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Motivation - Magnetic Resonance Imaging

Objective: reduce acquisition times in MRI

• Patient comfort.

• Reducing geometrical distortions (patient moves).

• Reducing scanning costs.

• Improvement of spatio-temporal resolutions.

Our approach: devise mathematically grounded strategies to
reduce acquisition times by changing the sampling and
reconstruction strategies.
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Basic facts - An MR scanner as a gigantic microwave

Figure: MRI acquisition.
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Background

MRI sampling

MRI allows to measure a discrete set of Fourier transform values.

Figure: Left: Fourier transform of a 2D brain. Right: 2D MRI brain
image.
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Formalizing the sampling problem

Figure: Pulse sequence and corresponding sampling trajectory.

Let s : [0,T ]→ Rd , (d = 2, 3) denote the sampling curve. We
have:

s(t) = s(0) + γ

∫ t

0
g(s)ds avec g = (gx , gy ).

The g field is called gradient encoding, it should satisfy:

• ‖gx‖∞ ≤ α, ‖gy‖∞ ≤ α (bounded speed).

• ‖g ′x‖∞ ≤ β, ‖g ′y‖∞ ≤ β (bounded “curvatures”).

Similar to driving a car on the Fourier plane.
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Formalizing the sampling problem
Let u : [0, 1]d → R be an image and û denote its Fourier transform.

Our objective: reconstruct ũ such that ‖u − ũ‖ ≤ ε

Minimize Tε under the constraint that there exists g : [0,Tε]→ Rd

s.t.

• g and g ′ are uniformly bounded.

• Sampling the curve s(t) = s(0) + γ
∫ t

0 g(s)ds generates a set

E (s) = {û(s(k∆t))}k∈{0,...,Tε/(∆t)}

that allows reconstructing ũ with precision ε.

Questions...
• How to choose the measurements?

• How to find s?

• How to reconstruct ũ knowing E (s)?

Remarks

• Extremely difficult problem (we only provide preliminary
results).

• Not specific to MRI (radio interferometry, microscopic
holography,...)
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A possible answer: Compressed Sensing

Notation

Let x ∈ Cn denote an s-sparse vector.
Let A denote the acquisition matrix. Let Ω ⊆ {1, · · · , n} and
AΩ = (a∗i )i∈Ω.
We acquire a measurement vector:

y = AΩx .

Example

x Ψx F ∗Ψx = Ax AΩx
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The foundations of variable density sampling

Theorem [Candès, Plan 2011]

Let x be an arbitrary s-sparse vector.
Let (Jk)k∈{1,...,m} denote a sequence of i.i.d. random variables
taking value i ∈ {1, . . . , n} with probability pi .
Generate a random set Ω = {J1, . . . , Jm} and measure y = AΩx .
Take η ∈]0, 1[ and assume that:

m ≥ C max
k∈{1,...,n}

‖ak‖2
∞

pk
s ln

(
n

η

)
where C is a universal constant.
Then with probability 1− η vector x is the unique solution of the
following problem:

min
z∈Cn,AΩz=y

‖z‖1.
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The foundations of variable density sampling

Corollary

The “optimal” distribution reads pk = ‖ak‖2
∞∑n

i=1 ‖ai‖2
∞

.

Illustration of optimal sampling strategy for A = F ∗Ψ (MRI)

Figure: Left: Optimal drawing probability. Right: a realization of a set Ω
with 1 coefficient kept out of 5.
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The foundations of variable density sampling

Illustration of optimal sampling strategy for A = F ∗Ψ

Figure: Left: original image. Right: reconstructed image (PSNR =
35.4dB).



Compressed Sensing MRI Variable density sampling Two examples of VDS Conclusion

Partial summary

• Existing strategies:

Figure: Traditional sampling schemes.

• Compressed Sensing:

Figure: “Compressed Sensing” acquisitions.
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Sketch of the proof of the CS theorem

Proof outline - Part I: deterministic, convex analysis

Main ingredient

Let S denote the support of x .
A necessary condition for perfect recovery of x is:

‖(AS
Ω)∗AS

Ω − Is‖2→2 ≤ δ 6
1

2
(1)

Equation (1) can be viewed as a near isometry property of AS
Ω.
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Sketch of the proof of the CS theorem

Proof outline - Part II: concentration inequalities

By assumption we have

Is = AS∗AS =
n∑

i=1

pi
aSi aS∗i

pi
. (2)

Let X S
i =

aSJi
aS∗Ji

pJi
denote a rank 1 random matrix.

By Eq. (2), we get E(X S
i ) = Is thus, by the C.L.T.:

lim
m→+∞

1

m

m∑
i=1

X S
i = Is a.s..

