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Incentives Limited data Sequential
decisions

Online platforms, e-commerce, etc

Flexible Model:

Motivation

Multiple Goals



Course Overview

1. Classic single-choice problems:
The classic prophet inequality, secretary problem, prophet secretary problem, etc

2. Data driven prophet inequalities:
How can limited amount of data be nearly as useful as full distributional knowledge

3. Combinatorial Prophet Inequalities
Many ideas for single choice problems, extend to combinatorial contexts such as k-

choice, Matching, hyper graph matching, and beyond

4. Online Combinatorial Auctions
General Model that encompasses many online selection/allocation problems



4. Online Combinatorial Auctions



Auction for radio frequencies in the US (2017)
USD $19.8 billion

Procurement of meal providers in 
Chilean public schools

USD $500+ million every year

Online advertising
Google’s and Meta’s main 
source of revenue



𝑣(𝐴)=100

𝑣 𝐵 = 500

𝑣! 𝐴 = 100

𝑣! 𝐵 = 15



𝑛 agents arrive one by one
independent monotone valuations 𝑣! ∼ 𝐹!

𝑣!: 2" → ℝ#
(a random function for each agent)Set 𝑀 with 𝑚 items

Prophet Inequality



1 2 3 4 5

𝑣$ 𝑣% ? ? ?

agent 𝑖 gets the set 𝐴𝐿𝐺!

𝔼 𝐴𝐿𝐺 = 𝔼 '
!

𝑣! 𝐴𝐿𝐺!

Online welfare



Incentive Compatible Dynamic Program
Optimal online solution: 

𝑉!"# 𝑅 = 0
𝑉$ 𝑅 = 𝔼 max

%⊆'
{𝑣$ 𝑋 + 𝑉$"# 𝑅 ∖ 𝑋 }

When set 𝑅 is available, offer agent 𝑖 per-bundle prices

𝑝$ 𝑋, 𝑅 = 𝑉$"# 𝑅 − 𝑉$"# 𝑅 ∖ 𝑋

If the agent maximizes utility, then she selects the same as the DP:

max
(⊆'

𝑣$ 𝑋 − 𝑝$ 𝑋, 𝑅 = max
(⊆'

𝑣$ 𝑋 + 𝑉$"# 𝑅 ∖ 𝑋 − 𝑉$"# 𝑅



1 2 3 4 5

𝔼 𝑂𝑃𝑇 = 𝔼 max
"&,…,"'
%&'()()*+

'𝑣! 𝑋!

Benchmark: Optimal offline welfare



A simple case: additive valuations

If 𝐴 ∩ 𝐵 = ∅, then
𝒗 𝑨 ∪ 𝑩 = 𝒗 𝑨 + 𝒗(𝑩)

Valuations can be expresed by coefficients 𝑣!,#:

𝑣! 𝐴 =0
#∈%

𝑣!,#

Thus, 𝔼 𝑂𝑃𝑇 = 𝔼 ∑#∈&max! 𝑣!,#

For each j, coefficients 𝑣',# , 𝑣(,# , … , 𝑣),# are 
independent



Additive valuations

• ALG: set prices  𝑝, =
-
.
⋅ 𝔼 max

!
𝑣!,,

• Each agent 𝑖 takes all remaining items 𝑗 such that 𝑣!,, ≥ 𝑝,
• By linearity of expectation,

𝔼 𝐴𝐿𝐺 ≥5
(

1
2
⋅ 𝔼 max

!
𝑣!,( =

1
2
⋅ 𝔼(𝑂𝑃𝑇)



XOS valuations

𝑣 is XOS if there are additive valuations 𝛼$, 𝛼%, … , 𝛼* such that

𝑣 𝑆 = max
$+ℓ+*

𝛼ℓ 𝑆 = max
$+ℓ+*

5
(∈.

𝛼ℓ,(

Example: I can make a fruit salad or a berry smoothie

1 1

1 1

1 1 2 2

0 0

0 0

𝑣 = 3



Theorem [Feldman, Gravin, Lucier, SODA’14]
There are item prices 𝑝, ,∈0

that guarantee a 2-approximation.



Posted item-prices mechanism

We fix per-item prices 𝑝, ,∈0

𝑅! = set of items available when buyer 𝑖 arrives

𝑝-
𝑝.

