
Multistage Stochastic
Programs: Approximations,

Bounds and Time Consistency

Georg Pflug
University of Vienna



Multistage stochastic optimization problems

Many real decision problems under uncertainty involve several decision
stages:

I hydropower storage and generation management

I thermal electricity generation

I portfolio management

I logistics

I asset/liabilty management in insurance

At each time t = 0, 1, . . . ,T − 1 a decision xt can/must be made. We
call the sequence x = (x0, x1, . . . , xT−1) a strategy. The costs of the
strategy x is expressed in terms of a cost function, which depends also on
some random parameters (the scenario process) ξ = (ξ1, . . . , ξT ) defined
on some probability space (Ω,F ,P)

Q(x0, ξ1, x1, . . . , xT−1, ξT ).



? ? ? ?
decision decision decision decision

x0 x1 x2 x3

t = 0 t = t1 t = t2 t = t3

observation of observation of observation of

the r.v. ξ1 the r.v. ξ2 the r.v. ξ3

Decisions can only be made on the basis of the available information. For
this reason, we assume that a filtration F = (F1, . . . ,FT = F) is defined
in (Ω,F ,P) such that ξt ▹ Ft (ξt is measurable w.r.t. Ft).



The Decision Problem

The final objective is to minimize a functional R of the stochastic cost
function, such as the expectation, a quantile or some other functional R

(Opt)

Minimize in x0, x1(ξ1), . . . , xT−1(ξ1, . . . , ξT−1) :
R[Q(x0, ξ1, . . . , xT−1, ξT )]
s.t. x ▹ F
and possibly other constraints on x0, . . . , xT−1 : x ∈ X

x ▹ F means that xt ▹ Ft , i.e. that the decisions are nonanticipative.



Approximations

In order to numerically solve the multiperiod stochastic optimization
problem, the stochastic process (ξt) must be approximated by a simple
stochastic process ξ̃t , which takes only a small number of values.
Likewise the filtration F must be approximated by a smaller one F̃ such
that σ(ξ̃) ⊆ F̃.

F̃ (x̃1, . . . , x̃T−1) = R[Q(x̃0, ξ̃1, x̃1, . . . , x̃T−1, ξ̃T )]

(Õpt)

Minimize in x̃0, x1(ξ̃1), . . . , x̃T−1(ξ̃1, . . . , ξ̃T−1) :

R[Q(x̃0, ξ̃1, . . . , x̃T−1, ξ̃T )]

s.t. x̃ ▹ F̃

and possibly other constraintsx̃ ∈ X̃.



approximate problem

(Õpt)

original problem
(Opt)

x̃∗,
the solution of (Õpt)

x+ = πX(x̃)

x∗,
the solution of (Opt)
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solution

solution

approximation

extension

approximation error e = F (x+)− F (x∗)



A valuated tree

Scenario trees are valuated trees: The nodes are valuated with the
scenario process values, the arcs are valuated with the conditional
probabilities.
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N0 N1 N2 = Ω, the sample space

An exemplary finite tree process ν = (ν0, ν1, ν2) with nodes
N = {1, . . . 10} and leaves N2 = {5, . . . 10} at T = 2 stages. The
filtrations, generated by the respective atoms, are
F2 = σ ({ω1}, {ω2}, . . . {ω6}), F1 = σ ({ω1, ω2} , {ω3} , {ω4, ω5, ω6}) and
F0 = σ ({ω1, ω2, . . . ω6})



Distances for Multistage Stochastic Optimization

The Kantorovich/Wasserstein distance.
Let L(h) be the Lipschitz constant of the function h:

L(h) = sup{ |h(u)− h(v)|
d(u, v)

: u ̸= v}.

The Kantorovich distance.

d1(P, P̃) = sup{
∫

h dP −
∫

hdP̃ : L(h) ≤ 1}.

Theorem (Kantorovich-Rubinstein). Dual version of
Kantorovich-distance:

d1(P, P̃) = inf{E(d(X ,Y ) : (X ,Y ) is a bivariate r.v. with

given marginal distributions P and P̃}.
Generalization: The Wasserstein-distance of order r

dr (P, P̃) = inf{
(∫

d(u, v)r dπ(u, v)

)1/r

: π is a probability distribution

on Ξ× Ξ̃ with given marginal distributions P and P̃}.



