From Compressed sensing to realistic sampling: the example of MRI

N. Chauffert

CEA/NeuroSpin Parietal Team

Apr. 10, 2014

Advisors: Philippe Ciuciu & Pierre Weiss Joint work with: Jonas Kahn Séminaire PGMO, École Polytechnique Compressed Sensing MRI

Variable density sampling

Two examples of VDS

Conclusion

Outline

Compressed Sensing MRI

Variable density sampling

Two examples of VDS

Compressed Sensing MRI

Variable density sampling

Two examples of VDS

Conclusion

Outline

Compressed Sensing MRI

Variable density sampling

Two examples of VDS

Motivation - Magnetic Resonance Imaging

Objective: reduce acquisition times in MRI

- Patient comfort.
- Reducing geometrical distortions (patient moves).
- Reducing scanning costs.
- Improvement of spatio-temporal resolutions.

Our approach: devise *mathematically grounded* strategies to reduce acquisition times by changing *the sampling and reconstruction strategies*.

Basic facts - An MR scanner as a gigantic microwave

Figure: MRI acquisition.

Variable density sampling

Two examples of VDS

Conclusion

Background

MRI sampling MRI allows to measure a discrete set of **Fourier transform values**.

Figure: Left: Fourier transform of a 2D brain. Right: 2D MRI brain image.

Formalizing the sampling problem

Figure: Pulse sequence and corresponding sampling trajectory.

Let $s : [0, T] \to \mathbb{R}^d$, (d = 2, 3) denote the sampling curve. We have: $s(t) = s(0) + \gamma \int_0^t g(s) ds \text{ avec } g = (g_x, g_y).$

The g field is called gradient encoding, it should satisfy:

• $\|g_x\|_{\infty} \leq \alpha$, $\|g_y\|_{\infty} \leq \alpha$ (bounded speed).

• $||g'_{x}||_{\infty} \leq \beta$, $||g'_{y}||_{\infty} \leq \beta$ (bounded "curvatures"). Similar to driving a car on the Fourier plane. Formalizing the sampling problem Let $u : [0,1]^d \to \mathbb{R}$ be an image and \hat{u} denote its Fourier transform. Our objective: reconstruct \tilde{u} such that $||u - \tilde{u}|| \le \epsilon$ Minimize T_{ϵ} under the constraint that there exists $g : [0, T_{\epsilon}] \to \mathbb{R}^d$ s.t.

- g and g' are uniformly bounded.
- Sampling the curve $s(t) = s(0) + \gamma \int_0^t g(s) ds$ generates a set

$$E(s) = \{\hat{u}(s(k\Delta t))\}_{k \in \{0,...,T_{\epsilon}/(\Delta t)\}}$$

that allows reconstructing \tilde{u} with precision ϵ .

Questions...

- How to choose the measurements?
- How to find s?
- How to reconstruct \tilde{u} knowing E(s)?

A possible answer: Compressed Sensing

Notation

Let $x \in \mathbb{C}^n$ denote an *s*-sparse vector. Let *A* denote the acquisition matrix. Let $\Omega \subseteq \{1, \dots, n\}$ and $A_{\Omega} = (a_i^*)_{i \in \Omega}$. We acquire a measurement vector:

$$y = A_{\Omega}x.$$

Example

The foundations of variable density sampling

Theorem [Candès, Plan 2011]

Let x be an arbitrary s-sparse vector. Let $(J_k)_{k \in \{1,...,m\}}$ denote a sequence of i.i.d. random variables taking value $i \in \{1,...,n\}$ with probability p_i . Generate a random set $\Omega = \{J_1,...,J_m\}$ and measure $y = A_{\Omega}x$. Take $\eta \in]0, 1[$ and assume that:

$$m \ge C \max_{k \in \{1,\dots,n\}} \frac{\|a_k\|_{\infty}^2}{p_k} s \ln\left(\frac{n}{\eta}\right)$$

where C is a universal constant.

Then with probability $1 - \eta$ vector x is the unique solution of the following problem:

$$\min_{z\in\mathbb{C}^n,A_\Omega z=y}\|z\|_1.$$

Conclusion

The foundations of variable density sampling Corollary

The "optimal" distribution reads $p_k = \frac{\|a_k\|_{\infty}^2}{\sum_{i=1}^n \|a_i\|_{\infty}^2}$.

Illustration of optimal sampling strategy for $A = F^* \Psi$ (MRI)

The foundations of variable density sampling

Illustration of optimal sampling strategy for $A = F^* \Psi$

Figure: Left: original image. Right: reconstructed image (PSNR = 35.4dB).

Conclusion

Partial summary

• Existing strategies:

Figure: Traditional sampling schemes.

• Compressed Sensing:

Figure: "Compressed Sensing" acquisitions.