Concentration inequalities (Bernstein) provide stronger results:

P

(∣∣∣∣∣
∣∣∣∣∣ 1

m

m∑
i=1

X S
i − Is

∣∣∣∣∣
∣∣∣∣∣
2→2

≥ t

)
≤ 2s exp

(
−mt2

Cµs

)
.
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A definition of VDS

Definition: variable density samplers [C. et al, submitted, 2014]

Let p denote a probability measure on a space Ξ (e.g. {1, . . . , n}
or [0, 1]d).
A stochastic process X = (Xi )i∈N or X = (Xt)t∈R+ is called a
p-variable density sampler if its empirical measure (or occupation
measure) satisfies

lim
m→+∞

1

m

m∑
i=1

f (Xi ) = p(f ) a.s.

or

lim
T→+∞

1

T

∫ T

t=0
f (Xt) = p(f ) a.s.

for all continuous bounded functions f .
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Examples of variable density samplers

Example 1: point processes

Drawing independent random vectors in Rd with a distribution p is
a p-variable density sampler.

Example 2: random walks

A random walk in Rd with a stationary distribution p is a
p-variable density sampler.

Example 3: dynamical systems

The definition of variable density samplers is closely related to the
ergodic hypothesis for dynamical systems.
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What are the key properties of a good VDS ?
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Sampling with random walks

Construction of a discrete Markov chain

Given a target probability distribution p ∈ Rn.
Define a Markov chain X = (Xi )i∈N on the set {1, . . . , n}.
Use Metropolis algorithm to construct a stochastic transition
matrix P ∈ Rn×n such that p is the stationary distribution of X i.e.

p = pP.

Figure: Authorized transitions to enforce continuity.
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Sampling with random walks

Theorem [C. et al 2013]

Let Ω = (X1, . . . ,Xm) denote the set of indices obtained at time m.
If

m ≥ C

ε(P)
max

k∈{1,...,n}

‖ak‖2
∞

pk
s2 ln

(
n

η

)
Then every s-sparse vector is recovered exactly by solving the `1

minimization problem with probability 1− η.
The spectral gap ε(P) is the difference between the largest and the
second largest eigenvalue of P.

A doomed approach?

The spectral gap ε(P) usually depends on n and can be as small as
1

n1/d !
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Sampling with random walks

A doomed approach?

PSNR=31.1 dB

Figure: Markov based sampling yields bad reconstruction results!
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The Travelling Salesman sampler

An algorithmic alternative

• Throw a set of points according to a density q.

• Join them by finding the shortest path passing through all of
them.

Problem: How to choose q ?

Figure: The naive approach fails! We can’t just draw the initial points
according to p and join them using the TSP.
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The Travelling Salesman sampler

• Let Ξ = [0, 1]d , with d > 2.

• (xi )i∈N∗ a sequence of points in Ξ,
i.i.d. drawn ∼ q.

• XN = (xi )i6N .

• Denote T (XN ,Ξ) the length of the
TSP amongst XN .

• γN : [0, 1]→ Ξ denotes the
parametrization of the curve at
constant speed T (XN ,Ξ).
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The Travelling Salesman sampler

The Lebesgue measure on an interval [0, 1] is denoted λ[0,1].

Distribution of the TSP solution

For any Borelian ω in Ξ:

PN(ω) = λ[0,1]

(
γ−1
N (ω)

)
.

Intuitive definition

PN(ω) =
T|ω(XN ,Ξ)

T (XN ,Ξ)
, ∀ω.
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The Travelling Salesman sampler

Theorem (TSP empirical measure (Chauffert, W. 2013) )

Define the density:

p =
q(d−1)/d∫

Ξ q(d−1)/d(x)dx
.

Almost surely w.r.t. the law q⊗N of the sequence (xi )i∈N∗ of
random points in the hypercube, the distribution PN converges in
distribution to p:

PN
(d)→ p q⊗N-a.s.
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The Travelling Salesman sampler

Intuition

Consider a small hypercube:

• The number of point n is ∝ q;

• The typical distance is proportional to n−1/d (or q−1/d);

• ⇒ The length of the TSP in the small cube is
∝ qq−1/d = q(d−1)/d

Conclusion

To reach a target density p, one should choose q ∝ pd/(d−1)!
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The Travelling Salesman sampler
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The Travelling Salesman sampler

Figure: 3D reconstruction results for r = 8.8 for various sampling
strategies. Top row: TSP-based sampling schemes (PSNR=42.1 dB).
Bottom row: 2D random drawing and acquisitions along parallel lines
(state-of-the-art) (PSNR=40.1 dB).
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Conclusion 1/2

• We motivated VDS and introduced a definition.

• We proposed two continuous sampling strategies.

• We highlighted the key-properties of a good VDS.
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Conclusion 2/2

Markov approach TSP approach

Mixing time ε(P) seems fast, how to quantify ?

Distribution Metropolis draw points w.r.t π2

MRI constraints can be improved strong limitation

Objective

Find a trajectory which covers the space rapidly, and with the
optimal distribution.
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Questions?

Thank you for your attention !
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