Closedness in Wasserstein distance implies closedness in
various other aspects

Assume that X ∼ P and X̃ ∼ P̃. Then

1.
∣∣∣E|X |p − E|X̃ |p

∣∣∣ ≤
p · dr

(
P, P̃

)
·max

{
E

r−1
r

[
|X |r ·

p−1
r−1

]
, E

r−1
r

[
|X̃ |r ·

p−1
r−1

]}
,

2. |E(X p)− E(X p)| ≤
p · dr

(
P, P̃

)
·max

{
E

r−1
r

[
|X |r ·

p−1
r−1

]
, E

r−1
r

[
|X̃ |r ·

p−1
r−1

]}
for p an

integer,

3.
∣∣∣EX 2 − EX̃ 2

∣∣∣ ≤ 2 · d2
(
P, P̃

)
·max

{
E 1

2

[
X 2

]
, E 1

2

[
X̃ 2

]}
,

4.
∣∣∣E|X |r − E|X̃ |r

∣∣∣ ≤ r · dr
(
P , P̃

)
·max

{
E

r−1
r [|X |r ] , E r−1

r

[
|X̃ |r

]}
and

5.
∣∣∣E|X |p − E|X̃ |p

∣∣∣ ≤
p · d2

(
P, P̃

)
·max

{
E 1

2

[
|X |2(p−1)

]
, E 1

2

[
|X̃ |2(p−1)

]}
,

where p ≥ 1 and r > 1.



Trees are nested distributions
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Distances between trees as nested distributions

Definition. For two nested distributions P ∼ (Ξ,F ,P, ξ),
P̃ ∼

(
Ξ̃, F̃ , P̃, ξ̃

)
and a distance function d on Rm the nested distance of

order r ≥ 1 – denoted dlr
(
P, P̃

)
– is the optimal value of the

optimization problem

minimize
(in π)

(∫
d
(
ξ(ω), ξ̃(ω̃)

)r

π (dω, dω̃)
) 1

r

subject to π
(
M × Ξ̃ | Ft ⊗ F̃t

)
= P (M | Ft) (M ∈ FT )

π
(
Ξ× N | Ft ⊗ F̃t

)
= P̃

(
N | F̃t

) (
N ∈ F̃T

)
(1)

where the infimum in (1) is among all bivariate probability measures
π ∈ P (Ω× Ω′), which are measures on the product sigma algebra
FT ⊗ F̃T . We will refer to the nested distance also as process distance,
or multistage distance. The nested distance dl2 (order r = 2), with d a
weighted Euclidean distance is referred to as quadratic nested distance.



How to calculate the nested distance

The nested distance between discrete trees can be calculated by solving
the a linear program

minimize
(in π)

∑
i,j πi,j · d r

i,j

subject to
∑

j≻n π (i , j |m, n) = P (i |m) (m ≺ i , n),∑
i≻m π (i , j |m, n) = P̃ (j | n) (n ≺ j , m),

πi,j ≥ 0 and
∑

i,j πi,j = 1,

where again πi,j is a matrix defined on the leave nodes (i ∈ NT , j ∈ N ′
T )

and m ∈ Nt , n ∈ N ′
t are arbitrary nodes. The conditional probabilities

π (i , j |m, n) are given by

π (i , j |m, n) =
πi,j∑

i ′≻m, j′≻n πi ′,j′
.



The main approximation result

Let QL be the family of all real valued cost functions
Q(x0, y1, x1, . . . , xT−1, yT ), defined on
X0 × Rn1 × X1 × · · · × XT−1 × RnT such that

I x = (x0, . . . , xT−1) 7→ Q(x0, y1, x1, . . . , xT−1, yT ) is convex for fixed
y = (y1, . . . , yT ) and

I yt 7→ Q(x0, y1, x1, . . . , xt1 , yT ) is Lipschitz with Lipschitz constant L
for fixed x .

Consider the optimization problem (Opt(P))

vQ(P) := min{EP [Q(x0, ξ1, x1, . . . , xT−1, ξT )] : x ▹ F, x ∈ X},

where X is a convex set and P is the nested distribution of the scenario
process.
An approximative problem (Opt(P̃)) is given by

vQ(P̃) := min{EP̃ [Q(x0, ξ̃1, x1, . . . , xT−1, ξ̃T )] : x ▹ F̃, x ∈ X},

where P̃ is the nested distribution of the approximative scenario process.



