Prophet Inequalities

Jose Correa

Universidad de Chile

Material Perapared with Andres Cristi (UChile \rightarrow EPFL)

Motivation

Online platforms, e-commerce, etc

Flexible Model:

Multiple Goals

Limited data

Sequential decisions

Course Overview

1. Classic single-choice problems:

The classic prophet inequality, secretary problem, prophet secretary problem, etc

2. Data driven prophet inequalities:

How can limited amount of data be nearly as useful as full distributional knowledge

3. Combinatorial Prophet Inequalities

Many ideas for single choice problems, extend to combinatorial contexts such as kchoice, Matching, hyper graph matching, and beyond

4. Online Combinatorial Auctions

General Model that encompasses many online selection/allocation problems

4. Online Combinatorial Auctions

Auction for radio frequencies in the US (2017) USD \$19.8 billion

Online advertising Google's and Meta's main source of revenue

Procurement of meal providers in Chilean public schools USD \$500+ million every year

Prophet Inequality

Set M with m items

n agents arrive one by one independent monotone valuations $v_i \sim F_i$ $v_i: 2^M \rightarrow \mathbb{R}_+$ (a random function for each agent)

Online welfare

agent i gets the set ALG_i

$$\mathbb{E}(ALG) = \mathbb{E}\left(\sum_{i} v_i(ALG_i)\right)$$

Incentive Compatible Dynamic Program

Optimal online solution:

$$V_{n+1}(R) = 0$$

$$V_i(R) = \mathbb{E}\left(\max_{X \subseteq R} \left\{ v_i(X) + V_{i+1}(R \setminus X) \right\} \right)$$

When set *R* is available, offer agent *i* **per-bundle prices**

$$p_i(X,R) = V_{i+1}(R) - V_{i+1}(R \setminus X)$$

If the agent maximizes utility, then she selects the same as the DP:

$$\max_{X \subseteq R} \{v_i(X) - p_i(X, R)\} = \max_{X \subseteq R} \{v_i(X) + V_{i+1}(R \setminus X)\} - V_{i+1}(R)$$

Benchmark: Optimal offline welfare

$$\mathbb{E}(OPT) = \mathbb{E}\left(\max_{\substack{X_1, \dots, X_n \\ \text{partition}}} \sum v_i(X_i)\right)$$

A simple case: additive valuations

If $A \cap B = \emptyset$, then $v(A \cup B) = v(A) + v(B)$

Valuations can be expresed by coefficients $v_{i,j}$:

$$v_i(A) = \sum_{j \in A} v_{i,j}$$

Thus,
$$\mathbb{E}(OPT) = \mathbb{E}\left(\sum_{j \in M} \max_{i} v_{i,j}\right)$$

For each j, coefficients $v_{1,j}, v_{2,j}, \dots, v_{n,j}$ are independent

Additive valuations

- ALG: set prices $p_j = \frac{1}{2} \cdot \mathbb{E}\left(\max_i v_{i,j}\right)$
- Each agent *i* takes all remaining items *j* such that $v_{i,j} \ge p_j$
- By linearity of expectation,

$$\mathbb{E}(ALG) \ge \sum_{j} \frac{1}{2} \cdot \mathbb{E}\left(\max_{i} v_{i,j}\right) = \frac{1}{2} \cdot \mathbb{E}(OPT)$$

XOS valuations

$$v$$
 is XOS if there are additive valuations $\alpha_1, \alpha_2, \dots, \alpha_k$ such that
 $v(S) = \max_{1 \le \ell \le k} \alpha_\ell(S) = \max_{1 \le \ell \le k} \sum_{j \in S} \alpha_{\ell,j}$

Example: I can make a fruit salad or a berry smoothie

Theorem [Feldman, Gravin, Lucier, SODA'14] There are item prices $(p_j)_{j \in M}$ that guarantee a 2-approximation.

Posted item-prices mechanism

We fix per-item prices $(p_j)_{j \in M}$ R_i = set of items available when buyer *i* arrives

$$\begin{array}{c} & p \\ & p \\ & p_{2} \\ & p_{3} \end{array} \\
\end{array} \\
 & p_{2} \\ p_{3} \\ p_{2} \\ p_{2} \\ p_{3} \\ p_{2} \\ p_{2} \\ p_{3} \\ p_{3} \\ p_{4} \\ p_{4} \\ p_{3} \\ p_{4} \\ p_{4} \\ p_{4} \\ p_{5} \\ p_{5}$$

ALG(*p*) = welfare of resulting allocation

$$\mathbb{E}(OPT) = \mathbb{E}\left(\max_{\substack{X_1, \dots, X_n \\ \text{partition}}} \sum v_i(X_i)\right) \qquad OPT_i$$