𝑝1

argmax
2⊆4/

𝑣! 𝐴 −'
,∈2

𝑝,

𝑨𝑳𝑮(𝒑) =buyers maximize utility
welfare of 
resulting 
allocation



𝔼 𝑂𝑃𝑇 = 𝔼 max
"&,…,"'
%&'()()*+

'𝑣! 𝑋! 𝑂𝑃𝑇!

Let 𝛽! be the additive function such that 𝑣! 𝑂𝑃𝑇! = ∑,∈567/ 𝛽!,,

𝑝, =
1
2 ⋅ 𝔼 '

!

𝛽!,, ⋅ 1{,∈567/}



𝔼 𝐴𝐿𝐺 𝑝 = 𝔼 5
(∈ 0123

𝑝( +5
!

max
4⊆6!

𝑣! 𝐴 −5
(∈4

𝑝(

= 𝔼 5
(∈ 0123

𝑝( + 𝔼 5
!

max
4⊆6!

𝑣! 𝐴 −5
(∈4

𝑝(

revenue utility

𝑢! 𝑋 = 𝔼 max
4⊆7

𝑣! 𝐴 −5
(∈4

𝑝( , U X = 5
!

𝑢!(𝑋)

utility = 5
!

𝔼 𝑢! 𝑅! ≥5
!

𝔼 𝑢! 𝑀 ∖ SOLD = 𝔼 𝑈 𝑀 ∖ SOLD



𝑈 𝑋 =5
!

𝔼 max
4⊆7

𝑣! 𝐴 −5
(∈4

𝑝( = 𝔼 5
!

max
4⊆7

𝑣! 𝐴 −5
(∈4

𝑝(

≥ 𝔼 5
!

𝑣! 𝑂𝑃𝑇! ∩ 𝑋 − 5
(∈89:!∩7

𝑝( = 𝔼 5
!

𝑣! 𝑂𝑃𝑇! ∩ 𝑋 −5
(∈7

𝑝(

≥ 𝔼 5
!

5
(∈89:!∩7

𝛽!,( −5
(∈7

𝑝( =5
(∈7

𝔼 5
!

𝛽!,( ⋅ 1 (∈89:! − 𝑝(



𝔼 𝐴𝐿𝐺 𝑝 ≥ 𝔼 5
(∈ 0123

𝑝( + 𝔼 5
(∈"∖0123

𝔼 5
!

𝛽!,( ⋅ 1 (∈89:! − 𝑝(

Taking 𝑝( =
1
2
⋅ 𝔼 5

!

𝛽!,( ⋅ 1{(∈89:!}

𝔼 𝐴𝐿𝐺 𝑝 ≥
1
2
⋅5

(

𝔼 5
!

𝛽!,( ⋅ 1 (∈89:! =
1
2
⋅ 𝔼 𝑂𝑃𝑇



Subadditive Valuations
(a.k.a. complement-free valuations)

𝑣 𝐴 ∪ 𝐵 ≤ 𝑣 𝐴 + 𝑣 𝐵

Additive ⊆ XOS ⊆ Subadditive



Offline:

Theorem. [Feige STOC’06]
If valuations are deterministic, we can find in polynomial time a 2-approximation.

Theorem. [Feldman, Fu, Gravin, Lucier STOC’13]
Simultaneous First-Price auctions result in a 2-approximation.

Online:

Theorem. [Dütting, Kesselheim, Lucier FOCS’20]
There is an 𝑂 log log𝑚 Prophet Inequality.

Subadditive valuations



Theorem. [Correa and Cristi, STOC’23]
If valuations are subadditive, there is an online algorithm such that

𝔼 𝐴𝐿𝐺 ≥
1
6
⋅ 𝔼 𝑂𝑃𝑇

Same approach? cannot be approximated by XOS better than a factor log𝑚

Idea from sample-based Prophet Inequalities
+

Fixed-point argument



Who would win this battle?

ℙ I win = 1/2



Algorithm:
• Sample 𝑣!: ∼ 𝐹! and set a threshold 𝑇: = max

!
𝑣!:

• Accept the first agent such that 𝑣! > 𝑇′

Single item



𝑣Z > 𝑻′

Is       available when 𝑖 arrives?

𝑻[ > 𝑻′′



Short 6-approx. proof:

𝔼 𝐴𝐿𝐺 ='
!

𝔼 𝑣! ⋅ 1 ! ;<(= )(<

='
!

𝔼 𝑣! ⋅ 1 >/?𝑻? ⋅ 1 )(<A&B&)C&DC< E*' !

≥ 𝔼 '
!

𝑣! ⋅ 1 >/ ?𝑻?F 𝑻??