Theorem. For Q in QL

|vQ(P)− vQ(P̃)| ≤ L · dl(P, P̃).

Remarks.

I The bound is sharp: Let P and P̃ be two nested distributions on
[Ξ, dl]. Then there exists a cost function Q(·) ∈ H1 such that

vQ(P)− vQ(P̃) = dl(P, P̃).

I The inequality

|vQ(P)− vQ(P̃)| ≤ L · d(P, P̃),

where d is the multivariate Kantorovich distance, does NOT hold.



Distortion functionals

Let GY be the distribution function of Y . Then the distortion functional
Rσ with distortion density σ is defined as

Rσ(Y ) =

∫ 1

0

σ(u)G−1
Y (u) du

A special example is the average value-at-risk, which has distortion
density

σα(u) =

{
0 u < α
1

1−α u ≥ α



An extension of the main result

Theorem. Let Rσ be a distortion risk functional with bounded
distortion, σ ∈ L∞.
Consider the optimization problem (Opt(P))

vQ,Rσ (P) := min{Rσ,P[Q(x0, ξ1, x1, . . . , xT−1, ξT )] : x ▹ F, x ∈ X},

where X is a convex set and P is the nested distribution of the scenario
process.
An approximative problem (Opt(P̃)) is given by

vQ,R(P̃) := min{Rσ,P̃[Q(x0, ξ̃1, x1, . . . , xT−1, ξ̃T )] : x ▹ F̃, x ∈ X},

where P̃ is the nested distribution of the approximative scenario process.
Then

|vQ,Rσ (P)− vQ,Rσ (P̃)| ≤ L · ∥σ∥∞ · dl1
(
P, P̃

)
.



Dynamic decomposability and Bellmann’s principle

We now maximize an utility functional U of a profit variable.

U(Profit) = −R(−Profit) = −R(Loss).
The standard multiperiod maximization problem is

max{U [H(x0, ξ1, . . . , xT−1, ξT )] : xt ▹ Ft , xt ∈ Xt(x0:t−1, ξ1:t)} (2)

where U is an utility functional and H is a profit function. The problem is
dynamically decomposable, if there exist functions Ht and functionals Ut
such that (2) is equivalent to

max
x0∈X0

(
H0(x0) + max

x1∈X(x0,ξ1)
U1 (H1(x0:1, ξ1) + . . .

. . . max
xT−1∈X(x0:T−2,ξ1:T−1)

UT−1(HT−1(x0:T−1, ξ0:T ))

))
.

The time-consistency principle

If the optimal decision sequence is implemented, but only up to
time t, and at time t the problem is resolved for the remaining

times (keeping the past decisions fixed), then the optimal solution
of this subproblem should coincide with that of the original problem.



Time decomposability for dynamic stochastic problems

If a stochastic problem is decomposable in time, then a Bellmann
principle holds, the solution is time-consistent and can be found by
backward induction.
If the probability functional is the expectation U = E and the only
measurability constraint is xt ▹ Ft , then time decomposability holds.
Time decomposability may not hold, if

I the functional is not the expectation

I other measurability conditions are in place,
(e.g. xt ▹ Fs for s < t).



Probability functionals

Let the random variable Y have distribution function GY (u) = P{Y ≤ u}
and quantile function V@Rp(Y ) = inf{u : GY (u) ≥ p}. We define

I the Average Value-at-Risk (measures acceptability or utility of
profits)
AV@R(Y ) = 1

α

∫ α

0
V@Rp(Y ) dp

AV@R(Y ) = inf{E(Y Z ) : 0 ≤ Z ≤ 1/α;E(Z ) = 1}
I the upper Average Value-at-Risk (measures risk of costs)

UAV@R(Y ) = 1
1−α

∫ 1

α
V@Rp(Y ) dp

I a distortion functional
∫ 1

0
V@Rp(Y )h(p) dp

I the entropic functional −1
γ E[exp(−γY )]

AV@R0(Y ) = essinf (Y ) AV@R1(Y ) = E(Y )

UAV@R0(Y ) = E(Y ) UAV@R1(Y ) = esssup (Y )



