑
k∈K

dk(ξ)yk
a ≤ xa a ∈ A, ξ ∈ Ξ∗a

FLOW ,REJECTION,NON − NEGATIVITY
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Separation problem

Given a solution (θ∗, x∗, f ∗, g∗) to (MP), check for missing constraints:

CAPACITY −x∗a + max
ξ∈Ξ

∑
k∈K

dk(ξ)f ∗ka ⇒ OK

COST −θ∗ + max
ξ∈Ξ

r(ξ)
∑
k∈K

dk(ξ)g∗k ⇒ ?

∼ −θ∗ + max
ξ∈Ξ

ln

(
r(ξ)

)
+ ln

(∑
k∈K

dk(ξ)g∗k
)

We solve COST by a cutting-plane algorithm (embedded into another
cutting plane algorithm)
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We compare:

CP Cut generation for cost and capacity constraints

CP+D Dualization of capacity constraint and cut generation for
cost constraints

SDP Semi-definite reformulation in the ellipsoidal case

Instances:

|V | |A| |K |
di-yuan 11 84 22

pdh 11 68 24
polska 12 36 66

nobel-us 14 42 91
atlanta 15 44 210
newyork 16 98 240
france 25 90 300
india35 35 160 595

germany50 50 176 662
cost266 37 114 1332
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Solution times

Instances Budgeted Ellipsoid + box Ellipsoid
CP CP+D CP CP+D CP CP+D SDP

di-yuan 0.1 0.1 0.1 6.1 0.2 10.8 17.3
pdh 0.1 0.1 1.4 114 0.1 4.4 10.9

polska 0.1 0.1 0.4 49.7 0.5 10.9 68.9
nobel-us 0.1 0.2 0.8 193 0.3 12 276
atlanta 1.4 4.1 4 260 4.4 75.8 T
newyork 0.9 1.1 2.9 T 10.1 450 M
France 2.9 4.2 74.3 T 18.8 271 M
india35 20.9 12.6 76.4 T 571 1750 M

germany 5.8 13.9 8.7 T 138 T M
cost266 154 61.8 1480 T T T M

Table : Solution times for ε = 0.05.
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Solution costs

Instances Best (RND) (RND0)
Bud. Ell.+Box Ell. Bud. Ell.+Box Ell.

di-yuan 4.74+06 0.8 0 12.8 11.6 11.6 36.5
pdh 2.45+07 0 1.3 16.6 2.2 2.2 45.6

polska 3.74+02 1.0 0 7.2 21.4 18.9 23.4
nobel-us 4.82+06 3.0 0 7.1 33.7 30.3 35.3
atlanta 1.86+08 12.4 0 16.6 50.4 38.7 52.5
newyork 2.67+05 5.0 0 9.3 38.6 34.0 39.7
France 2.14+04 5.3 0 5.3 31.4 19.8 22.2
india35 3.43+03 2.2 0 2.8 39.2 22.2 22.9

germany 6.19+05 7.6 0 7.3 41.3 26.9 32.7
cost266 1.39+07 8.8 0 N.A. 50.5 24.5 24.7

Table : Solution costs for ε = 0.05.
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Thank’s for your attention
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