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Model with a set system:    


            elements       subsets of 


(X, 𝒮)

n m X

Combinatorial data approximation



Model with a set system:    


            elements       subsets of 


Goal: Pick half of the elements in  such that from each , 


   ‘half’ of the points in  are present in . 

Formally,  of size    that minimizes the discrepancy


   


(X, 𝒮)

n m X

X S ∈ 𝒮

S A

A ⊂ X
n
2

disc𝒮(A) = max
S∈𝒮

|S | − 2 |A ∩ S |

Combinatorial data approximation



Random sampling
set system , , 


Random subset    s.t.   with probability     :   


(X, 𝒮) n = |X | m = |𝒮 |

A ⊆ X x ∈ A
1
2

𝔼 |A ∩ S | =
|S |
2



Random sampling
set system , , 


Random subset    s.t.   with probability     :   


Chernoff-Hoeffding + union bound:    


  


  


(X, 𝒮) n = |X | m = |𝒮 |

A ⊆ X x ∈ A
1
2

𝔼 |A ∩ S | =
|S |
2

ℙ [max
S∈𝒮

2 |A ∩ S | − |S | > δ] ≤ 2m ⋅ exp (−
δ2

2n )
⟹ disc𝒮(A) = O ( n ln m)



Random sampling
set system , , 


Recursively sample  ,  , , . . . , always halving the size


(X, 𝒮) n = |X | m = |𝒮 |

A1 ⊆ X A2 ⊆ A1 A3 ⊆ A2



set system , , 


Recursively sample  ,  , , . . . , always halving the size


       


       


           


(X, 𝒮) n = |X | m = |𝒮 |

A1 ⊆ X A2 ⊆ A1 A3 ⊆ A2

|A1 | =
n
2

2 |A1 ∩ S | = |S | ± O ( n ln m)
|A2 | =

n
4

4 |A2 ∩ S | = |S | ± O ( 2n ln m)

|Ai | =
n
2i

2i |Ai ∩ S | = |S | ± O ( 2in ln m)

Random sampling

⋮



set system , , 


-approximation problem:


Given , find smallest    such that  


Uniform sampling gives


           


(X, 𝒮) n = |X | m = |𝒮 |

ε

ε ∈ (0,1) A ⊆ X max
S∈𝒮

|S |
|X |

−
|A ∩ S |

|A |
≤ ε

|Ai | =
n
2i

2i |Ai ∩ S | = |S | ± O ( 2in ln m)

Epsilon-approximations

}
≤ εn i ≤ log

ε2n
ln m

⟹

 A uniform sample of  points is an -approximation with constant probability⟹ O ( ln m
ε2 ) ε



set system , ,                    (X, 𝒮) n = |X | m = |𝒮 | discℛ(A) = O ( n ln m)
Arbitrary

Discrepancy

error

-approximation

size

ε

n ln m

ln m
ε2

Uniform sampling guarantees



Structured set systems

set system  


 : set of  points in 

each set in  is defined by a disk    even for 


                                                         

                        

(X, 𝒮) discℛ(A) = O ( n ln m)
X n ℝ2

𝒮 ⟹ 𝒮 |Y < 2|Y| |Y | = 4



Structured set systems

set system  


 : set of  points in 
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                                                      but                        possible for 
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set system  


 : set of  points in 

each set in  is defined by a disk    even for 


                                                      but                        possible for 

     


                           VC-dimension of  is .


The VC-dimension of  is the size of the largest   s.t.  .
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set system  


 : set of  points in 

each set in  is defined by a disk    even for 


                                                      but                        possible for 

     


                           VC-dimension of  is .


The VC-dimension of  is the size of the largest   s.t.  .

(X, 𝒮) discℛ(A) = O ( n ln m)
X n ℝ2

𝒮 ⟹ 𝒮 |Y < 2|Y| |Y | = 4

|Y | = 3
𝒮 |Y = {Y ∩ S : S ∈ 𝒮}

⟹ (X, 𝒮) 3

(X, 𝒮) Y ⊆ X 𝒮 |Y = 2|Y|

Structured set systems

dVC(X, 𝒮) = d ⟹ 𝒮 |Y = O ( |Y |d )
(Vapnik-Chervonenkis 1971, Sauer, Shelah 1972)

𝒮 |Y = 23



Arbitrary

Discrepancy

error

-approximation

size

ε

n ln m dn ln n

ln m
ε2

d
ε2

Uniform sampling guarantees

(Li-Long-Srinivasan 2001)

VC-dim ≤ d

set system , ,                    (X, 𝒮) n = |X | m = |𝒮 | discℛ(A) = O ( n ln m)



Non-uniform sampling
 : set of  points in 


each set in  is defined by a disk


                 

X n ℝ2

𝒮



Non-uniform sampling
 : set of  points in 


each set in  is defined by a disk


Theorem (Welzl 1988, Chazelle-Welzl 1989)

 has a perfect matching such that any disk crosses  edges.