Conditional risk and utility (acceptability) functionals

We consider a probability space (Ω,F ,P). Let F1 be a σ-field contained
in F . A mapping U(·|F1) : Lp(F)→ Lp′(F1) is called conditional utility
mapping (with observable information F1) if the following conditions are
satisfied for all Y , λ ∈ [0, 1]:

I predictable translation-equivariance.
U(Y + Y1|F1) = U(Y |F1) + Y1, if Y1 ▹ F1

I concavity U(λY + (1− λ)Ỹ |F1) ≥ λU(Y |F1) + (1− λ)U(Ỹ |F1),

I monotonicity Y ≤ Ỹ implies U(Y |F1) ≤ U(Ỹ |F1)

The negative R(Y |F1) := −U(Y |F1) is called a conditional risk
functional.
Let F0 = (Ω, ∅) be the trivial σ-algebra. Then U(·|F1) is an
unconditional utility functional.



ξi : values of the scenario process
xi : optimal decisions
i : node numbers
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A full problem and the conditional problem ”given node 3”. The decision
problem is time-consistent, if xi = x̄i , for all nodes, which are in the

subtree of the conditioning node.
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���� Time inconsistency appears in a natural way in stochastic

risk-adverse optimality problems. We want to find

maxE(Y ) + 0.5AV@R0.05(Y ).

h
S
S
SS �

��

Q
QQ ��HH

��HH0.5

0.9

0.1

0.9

0.1

3

2

4

1

h
�
�
��

�
��

Q
QQ ��

QQ

��
QQ

0.5

0.9

0.1

0.9

0.1

3

2

3

1

�
��

�
��

double line = optimal decision



The conditional problem given the first node:
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Time consistent probability functionals

We consider a probability space (Ω,F ,P) and a filtration F ∈ F . Let
U2(·|F1) be a conditional acceptability-type mapping and let

U1(·)

be an unconditional acceptability measure. Typically, but not necessarily,
U1 is the unconditional counterpart of U2(·|F1).
Definition. (Artzner at al. 2007). The pair U1(·), U2(·|F1) is called time
consistent, if for all Y , Ỹ ∈ Y the implication

U2(Y |F1) ≤ U2(Ỹ |F1) a.s. =⇒ U1(Y ) ≤ U1(Ỹ )

holds.



Illustration
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���� AV@R is not time-consistent.
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AV@R0.1(Y |F1) = (4; 0) ≥ (3; 0) = AV@R0.1(Ỹ |F1)

while
AV@R0.1(Y ) = 0.9 < 1.8 = AV@R0.1(Ỹ ).



Definition. A pair U1(·), U2(·|F1) is called acceptance consistent, if for
all Y ∈ Y the implication

ess inf U2(Y |F1) ≤ U1(Y )

holds. It is called rejection consistent, if

ess supU2(Y |F1) ≥ U1(Y ).

(see e.g. Weber, 2006).
Proposition. If U1(0) = 0 and U2(0|F1) = 0 a.s. and U1(·), U2(·|F1) are
translation equivariant then time consistency implies acceptance and
rejection consistency.



The relation between time consistency and recursivity

Theorem. (Artzner et. al., 2007) A pair U1(·), U2(·|F1) with translation
equivariant U(·|F1), the property U(0|F1) = 0 and monotonic U(·) is
time consistent if and only if it is recursive.
Proof. Let the pair be recursive and let U2(Y |F1) ≤ U2(Ỹ |F1). Then,
by monotonicity, U1(Y ) = U1(U2(Y |F1)) ≤ U1(U2(Ỹ |F1)) = U1(Ỹ ).
Conversely, let the pair be time consistent. By assumption,

U2(U2(Y |F1)|F1) = U2(U2(Y |F1) + 0|F1) = U2(Y |F1) + 0.

Setting Ỹ = U2(Y |F1) and using the time consistency, leads to

U1(Ỹ ) = U1(U2(Y |F1)) = U1(Y ),

which is the equation of recursivity.



