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Part VIII. Restoration of Uniqueness



Restoration of uniqueness

e General purpose is to restore uniqueness by forcing the equilibria by
a random noise

e Long history for ODEs
o ODE driven by bounded non-Lipschitz velocity field
X, = b(t,X,;), with prescribed X
~» b continuous = existence but anigaeness
o well-known: noise may restore ! [Veretennikov, Krylov...]
o perturb the dynamics by a Brownian motion (B;),0
dX, = b(t, X,)dt + dB,

o based on smoothing properties of the heat kernel ~» use the fact
that the PDE

Ou(t,x) + %Au(t, x) + b(t,x) - Dyu(t,x) = f(t,x)

has a strong generalized solution if f is bounded



Part VIII. Restoration of Uniqueness

a. A toy example



Linear quadratic control problem

e Dynamics of tagged player (in RY)
dXt = Oztdt + O'dW[

o cost functional of the form
— 1 NV r 1 _ 2 1 2
J(@) = E[7|chT + 8| + fo | $lerX: + £ @] + §ed] ]dt]

o coefficients ¢y, c, may be arbitrarily chosen (say 1)
o o may be 0 or 1 ~» matters from numerical point of view

o fi; is the mean of u;



Linear quadratic control problem

e General form of the optimizer over @ when u is fixed
o =-nXe — hy
o n and h ~» deterministic and 5 independent of u!
o optimal trajectories

dX, = (=nX,~h,)dt + cdW,



Linear quadratic control problem

e General form of the optimizer over @ when u is fixed

o optimal trajectories
dXt = (—ﬂ[Xt—h[)dt + O'dW[

o X is an O.-U. process ~» conditional on Xy, marginal of X is
Gaussian with fixed variance ~» fixed point on the mean only!



Search for equilibria

e Characterization of (1, /1) for a given u

o equation for  ~ Riccati equation
he=ni-cf, nr=c
o equation for 4 ~» backward linear ODE

hr = _(Cff(ﬁt) - ntht)’ hr = cgg(ir)
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Search for equilibria

e Characterization of (1, /1) for a given u

o equation for n7 ~» Riccati equation
he=ni ¢, nr=c
o equation for 4 ~» backward linear ODE
he = =(ef @) = mihi),  hr = cog(@ar)
o Equilibrium condition ~» find u s.t. fi; is the marginal mean of
dX, = (=X, — h)dt + dW,
e End up with forward backward ODE
e = (_Utﬂt - ht)
hz = _(Cff(ﬁt) - Uthr), hr = cgg(ir)



Uniqueness to the FB system

e FB system ~» finite-dimensional writing of the MFG system
o Cauchy-Lipschitz theory in small time only

o may loose existence / uniqueness on a given time interval
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Uniqueness to the FB system

e FB system ~» finite-dimensional writing of the MFG system
o Cauchy-Lipschitz theory in small time only
o may loose existence / uniqueness on a given time interval

o Characteristics system of finite-dimensional master equation

Opv(t, x) + (= = v(t, %)) Av(1, ) + (£ () = vz, %))
W(T,x) = g(x)

o if smooth solution ~» | 1, = v(t, j1;)

e Well-posedness if b = 0, f,g /' = ! of characteristics
o if not = shocks may emerge in finite time...

e 0 = 1 does not help



Common noise

e Return to the FB system and add a noise
dp, = (_Uz,at - ht)dt + &dB;

dhy = ~(f () = b )dt = ekydB,
hr = g(fir)

o B new Brownian motion IL of W, &3>0

o or Girsanov for decoupling the forward and backward equations



Common noise

e Return to the FB system and add a noise
dit; = (=n4fi; — hy)dt + dB,
dh, = ~(f(r) = ey )dt — ek,dB,
hr = g(ar)
o B new Brownian motion L of W, &3>0
e Known fact: If f and g are Lipschitz and bounded = 3!
o roughly speaking, add £242_ in master equation

o or Girsanov for decoupling the forward and backward equations



Common noise

e Return to the FB system and add a noise
dit; = (=n4fi; — hy)dt + dB,
dh, = ~(f(r) = ey )dt — ek,dB,
hr = g(ar)
o B new Brownian motion L of W, &3>0
e Known fact: If f and g are Lipschitz and bounded = 3!
o roughly speaking, add £%6°_ in master equation
o or Girsanov for decoupling the forward and backward equations
e Interpretation of B in the definition of the equilibria?