Let β_i be the additive function such that $v_i(OPT_i) = \sum_{j \in OPT_i} \beta_{i,j}$

$$p_j = \frac{1}{2} \cdot \mathbb{E}\left(\sum_i \beta_{i,j} \cdot \mathbf{1}_{\{j \in OPT_i\}}\right)$$

$$\mathbb{E}(ALG(p)) = \mathbb{E}\left(\sum_{j \in \text{SOLD}} p_j + \sum_i \max_{A \subseteq R_i} \left\{ v_i(A) - \sum_{j \in A} p_j \right\} \right)$$
$$= \mathbb{E}\left(\sum_{j \in \text{SOLD}} p_j\right) + \mathbb{E}\left(\sum_i \max_{A \subseteq R_i} \left\{ v_i(A) - \sum_{j \in A} p_j \right\} \right)$$

revenue

utility

$$u_i(X) = \mathbb{E}\left(\max_{A \subseteq X} \left\{ v_i(A) - \sum_{j \in A} p_j \right\} \right), \qquad U(X) = \sum_i u_i(X)$$

utility =
$$\sum_{i} \mathbb{E}(u_i(R_i)) \ge \sum_{i} \mathbb{E}(u_i(M \setminus \text{SOLD})) = \mathbb{E}(U(M \setminus \text{SOLD}))$$

$$U(X) = \sum_{i} \mathbb{E}\left(\max_{A \subseteq X} \left\{ v_i(A) - \sum_{j \in A} p_j \right\} \right) = \mathbb{E}\left(\sum_{i} \max_{A \subseteq X} \left\{ v_i(A) - \sum_{j \in A} p_j \right\} \right)$$

$$\geq \mathbb{E}\left(\sum_{i} \left(v_i(OPT_i \cap X) - \sum_{j \in OPT_i \cap X} p_j \right) \right) = \mathbb{E}\left(\sum_{i} \left(v_i(OPT_i \cap X) \right) \right) - \sum_{j \in X} p_j$$

$$\geq \mathbb{E}\left(\sum_{i}\sum_{j\in OPT_{i}\cap X}\beta_{i,j}\right) - \sum_{j\in X}p_{j} = \sum_{j\in X}\left(\mathbb{E}\left(\sum_{i}\beta_{i,j}\cdot \mathbf{1}_{\{j\in OPT_{i}\}}\right) - p_{j}\right)$$

$$\mathbb{E}(ALG(p)) \geq \mathbb{E}\left(\sum_{j \in \text{SOLD}} p_j\right) + \mathbb{E}\left(\sum_{j \in M \setminus \text{SOLD}} \left(\mathbb{E}\left(\sum_i \beta_{i,j} \cdot \mathbf{1}_{\{j \in OPT_i\}}\right) - p_j\right)\right)$$

Taking
$$p_j = \frac{1}{2} \cdot \mathbb{E}\left(\sum_i \beta_{i,j} \cdot 1_{\{j \in OPT_i\}}\right)$$

$$\mathbb{E}(ALG(p)) \ge \frac{1}{2} \cdot \sum_{j} \mathbb{E}\left(\sum_{i} \beta_{i,j} \cdot \mathbb{1}_{\{j \in OPT_i\}}\right) = \frac{1}{2} \cdot \mathbb{E}(OPT)$$

Subadditive Valuations (a.k.a. complement-free valuations)

$$v(A \cup B) \le v(A) + v(B)$$

Additive \subseteq XOS \subseteq Subadditive

Subadditive valuations

Offline:

Theorem. [Feige STOC'06] If valuations are deterministic, we can find in polynomial time a 2-approximation.

Theorem. [Feldman, Fu, Gravin, Lucier STOC'13] Simultaneous First-Price auctions result in a 2-approximation.

Online:

Theorem. [Dütting, Kesselheim, Lucier FOCS'20] There is an $O(\log \log m)$ Prophet Inequality.

Theorem. [Correa and Cristi, STOC'23]

If valuations are subadditive, there is an online algorithm such that

$$\mathbb{E}(ALG) \geq \frac{1}{6} \cdot \mathbb{E}(OPT)$$

Same approach? cannot be approximated by XOS better than a factor $\log m$

Idea from sample-based Prophet Inequalities + Fixed-point argument

Who would win this battle?

 $\mathbb{P}(I \text{ win}) = 1/2$

Algorithm:

• Sample $v'_i \sim F_i$ and set a threshold $T' = \max_i v'_i$

• Accept the first agent such that $v_i > T'$

Short 6-approx. proof:

$$\mathbb{E}(ALG) = \sum_{i} \mathbb{E} \left(v_{i} \cdot 1_{\{i \text{ gets } \bigotimes \}} \right)$$
$$= \sum_{i} \mathbb{E} \left(v_{i} \cdot 1_{\{v_{i} > T'\}} \cdot 1_{\{ \bigotimes \text{ available for } i\}} \right)$$
$$\geq \mathbb{E} \left(\sum_{i} v_{i} \cdot 1_{\{v_{i} > T' \ge T''\}} \right)$$
$$\geq \mathbb{E} \left(T \cdot 1_{\{T > T' \ge T''\}} \right) \geq \frac{1}{6} \cdot \mathbb{E} \left(\max_{i} v_{i} \right)$$

$$\stackrel{\diamond}{\mathbf{v}} \stackrel{\diamond}{\mathbf{v}} \stackrel{\bullet}{\mathbf{v}} \stackrel{\bullet}{\mathbf{v$$

Idea:

Do the same for each item

Problem:

Valuations give a number *per subset*, not a number *per item*

Theorem. [Feldman, Fu, Gravin, Lucier STOC'13]

If valuations are subadditive and we run simultaneous First-Price auctions for each item, every equilibrium is in expectation a 2-approximation.