                                            


                 

X n ℝ2

𝒮

X O ( n)



 : set of  points in 

each set in  is defined by a disk


Theorem (Welzl 1988, Chazelle-Welzl 1989)

 has a perfect matching such that any disk crosses  edges.                                              


Idea: Take one end-point of each matching edge randomly


 only  random variables for each disk





         with constant probability


X n ℝ2

𝒮

X O ( n)

⟹ O ( n)
ℙ [max

S∈𝒮
2 |A ∩ S | − |S | > δ] ≤ m ⋅ exp (−

δ2

2 n )
⟹ disc𝒮(A) = O (n1/4 ln n)

(Matoušek-Welzl-Wernish 1991)

Non-uniform sampling



 :  points in 

 : balls in 

X n ℝd

𝒮 ℝd

O (n1−1/d)

O ( dn1−1/d ln n)

Non-uniform sampling
 : set of  points in 


each set in  is defined by a disk


Theorem (Welzl 1988, Chazelle-Welzl 1989)

 has a perfect matching such that any disk crosses  edges.                                              


Idea: Take one end-point of each matching edge randomly


 only  random variables for each disk





         with constant probability


X n ℝ2

𝒮

X O ( n)

⟹ O ( n)
ℙ [max

S∈𝒮
2 |A ∩ S | − |S | > δ] ≤ m ⋅ exp (−

δ2

2 n )
⟹ disc𝒮(A) = O (n1/4 ln n)

(Matoušek-Welzl-Wernish 1991)



 :  points in ,  : subsets induced by ballsX n ℝd 𝒮

Approximation bounds

Arbitrary VC-dim ≤ d

Discrepancy

error

-approximation

size

ε

n ln m dn ln n

ln m
ε2

d
ε2

Uniform sampling Structural properties

+ non-uniform sampling

dn1−1/d ln n

d ln 1
ε

ε2

1−1/d



Approximation bounds

Arbitrary

Discrepancy

error

-approximation

size

ε

n ln m dn ln n

ln m
ε2

d
ε2

Uniform sampling

dn1−1/d ln n

Need a matching to sample

d ln 1
ε

ε2

1−1/d

VC-dim ≤ d

 :  points in ,  : subsets induced by ballsX n ℝd 𝒮
Structural properties


+ non-uniform sampling



Iterative reweighing method

Maintain weights on balls 


1. initially, each ball has weight 


2. for 


• select an edge  crossing balls of minimum total weight


• double the weight of each balls crossing 


• remove all edges incident to 


Return 

= 1

i = 1,…, n/2
ei

ei

ei

e1, …, en/2

(Chazelle-Welzl 1989)



Iterative reweighing method


(Chazelle-Welzl 1989)

 timeO(n2m)

Maintain weights on balls 


1. initially, each ball has weight 


2. for 


• select an edge  crossing balls of minimum total weight


• double the weight of each balls crossing 


• remove all edges incident to 


Return 

= 1

i = 1,…, n/2
ei

ei

ei

e1, …, en/2



sampling according to edge weights

Iterative reweighing method


 timeO(n2m)

(Chazelle-Welzl 1989)

Maintain weights on balls 


1. initially, each ball has weight 


2. for 


• select an edge  crossing balls of minimum total weight


• double the weight of each balls crossing 


• remove all edges incident to 


Return 

= 1

i = 1,…, n/2
ei

ei

ei

e1, …, en/2



Maintain weights on edges and balls 


1. initially, each ball and edge has weight 


2. 