Compressed Sensing MRI

Variable density sampling

Two examples of VDS

Conclusion

Outline

Compressed Sensing MRI

Variable density sampling

Two examples of VDS

Sketch of the proof of the CS theorem

Proof outline - Part I: deterministic, convex analysis

Main ingredient

Let S denote the support of x. A necessary condition for perfect recovery of x is:

$$\|(A_{\Omega}^{S})^{*}A_{\Omega}^{S} - I_{s}\|_{2 \to 2} \le \delta \leqslant \frac{1}{2}$$

$$\tag{1}$$

Equation (1) can be viewed as a near isometry property of A_{Ω}^{S} .

Sketch of the proof of the CS theorem Proof outline - Part II: concentration inequalities By assumption we have

$$I_{s} = A^{S*}A^{S} = \sum_{i=1}^{n} p_{i} \frac{a_{i}^{S} a_{i}^{S*}}{p_{i}}.$$
 (2)

Let $X_i^S = \frac{a_{J_i}^S a_{J_i}^{S*}}{p_{J_i}}$ denote a rank 1 random matrix. By Eq. (2), we get $\mathbb{E}(X_i^S) = I_s$ thus, by the C.L.T.:

$$\lim_{m \to +\infty} \frac{1}{m} \sum_{i=1}^m X_i^S = I_s \text{ a.s.}.$$

Concentration inequalities (Bernstein) provide stronger results:

$$\mathbb{P}\left(\left\|\left|\frac{1}{m}\sum_{i=1}^{m}X_{i}^{S}-I_{s}\right\|\right|_{2\to 2}\geq t\right)\leq 2s\exp\left(-\frac{mt^{2}}{C\mu s}\right)$$

Conclusion

A definition of VDS

Definition: variable density samplers [C. et al, submitted, 2014] Let p denote a probability measure on a space Ξ (e.g. $\{1, \ldots, n\}$ or $[0, 1]^d$). A stochastic process $X = (X_i)_{i \in \mathbb{N}}$ or $X = (X_t)_{t \in \mathbb{R}_+}$ is called a *p*-variable density sampler if its empirical measure (or occupation measure) satisfies

$$\lim_{m\to+\infty}\frac{1}{m}\sum_{i=1}^m f(X_i) = p(f) \text{ a.s.}$$

or

$$\lim_{T\to+\infty}\frac{1}{T}\int_{t=0}^{T}f(X_t)=p(f) \text{ a.s.}$$

for all continuous bounded functions f.

Examples of variable density samplers

Example 1: point processes

Drawing independent random vectors in \mathbb{R}^d with a distribution p is a p-variable density sampler.

Example 2: random walks

A random walk in \mathbb{R}^d with a stationary distribution p is a p-variable density sampler.

Example 3: dynamical systems

The definition of variable density samplers is closely related to the ergodic hypothesis for dynamical systems.

Conclusion

What are the key properties of a good VDS ?

Compressed Sensing MRI

Variable density sampling

Two examples of VDS

Conclusion

Outline

Compressed Sensing MRI

Variable density sampling

Two examples of VDS

Conclusion

Sampling with random walks

Construction of a discrete Markov chain

Given a target probability distribution $p \in \mathbb{R}^n$. Define a Markov chain $X = (X_i)_{i \in \mathbb{N}}$ on the set $\{1, \ldots, n\}$. Use Metropolis algorithm to construct a stochastic transition matrix $P \in \mathbb{R}^{n \times n}$ such that p is the stationary distribution of X i.e.

p = pP.

Figure: Authorized transitions to enforce continuity.

Sampling with random walks

Theorem [C. et al 2013]

Let $\Omega = (X_1, \dots, X_m)$ denote the set of indices obtained at time m. If

$$m \geq rac{C}{\epsilon(P)} \max_{k \in \{1,...,n\}} rac{\|a_k\|_{\infty}^2}{p_k} s^2 \ln\left(rac{n}{\eta}
ight)$$

Then every s-sparse vector is recovered exactly by solving the ℓ^1 minimization problem with probability $1 - \eta$.

The spectral gap $\epsilon(P)$ is the difference between the largest and the second largest eigenvalue of P.

A doomed approach?

The spectral gap $\epsilon(P)$ usually depends on n and can be as small as $\frac{1}{n^{1/d}}!$

Compressed Sensing MRI

Two examples of VDS ○○● ○○○○○○ Conclusion

Sampling with random walks

A doomed approach?

PSNR=31.1 dB

Figure: Markov based sampling yields bad reconstruction results!

An algorithmic alternative

- Throw a set of points according to a density q.
- Join them by finding the shortest path passing through all of them.

Problem: How to choose q ?