Enforcing time consistency by composition (nesting)

Let a probability space (Ω,F ,P) and a filtration F = (F0, . . . ,FT ) of
σ-fields Ft , t = 0, ...,T , with FT = F be given. Let Yt := Lp(Ft) for
t = 1, . . . ,T and some p ∈ [1,+∞).
Let, for each t = 1, . . . ,T , conditional acceptability mappings
Ut−1 := U(· |Ft−1) from YT to Yt−1 be given. Introduce a multi-period
probability functional U on Y := ×T

t=1Yt by compositions of the
conditional acceptability mappings Ut−1, t = 1, . . . ,T , namely,

U(Y ;F) := U0[Y1 + · · ·+ UT−2[YT−1 + UT−1(YT )]·]

= U0 ◦ U1 ◦ · · · ◦ UT−1(
T∑
t=1

Yt)

for every Yt ∈ Yt . (Ruszczynski and Shapiro, 2006). Notice that these
functionals are recursive in a trivial way.



The nested AV@R

Example. Consider the conditional Average Value-at-Risk (of level
α ∈ (0, 1]) as conditional acceptability mapping

Ut−1(Yt) := AV@Rα(· |Ft−1)

for every t = 1, . . . ,T . Then the multi-period probability functional

nAV@Rα(Y ;F)=AV@Rα(· |F0) ◦ · · · ◦ AV@Rα(· |FT−1)(
∑T

t=1
Yt)

satisfies is called the nested Average Value-at-Risk.
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���� Time consistency contradicts information monotonicity.
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In both examples, the final income Y is the same, but in the right
example, the filtration is finer. One calculates

AV@R0.1[AV@R0.1(Y |F (1)
1 )] = 0.9 > 0 = AV@R0.1[AV@R0.1(Y |F (2)

1 )].

Notice that

E[AV@R0.1(Y |F (1)
1 )] = E[AV@R0.1(Y |F (2)

1 )] = 0.9.



Information monotonicity

I The expectation is information monotone.

I The essential infimum (or essential supremum) is information
monotone



��
���� Theorem.(R. Kovacevic, G.P.) If a Ut(·|·) are distortion functionals,

but neither the conditional expectation nor the essential infimum, then
information monotonicity of the nested functional U does not hold.



Decomposing the final AV@R: Random level AV@R’s

Let α▹ Ft be a random variable with values in [0,1]. Define the AV@R
with random level α as

AV@Rα(Y |Ft) = inf{E(YZ |Ft) : E(Y |Ft) = 1, 0 ≤ Z ;αZ ≤ 1}.

It has an alternate characterization for α > 0 by

AV@Rα(Y |Ft) = sup{Q − 1

α
E([Q − Y ]+|Ft) : Q ▹ Ft}.

The AV@R with random level obeys all properties like the usual AV@R,
i.e. translation-equivariance, concavity, monotonicity, and positive
homogeneity. Moreover, α 7→ AV@Rα is convex.



Illustration: Artzner’s Example
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AV@R 2
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The total AV@R 2
3
is −1, while AV@R 2

3
(Y |F1) ≡ 1.



Theorem. Nested decomposition of the AV@R
Let Y ∈ L1 (FT ), Ft ⊂ Fτ ⊂ FT .

1. For α ∈ [0, 1] the Average Value-at-Risk obeys the decomposition

AV@Rα (Y ) = inf E [Zt · AV@Rα·Zt (Y |Ft)] , (3)

where the infimum is among all densities Zt ▹ Ft with 0 ≤ Zt ,
αZt ≤ 1l and EZt = 1. For α > 0 the infimum in (3) is attained.

2. Moreover if Z is the optimal dual density for the AV@R, that is
AV@Rα (Y ) = EYZ with Z ≥ 0, αZ ≤ 1l and EZ = 1, then
Zt = E [Z |Ft ] is the best choice in (3).

3. The conditional Average Value-at-Risk at random level α▹ Ft

(0 ≤ α ≤ 1l) has the recursive (nested) representation

AV@Rα (Y |Ft) = infE [Zτ · AV@Rα·Zτ (Y |Fτ )| Ft ] , (4)

where the infimum is among all densities Zτ ▹ Fτ with 0 ≤ Zτ ,
αZτ ≤ 1l and E [Zτ |Ft ] = 1l.



Illustration
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
AV@R 2

3
= −1

The total AV@R is AV@Rα(Y ) = E[Z1AV@RαZ1(Y |F1)] = −1, while
AV@R 2

3
(Y |F1) ≡ 1.