• sample an edge  according to the current edge-weights

• sample a ball  according to the current range-weights

• double the weight of each ball crossing  on a random subset of 

• halve the weight of each edge crossing  on a random subset of edges

• add  to the matching and remove all edges incident to 


= 1

i = 1,…, n/4
ei

Si
ei 𝒮
Si

ei ei

Reweighing on edges and balls

Si

ei



ei

double weight

Maintain weights on edges and balls 


1. initially, each ball and edge has weight 


2. 

• sample an edge  according to the current edge-weights

• sample a ball  according to the current range-weights

• double the weight of each ball crossing  on a random subset of 

• halve the weight of each edge crossing  on a random subset of edges

• add  to the matching and remove all edges incident to 


= 1

i = 1,…, n/4
ei

Si
ei 𝒮
Si

ei ei

Reweighing on edges and balls



halve weight

Si

Maintain weights on edges and balls 


1. initially, each ball and edge has weight 


2. 

• sample an edge  according to the current edge-weights

• sample a ball  according to the current range-weights

• double the weight of each ball crossing  on a random subset of 

• halve the weight of each edge crossing  on a random subset of edges

• add  to the matching and remove all edges incident to 


= 1

i = 1,…, n/4
ei

Si
ei 𝒮
Si

ei ei

Reweighing on edges and balls



Maintain weights on edges and balls


1. initially, each ball and edge has weight 


2. for 

• sample an edge  according to the current edge-weights

• sample a ball  according to the current range-weights

• double the weight of each ball crossing  on a random subset of 

• halve the weight of each edge crossing  on a random subset of edges

• add  to the matching and remove all edges incident to 


3. recurse on uncovered points 

= 1

i = 1,…, n/4
ei

Si
ei ℋ
Si

ei ei

Reweighing on edges and balls



Maintain weights on edges and balls


1. initially, each ball and edge has weight 


2. for 

• sample an edge  according to the current edge-weights

• sample a ball  according to the current range-weights

• double the weight of each ball crossing 

• halve the weight of each edge crossing 

• add  to the matching and remove all edges incident to 


3. recurse on uncovered points 

= 1

i = 1,…, n/4
ei

Si
ei
Si

ei ei

ln m crossing number of 𝔼 e1, …, en/4 n1−1/d +≲

Reweighing on edges and balls



  timeO(m + n2)

Reweighing on edges and balls

ln mn1−1/d +≲ crossing number of 𝔼 e1, …, en/4

Maintain weights on edges and balls


1. initially, each ball and edge has weight 


2. for 

• sample an edge  according to the current edge-weights

• sample a ball  according to the current range-weights

• double the weight of each ball crossing 

• halve the weight of each edge crossing 

• add  to the matching and remove all edges incident to 


3. recurse on uncovered points 

= 1

i = 1,…, n/4
ei

Si
ei
Si

ei ei



ln m
p

Random update with probability p

Reweighing on edges and balls

n1−1/d≲ + crossing number of 𝔼 e1, …, en/4

Maintain weights on edges and balls


1. initially, each ball and edge has weight 


2. for 

• sample an edge  according to the current edge-weights

• sample a ball  according to the current range-weights

• double the weight of each ball crossing 

• halve the weight of each edge crossing 

• add  to the matching and remove all edges incident to 


3. recurse on uncovered points 

= 1

i = 1,…, n/4
ei

Si
ei
Si

ei ei



Maintain weights on edges and balls


0. sample  and   with  and  


1. initially, each range and edge has weight 


2. for 

• sample an edge  according to the current edge-weights

• sample a ball  according to the current range-weights


• double the weight of each ball in  crossing 


• halve the weight of each edge in  crossing 


• add  to the matching and remove all edges incident to 


3. recurse on uncovered points 

E1, …, En/4 ⊂ E 𝒮1, …, 𝒮n/4 ⊂ 𝒮 𝔼 [ |𝒮i |] =
m ln m
n1−1/d

𝔼 [ |Ei |] = n1+1/d ln m

= 1

i = 1,…, n/4
ei

Si

𝒮i ei

Ei Si

ei ei

Our method

Matching with crossing number   in time  O (n1−1/d) Õ (mn1/d + n2+1/d)



Matchings —  ℝ2

5000 points on 10 co-centric circles



Matchings — ℝ2

5000 points picked uniformly at random from 5000 grid cells



Matchings — ℝ2

5000 points picked uniformly at random from 5000 grid cells



Approximations — ℝ2

Our 

method

Random

sampling