dXt = a';dt + O'th + SdBt

o fixed point condition ~» g, = £(X;**|B) and 7, = E[X,"*|B]

o | B is common noise! ‘




Selection of equilibria

e Use vanishing viscosity to select equilibria

o focus on simpler (but typical of LQ models) case (Xo = 0)

T
dX, = avdt + W, J(@) = E|Xrg(ur) + cog(ur)’ + 4 f a%dz]
0
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o choose g(x) = { —sign(x) |x[ >1



Selection of equilibria

e Use vanishing viscosity to select equilibria

o focus on simpler (but typical of LQ models) case (Xo = 0)

T
dX, = aydt + dW,, J(@) = E|Xrg(ur) + cog(ur)” + % f oz,Zdt]
0
e Same analysis as before ~» ODE system
fu=-h, h=0. hr=3gG@r) (i0=0)

-X xe[-1,1]

o choose g(x) = { —sign(x) |x[ >1

e Equilibria parametrized by A = hy © A = g(-TA)
oT > 1 (1 =time to observe a shock) = A € {-1,0, 1}

A=0=J%=0, A==zxl=J%=-TA* + c,A* + JTA?

o if ¢, large then equilibrium of lower costis A = 0!



Vanishing viscosity

e Restore uniqueness by adding a common noise
di; = —h;dt + edB;,
dhi = dM;, % = g(fiy)



Vanishing viscosity

e Restore uniqueness by adding a common noise
di; = —h;dt + edB;,
di = dME, I = g(5)
e PDE interpretation ~» h{ = ve(t, i)

o v¢ solves viscous Burgers equation

2
€
O —veo© + EVE =0, Vv({T,)=¢g

o known fact: v¢(#, x) — —sign(x) ase \yOfort < T -1



Vanishing viscosity

e Restore uniqueness by adding a common noise

di€ = —hSdt + edB,,
dhi = dM;, hy = g(a7)

e PDE interpretation ~» h{ = ve(t, i)

o v¢ solves viscous Burgers equation

2
€
0V — v o,V + EVE =0, Vv({T,)=¢g

o known fact: v¢(#, x) — —sign(x) ase \yOfort < T -1

e Statement:

As €\, 0 (i), converges (in law) to 6, + 36s,

o donotsee A =0!




Sketch of proof

€

E-l- -4./!.{/: /Vl\rv'l

O o e @ = e

e In time ¢, the particle should go beyond €2~ with high probability

o then, the drift is very close to =1 ~» the particle follows the drift
with very high probability



Part VIII. Restoration of Uniqueness

b. What next?



Other models

e General purpose is to understand the action of the common noise
onto uniqueness of equilibria without monotonicity

e Several instances in the Euclidean case

o 1d LQ MFG with common noise [Foguen, 18]
Conditional on common noise, equilibria are
Gaussian ~» problem is parameterised by the
mean and master equation becomes a parabolic
nonlinear PDE



Other models

e General purpose is to understand the action of the common noise
onto uniqueness of equilibria

e Several instances in the Euclidean case

o 1d LQ MFG with common noise [Foguen, 18]

o general MFG with co dimensional common noise [Delarue, 19]

Master equation becomes a parabolic nonlinear on
L? space but requires local interactions



Other models

e General purpose is to understand the action of the common noise
onto uniqueness of equilibria

e Several instances in the Euclidean case

o 1d LQ MFG with common noise [Foguen, 18]

o general MFG with co dimensional common noise [Delarue, 19]

o Finite state space

o use a variant of Wright-Fischer/Moran model, see [Bayraktar,
Cecchin, Cohen, D., 21]



Selection of equilibria

e Back to MFG without uniqueness: any possible selection?
o challenging question in full generality

e ... but several instances



Selection of equilibria

e Back to MFG without uniqueness: any possible selection?

e ... but several instances
o 1d LQ MFG [Delarue Foguen, 20]

o MFG with {0, 1} as state space [Cecchin, Dai Pra, Fischer,
Pellino, 19]