Notice that for t < τ

AV@Rα(Y |Ft) ≤ E[AV@Rα(Y |Fτ )|Ft)] ≤ E(Y |Ft)



A typical multistage decision problem

Let H(x0, ξ1, . . . , xT−1, ξT ) be some profit function depending on the
random scenario process ξ = (ξ1, . . . , ξT ) and the decisions
x = (x0, . . . , xT−1)
The multistage decision problem is

maximize EH (x , ξ) + γ · AV@R [H (x , ξ)]
s.t. x ▹ F

x ∈ X ,
(5)

where H(x , ξ) is a short notation for H(x0, ξ1, . . . , xT−1, ξT ).



We require the real-valued function H to be concave in x , for x in a
convex set, such that (ξ any fixed state)

H ((1− λ) x ′ + λx ′′, ξ) ≥ (1− λ)H (x ′, ξ) + λH (x ′′, ξ) .

By the monotonicity property and concavity of the utility functional
AV@R, the mapping x 7→ AV@R [H (x , ξ)] is concave as well.
With xt1:t2 we denote the subvector xt1 , xt1+1, . . . , xT2 .



As typical for Markov decision processes, we define the value function

Vt (x0:t−1, α, γ) := esssup xt:TE [H (x0:T )| Ft ] + γ · AV@Rα (H (x0:T ) |Ft) .

The value function depends on

I the decisions up to time t − 1, x0:t−1, where xt:T is chosen such
that (x0:T ) = (x0:t−1, xt,T ) ∈ X ,

I the random model parameters α▹ Ft and γ ▹ Ft and

I the current status of the system due to the filtration Ft .

Evaluated at initial time t = 0 and assuming the sigma-algebra F0 trivial
the value function relates to the initial problem as

sup
x0:T

EH (x0:T ) + γ · AV@Rα (H (x0:T )) =

= esssup x0:TE [H (x0:T ) |F0] + γ · AV@Rα (H (x0:T ) |F0)

= V0 ([], α, γ) .



Theorem. Dynamic Programming Principle. Assume that H is
random upper semi-continuous with respect to x and ξ valued in some
convex, compact subset of Rn.

1. The value function evaluates to

VT (x0:T−1, α, γ) = (1 + γ) esssup xTH (x0:T )

at terminal time T .

2. For any t < τ , (t, τ ∈ T) the recursive relation

Vt (x0:t−1, α, γ)

= esssup xt:τ−1
essinf Zt:τE [Vτ (x0:τ−1, α · Zt:τ , γ · Zt:τ )| Ft ] ,

where Zt:τ ▹Fτ , 0 ≤ Zt:τ , αZt:τ ≤ 1l and E [Zt:τ |Ft ] = 1l, holds true.



The Algorithm

Step 0 Let x00:T be any feasible, initial solution of the problem (5). Set
k ← 0. Set

Y(x00:T ) = EH(x00:T ) + γAV@Rα(H(x00:T ))

Step 1 Find Z k , such that 0 ≤ Z k ≤ 1
α , EZ

k = 1 and define

Z k
t := E

(
Z k |Ft

)
. (6)

A good initial choice is often Z k satisfying

EZ kH
(
xk0:T

)
= AV@Rα

(
H
(
xk0:T

))
. (7)

Step 2 (check for local improvement). Choose

xk+1
t ∈argmax xt▹Ft

E
[
H
(
xk0:T

)∣∣Ft

]
(8)

+ γZ k
t AV@RαZ k

t

(
H
(
xk0:T

)∣∣Ft

)
(9)

at any arbitrary stage t and a node specified by Ft .



Step 3 (Verification). Accept xk+1
0:t if

Y
(
xk0:T

)
≤ EH

(
xk+1
0:T

)
+ γAV@Rα

(
H
(
xk+1
0:T

))
,

else try another feasible Z k (for example Z k ← 1
2

(
1l + Z k

)
,

Z k ← (1 + α)1l− αZ k or Z k = 1lB (P(B) ≥ α)) and repeat Step 2.
If no direction Z k can be found providing an improvement, then
x0:T is already optimal. Set

Y
(
xk+1
0:T

)
:= EH

(
xk+1
0:T

)
+ γAV@Rα

(
H
(
xk+1
0:T

))
, (10)

increase k ← k + 1 and continue with Step 1 unless

Y
(
xk+1
0:T

)
− Y

(
xk0:T

)
< ε,

where ε > 0 is the desired improvement in each cycle k.



Extension for general distortion functionals

Decomposition Theorem. Let U be a positively homogeneous, version
independent acceptability functional.