Random Score Generators (RSG)

Take functions $D_i: V_i \to \Delta(R^M_+)$

Algorithm

Simulate valuations v'_i and scores $(\operatorname{bid}'_{i,j}) \sim D_i(v'_i)$

True valuations v_i and scores $(\operatorname{bid}_{i,j}) \sim D_i(v_i)$

For each item in parallel:

Set threshold

$$T'_{j} = \max_{i} \operatorname{bid}'_{i,j}$$
 \longrightarrow
Give it to first
agent such that
 $\operatorname{bid}_{i,j} > T'_{j}$

$$\begin{array}{c} & \overbrace{I}_{j}^{r} = \max_{i} \operatorname{bid}_{i,j}^{r} \\ & \overbrace{I}_{i}^{r} = \max_{i} \operatorname{bid}_{i,j}^{r} \\ & \overbrace{I}_{i}^{r} = \max_{i} \operatorname{bid}_{i,j}^{r} \\ & \overbrace{I}_{i}^{r} = \operatorname{max}_{i} \operatorname{bid}_{i,j}^{r} \\ & \overbrace{I}_{i}^{r} = \operatorname{max}_{i}^{r} = \operatorname{max}_{i}^{r} \operatorname{bid}_{i,j}^{r} \\ & \underset{I}_{i}^{r$$

Key observation

Set of **available** items $T'_j \ge T''_j$

Set of **unavaliable** items $T''_j < T'_j$

The two sets have (essentially) the same distribution!

 $\operatorname{bid}_{i,j} > \max\left\{ \mathbf{T}'_{j}, \mathbf{T}''_{j} \right\}$

$$\mathbb{E}(v_i(ALG_i))$$

$$\geq \mathbb{E}\left(v_i(\{j: \operatorname{bid}_{i,j} > T'_j \ge T_j''\})\right)$$

$$= \mathbb{E}\left(v_i(\{j: \operatorname{bid}_{i,j} > T''_j \ge T_j'\})\right)$$

$$= \frac{1}{2} \cdot \mathbb{E}\left(v_i(\{j: \operatorname{bid}_{i,j} > T'_j \ge T_j''\})\right)$$

$$+ \frac{1}{2} \cdot \mathbb{E}\left(v_i(\{j: \operatorname{bid}_{i,j} > T''_j \ge T_j'\})\right)$$

$$\geq \frac{1}{2} \cdot \mathbb{E}\left(v_i(\{j: \operatorname{bid}_{i,j} > \max\{T'_j, T''_j\}\})\right)$$

Mirror Lemma. For every agent *i*,

$$\mathbb{E}(v_i(ALG_i)) \ge \frac{1}{2} \cdot \mathbb{E}\left[v_i\left(\left\{\text{items } j: \text{ } \mathbf{bid}_{i,j} > \max\left\{\frac{T'_j, T''_j\right\}\right\}\right)\right]$$

Where $T'_j = \max_i \operatorname{bid}'_{i,j}$ and $T''_j = \max_i \operatorname{bid}''_{i,j}$

Lemma 2. There are RSGs such that

$$\sum_{i} \mathbb{E}\left(v_{i}\left(\left\{j: \mathbf{bid}_{i,j} > \max\left\{\mathbf{T}'_{j}, \mathbf{T}''_{j}\right\}\right\}\right)\right) \ge \frac{1}{3} \cdot \mathbb{E}(OPT)$$

The proof uses a **fixed-point argument**.

Intuitively: we design a synthetic simultaneous auction with PoA = 3, and we take the equilibrium bids

Summary

• Computation of Online Combinatorial Auctions

 \rightarrow Can be implemented online in an incentive-compatible way (exponential DP)

 \rightarrow Unknown how to do this in Polynomial time

 \rightarrow Thus the problem reduces to an online allocation problem

• Approximation of Online Combinatorial Auctions

ightarrow For additive valuations, the problem is almost the same as single item

 \rightarrow For XOS valuations, known ½ approximation using balanced prices

- \rightarrow For subadditive valuations, new 1/6 approximation
- \rightarrow Improves upon O(log(log(m))) approximation
- \rightarrow [DKL20] approximation uses posted prices whereas [CC23] does not.
- \rightarrow Open: Get a constant factor for Online Combinatorial Auctions with prices.

[Feldman, Gravin, Lucier, SODA 2014][C., Cristi, STOC 2023][Dütting, Kesselheim, Lucier FOCS'20]