The Travelling Salesman sampler

An algorithmic alternative

- Throw a set of points according to a density q.
- Join them by finding the shortest path passing through all of them.

Problem: How to choose q ?

Figure: **The naive approach fails!** We can't just draw the initial points according to *p* and join them using the TSP.

Conclusion

- Let $\Xi = [0, 1]^d$, with $d \ge 2$.
- (x_i)_{i∈ℕ*} a sequence of points in Ξ, *i.i.d.* drawn ~ q.
- $X_N = (x_i)_{i \leq N}$.
- Denote $T(X_N, \Xi)$ the length of the TSP amongst X_N .
- $\gamma_N : [0,1] \to \Xi$ denotes the parametrization of the curve at constant speed $T(X_N, \Xi)$.

- Let $\Xi = [0, 1]^d$, with $d \ge 2$.
- (x_i)_{i∈ℕ*} a sequence of points in Ξ, *i.i.d.* drawn ~ q.
- $X_N = (x_i)_{i \leq N}$.
- Denote $T(X_N, \Xi)$ the length of the TSP amongst X_N .
- $\gamma_N : [0,1] \to \Xi$ denotes the parametrization of the curve at constant speed $T(X_N, \Xi)$.

- Let $\Xi = [0, 1]^d$, with $d \ge 2$.
- (x_i)_{i∈ℕ*} a sequence of points in Ξ, *i.i.d.* drawn ~ q.
- $X_N = (x_i)_{i \leq N}$.
- Denote $T(X_N, \Xi)$ the length of the TSP amongst X_N .
- $\gamma_N : [0,1] \to \Xi$ denotes the parametrization of the curve at constant speed $T(X_N, \Xi)$.

Conclusion

The Travelling Salesman sampler

The Lebesgue measure on an interval [0,1] is denoted $\lambda_{[0,1]}$.

Distribution of the TSP solution

For any Borelian ω in Ξ :

$$P_{N}(\omega) = \lambda_{[0,1]} \left(\gamma_{N}^{-1}(\omega) \right).$$

The Travelling Salesman sampler

Theorem (TSP empirical measure (Chauffert, W. 2013)) *Define the density:*

$$p=rac{q^{(d-1)/d}}{\int_{\Xi}q^{(d-1)/d}(x)dx}.$$

Almost surely w.r.t. the law $q^{\otimes \mathbb{N}}$ of the sequence $(x_i)_{i \in \mathbb{N}^*}$ of random points in the hypercube, the distribution P_N converges in distribution to p:

$$P_N \stackrel{(d)}{\to} p \qquad q^{\otimes \mathbb{N}}$$
-a.s.

The Travelling Salesman sampler

Intuition

Consider a small hypercube:

• The number of point *n* is $\propto q$;

Intuition

Consider a small hypercube:

- The number of point *n* is $\propto q$;
- The typical distance is proportional to $n^{-1/d}$ (or $q^{-1/d}$);

Intuition

Consider a small hypercube:

- The number of point *n* is $\propto q$;
- The typical distance is proportional to $n^{-1/d}$ (or $q^{-1/d}$);
- \Rightarrow The length of the TSP in the small cube is $\propto qq^{-1/d} = q^{(d-1)/d}$

Intuition

Consider a small hypercube:

- The number of point *n* is $\propto q$;
- The typical distance is proportional to $n^{-1/d}$ (or $q^{-1/d}$);
- \Rightarrow The length of the TSP in the small cube is $\propto qq^{-1/d} = q^{(d-1)/d}$

Intuition

Consider a small hypercube:

- The number of point *n* is $\propto q$;
- The typical distance is proportional to $n^{-1/d}$ (or $q^{-1/d}$);
- \Rightarrow The length of the TSP in the small cube is $\propto qq^{-1/d} = q^{(d-1)/d}$

Conclusion

To reach a target density p, one should choose $q \propto p^{d/(d-1)}!$

The Travelling Salesman sampler

Figure: 3D reconstruction results for r = 8.8 for various sampling strategies. **Top row:** TSP-based sampling schemes (PSNR=42.1 dB). **Bottom row:** 2D random drawing and acquisitions along parallel lines (state-of-the-art) (PSNR=40.1 dB).

Conclusion

Conclusion 1/2

- We motivated VDS and introduced a definition.
- We proposed two continuous sampling strategies.
- We highlighted the key-properties of a good VDS.

Variable density sampling

Two examples of VDS

Conclusion

Conclusion 2/2

Markov approach

Mixing time	$arepsilon({\sf P})$	seems fast, how to quantify ?
Distribution	Metropolis	draw points w.r.t π^2
MRI constraints	can be improved	strong limitation

Objective

Find a trajectory which covers the space rapidly, and with the optimal distribution.

Conclusion

Questions?

Thank you for your attention !