1. Uh obeys the decomposition

Uh (Y ) = inf E
[
Z · UZ (Y |Ft)

]
, (11)

where the infimum is among all feasible, positive random variables
Z ▹ Ft satisfying EZ = 1 and h(U) ≺SSD Z for U ∼ Uniform[0, 1].

2. Let Ft ⊂ Fτ . The utility functional obeys the nested decomposition

U (Y |Ft) = essinf E
[
Zτ · UZτ (Y |Fτ )

∣∣∣Ft

]
,

the essential infimum being among all feasible random variables
Zτ ▹ Fτ .
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RZ (Y |F)

6.07 = 3
5
AV@R0.7 + 2

5
AV@R0.4

3 = 0 · AV@R1 + 1 · AV@R0.7

5.94 = 21
31

AV@R0.3 + 10
31

AV@R0

Nested decomposition of R = 3
5UAV@R0.7 (Y ) + 2

5UAV@R0.4 (Y ). We
get

R(Y ) = E[Z |RZ (Y |Ft)] = 6.07·1·0.3+3·0.2·0.4+5.94·2.06·0.3 = 5.74



Utility functionals are typically not time consistent

Theorem. Suppose that the positively homogeneous functional U has a
Kusuoka representation

U(Y ) = inf{
∫ 1

0

AV@Rα(Y ) dµ(α) : µ ∈M}.

If
inf{µ([ϵ, 1− ϵ]) : µ ∈M} > 0

for some ϵ > 0 and

sup{µ([0, γ]) : µ ∈M} → 0

for γ → 0, then U is not time-consistent as such, but has to be randomly
decomposed for ensuring time-consistency.
The only exceptions are

I the expectation

I the essential infimum

I the essential supremum

These are the same functionals, which are information monotone.



Conclusions

I Compositions of risk functionals are time consistent (but not
interpretable) and information inconsistent

I Final risk functionals are typically information consistent but not
time consistent

I Exceptions are only the expectation and the (essential) infimum
resp. supremum

I When using time-inconsistent functionals one one has to decide:

I either to accept time-inconsistent decisions in a rolling horizon
setup

I or to accept decision criteria which depend on the actual path
the scenario process takes.



Case study: Management of a hydrosystem

The scenario process consist of 5 components: Spot prices, Pumping
prices, Inflows for 3 reservoirs. Statistical model selection methods were
used to find that the inflows can be represented by a 3-dimensional
SARMA(1, 2), (2, 2)52 process, while the spot and pumping prices can be
modeled by an independent process, a superposition of an additive error
model based on forward prices and a spike generating process.
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The decision model

maximize
λE[xcT ]− (1− λ)AV@R1−α[−xcT ]
subject to
0 ≤ x ft,i ≤ x fi ,
x sj ≤ x st,j ≤ x sj ,
x ,send,j ≤ x sT ,j ,

x st,j = x st−1,j + ξft,j +
∑

{i∈I |Pmax>0} Ai,j · x ft−1,i +
∑

{i∈I |Pmax=0} Ai,j · x ft,i ,
xet,i = x ft−1,i · k i · △t(t−1),

xct = xct−1 · (1 + r)△t(t−1) +
∑

{i∈I |k i>0} xet−1,i · ξet +
∑

{i∈I |k i<0} x it−1,i · ξ
p
t .



Generating a scenario tree

We generate a scenario tree in a way that the nested distance between
the scenario process and the scenario tree is as small as possible.

Number of stages 8

Minimal bushiness per stage 2,2,2,1,1,1,1,1
Maximal distance per stage 5,5,5,7,7,7,10,10
Number of scenarios (leaves) 392
Number of nodes 1532
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The stochastic discretization algorithm

1. Initialization. Sample n random variates from distribution P, where
n is much larger than s. Use a cluster algorithm to find s clusters.
Let Z (0) =

(
z (1)(0), . . . , z (s)(0)

)
be the cluster medians. Set k = 0.

2. Iteration. Use a new independent sample ξ(k) for the following
stochastic optimization step: find the index i ∈ {1, . . . s} such that

d
(
ξ(k), z (i)(k)

)
= min

ℓ
d
(
ξ(k), z (ℓ)(k)

)
.