≥ 𝔼 𝑇 ⋅ 1 7 ?𝑻? F 𝑻?? ≥
1
6
⋅ 𝔼 max

!
𝑣!

Define        𝑇 = max
!
𝑣! 𝑻: = max

!
𝑣!: 𝑻:: = max

!
𝑣!::



Idea: 

Do the same for each item

Problem:  

Valuations give a number per subset, not a number per item



Theorem. [Feldman, Fu, Gravin, Lucier STOC’13]
If valuations are subadditive and we run simultaneous First-Price auctions for 
each item, every equilibrium is in expectation a 2-approximation.

𝑣Z



Random Score Generators (RSG)

Valuation 𝑣!

bid!,$

bid!,%

bid!,@

Random vector of scores
bid! ∈ ℝ#"
∼ 𝐷!(𝑣!)𝐷!

Take functions 𝐷!: 𝑉! → Δ 𝑅#"



Algorithm

Set threshold
𝑇(
A = max

!
bid!,(

A

Give it to first 
agent such that
bid!,( > 𝑇(

A

Simulate valuations 𝑣"# and scores bid",%# ∼ 𝐷"(𝑣"#) True valuations 𝑣" and scores bid",% ∼ 𝐷"(𝑣")

For each item in parallel:



𝔼 𝑣!(𝐴𝐿𝐺!) = 𝔼 𝑣! 𝑗: bid!,( > 𝑇(
A ≥ max

!&≺!
bid!,(

𝑇%# = max
"
bid",%# 𝑣" and scores bid",% ∼ 𝐷"(𝑣")

𝑇%# bid",%

≥ 𝔼 𝑣! 𝑗: bid!,( > 𝑇(A ≥ 𝑇(′′

𝑇%##



Key observation

Set of available items
𝑇,: ≥ 𝑇,′′

Set of unavaliable items
𝑇,:: < 𝑇,:

The two sets have 
(essentially) the same 

distribution!available unavailable



𝑇,′′ ≤ 𝑇,:

bid!,, > max 𝑻𝒋:, 𝑻𝒋::

𝔼 𝑣!(𝐴𝐿𝐺!)
≥ 𝔼 𝑣! 𝑗: bid!,( > 𝑇(

A ≥ 𝑇(′′

= 𝔼 𝑣! 𝑗: bid!,( > 𝑇(
AA ≥ 𝑇(′

=
1
2
⋅ 𝔼 𝑣! 𝑗: bid!,( > 𝑇(

A ≥ 𝑇(′′

+
1
2
⋅ 𝔼 𝑣! 𝑗: bid!,( > 𝑇(

AA ≥ 𝑇(′

≥
1
2
⋅ 𝔼 𝑣! 𝑗: bid!,( > max 𝑻𝒋A , 𝑻𝒋AA



Mirror Lemma. For every  agent 𝑖,

𝔼 𝑣!(𝐴𝐿𝐺!) ≥
1
2 ⋅ 𝔼 𝑣! items 𝑗: 𝐛𝐢𝐝𝒊,𝒋 > max 𝑻𝒋:, 𝑻𝒋::

Where   𝑻𝒋:= max
!
bid!,,: and  𝑻𝒋::= max

!
bid!,,::



Lemma 2.  There are RSGs such that

'
!

𝔼 𝑣! 𝑗: 𝐛𝐢𝐝𝒊,𝒋 > max 𝑻𝒋:, 𝑻𝒋:: ≥
1
3
⋅ 𝔼 𝑂𝑃𝑇

The proof uses a fixed-point argument.

Intuitively: we design a synthetic simultaneous auction with PoA = 3, and 
we take the equilibrium bids



• Computation of Online Combinatorial Auctions 

àCan be implemented online in an incentive-compatible way (exponential DP)
àUnknown how to do this in Polynomial time
àThus the problem reduces to an online allocation problem

• Approximation of Online Combinatorial Auctions 

àFor additive valuations, the problem is almost the same as single item
àFor XOS valuations, known ½ approximation using balanced prices [Feldman, Gravin, Lucier, SODA 2014]
àFor subadditive valuations, new 1/6 approximation [C., Cristi, STOC 2023]
àImproves upon O(log(log(m))) approximation [Dütting, Kesselheim, Lucier FOCS’20]
à[DKL20] approximation uses posted prices whereas [CC23] does not. 
àOpen: Get a constant factor for Online Combinatorial Auctions with prices.

Summary