Set

z (i)(k + 1) = z (i)(k)− ak · r d
(
ξ(k), z (i)

)r−1

· ∇z(i)d
(
ξ(k), z (i)

)
,

and leave all other points unchanged to form the new point set
Z (k + 1).



3. Stopping criterion. Set k = k + 1 and goto 56. Stop, if either the
predetermined number of iterations are performed or if the relative
change of the point set Z is below some threshold ϵ.

4. Determination of the probabilities. After having fixed the final
point set Z , generate another sample ξ(1), . . . , ξ(n) and find the
probabilities

pi =
1

n
#

{
ℓ : d

(
ξ(ℓ), z (i)

)
= min

k
d
(
ξ(ℓ), z (k)

)}
and calculate an estimate for the distance d(P, P̃).

The final approximate distribution is P̃ =
∑s

i=1 pi · δz(i) .



The tree generation algorithm

Let a vector of minimal bushiness b1, . . . , bT and maximal distances
d1, . . . , dT be given.

I Iterate for t = 0, . . . ,T − 1.
For each node n of stage t

(i) Set s = bt
(ii) Let ξ̃0, . . . , ξ̃t−1 be the already found scenario values on the

predecessors of this node. Let P be the conditional distribution
of ξt given ξ̃0, . . . , ξ̃t−1 form which one may sample. Use the
stochastic discretization algorithm to generate the conditional
distribution P̃ sitting on s points.

(iii) If the dstance d(P, P̃) is smaller than ϵt , then set s = s + 1
and go to (ii).

I Stop, when all nodes of stage T are generated.



The tree reduction algorithm (Kovacevic and Pichler)

I Step 1– Initialization

Set k ← 0, and let ξ0 be process quantizers with related transport
probabilities π0 (i , j) between scenario i of the original P-tree and
scenario ξ̃0j of the approximating P′-tree; P0 := P̃.

I Step 2 – Improve the quantizers

Find improved quantizers ξ̃k+1
j :

I In case of the quadratic Wasserstein distance (Euclidean
distance and Wasserstein of order r = 2) set

ξ̃k+1 (nt) :=
∑

mt∈Nt

πk (mt , nt)∑
mt∈Nt

πk (mt , nt)
· ξt (mt) ,

I or find the barycenters by applying the steepest descent
method, or the limited memory BFGS method.



I Step 3 – Improve the probabilities

Setting π ← πk and q ← qk+1 and calculate all conditional
probabilities πk+1 (·, ·|m, n) = π∗ (·, ·|m, n), the unconditional
transport probabilities πk+1 (·, ·) and the distance

dlk+1
r = dlr

(
P, P̃

)
.

I Step 4

Set k ← k + 1 and continue with Step 2 if

dlk+1
r < dlkr − ε,

where ε > 0 is the desired improvement in each cycle k.

Otherwise, set ξ̃∗ ← ξ̃k , define the measure

P̃k+1 :=
∑
j

δξ̃k+1
j
·
∑
i

πk+1 (i , j) ,

for which dlr
(
P,Pk+1

)
= dlk+1

r and stop.

In case of the quadratic nested distance (r = 2) and the Euclidean
distance the choice ε = 0 is possible.



Computational experience

Stages 4 5 5 6 7 7
Nodes of the initial tree 53 309 188 1,365 1,093 2,426
Nodes of the approx. tree 15 15 31 63 127 127

Time/ sec. 1 10 4 160 157 1,044



Approximation at work

Reducing the nested distance by making the tree bushier.
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Lower bounds

Opt(P) : v∗(P) = min{RP[H(x , ξ)] : x ▹ F;P ∼ (Ω,F,P, ξ)}

Lemma. Suppose that the functional P 7−→ RP(·) is compound concave
(i.e. the mapping P 7→ RP(Y ) is concave for all random variables Y for
which R is defined. Then the mapping P 7→ v∗(P) is also concave.
Consequently, if one dissects the probability measure

P =
k∑

i=1

P(ωi )δωi . (12)

then

k∑
i=1

piv
∗(Pi ) ≤ v∗(P).



Refinement Chains

Ω
Ω

1
(3)

Ω
2
(3)

Ω
1
(2)

Ω
2
(2)

Ω
3
(2)

Ω
4
(2)

ω
1

ω
2

ω
3

ω
4

ω
8

ω
7

ω
6

ω
5