Selection of equilibria

e Back to MFG without uniqueness: any possible selection?

e ... but several instances

e Both cases share similar features

o selection is performed by addressing directly the asymptotic
behavior of the equilibria of the finite player game

o selection is connected with the fact that selection principle is
also possible for the related master equation (Nash system), which is
then a scalar conservation law

e Generalization to finite state MFG with state space of any cardinal

o ... but POTENTIAL only [Cecchin, D., to appear]



Potential case in L(Q) setting

e Choosed =1,¢; =0,f =0and ¢, = 1 and g(x) = cos(10x +B) — 23
in such way that there are several Nash equilibria including 0

MFG equilibria Potential

A\
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~100 -075 -0.50 -0.25 000 025 050 075 100 -100 -075 050 -0.25 000 025 050 075 100

e Call G a primitive of g (second plot) ~» physical equilibria are
expected to be given by minima of G!

o mean-field control problem ~» minimise

1 1 (!
J(@) =E §|X1|2 + G(E(Xy)) + 3 f Iatlzdt],
0

o over dX; = a,dt + dB,



Part VIII. Restoration of Uniqueness

c. Finite State Spaces



MFG with a finite state space
e State space £ = {1,--- ,d}

o standard MFG [Gueant et al., Gomes et al., Bensoussan et al.,
Beyraktar et al.]

o case d = 2 [Cecchin et al.] ~» selection of equilibria

o MFG with a common noise [Bertucci et al., 2018] ~» force the
system to have many jumps at a given time



MFG with a finite state space
e State space £ = {1,--- ,d}

o standard MFG [Gueant et al., Gomes et al., Bensoussan et al.,
Beyraktar et al.]

o case d = 2 [Cecchin et al.] ~» selection of equilibria

o MFG with a common noise [Bertucci et al., 2018] ~» force the
system to have many jumps at a given time

o Here, makes it easier since the space of probability measures is of
finite dimension... but remains very difficult to address convergence
of equilibria of the finite games



MFG with a finite state space

o Here, makes it easier since the space of probability measures is of
finite dimension... but remains very difficult to address convergence
of equilibria of the finite games

o | Methodology
o restore uniqueness by means of common noise ~» new MFG

o let the common noise tend 0 ~» select limiting solutions (very
similar to vanishing viscosity method)

o even that is difficult ~ focus on potential games!! Strong
limitation but contains d = 2 case



Simple MFG on E£ [Guéant; Gomes et al.]

o | Tagged player |~ interacting with E-valued population p

PXrar = j1 X, = i) = adt + o(dr), o) >0, i+

P(Xpsqs = i1 X; = i) = 1 + a'dr + o(dr), o = - Z o’
J#EI
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Simple MFG on E£ [Guéant; Gomes et al.]

o | Tagged player |~ interacting with E-valued population p

PXpear = | X, = i) = oVdt + o(dr), o >0, i#j

o | Fokker-Planck | equation ~ ¢! = P(X, = i)

d
dgi= > gatian

J=1

d

' T 1 iy
o [Cost|~ Z[q;ga,m + f qW(fip) + 5 ) laP )ds]

i=1 0 i

o p! = proportion of the population in state i at time ¢

° ’ Fixed point / Nash ‘ ~» find (p,); and optimal control ((ozt*’i‘j),-,,), s.t.

py=PX} =i), te€[0,T]



MFG with common noise

e Randomize the Fokker-Planck equation directly

e Freeze (p,); as a continuous stochastic path with values in
P({1,---,d}) and that is adapted w.r.t. (WiJ)iJ

dq; = Z gy + —! Z pipdlW;’ = W]

1]1

a,ZO, L#£]; a,’:—Za","i

J#
o take (cxﬁ‘j)t adapted w.r.t. noise W
o makes sense if p stays away from boundary
~> solution stays within the orthant (R, )?!
~» but NOT within the simplex! = allow the total mass to

vary... but E[Zd . ‘1;] =1

~» does not make a density on E but on Q X E



MFG with common noise

e Randomize the Fokker-Planck equation directly

e Freeze (p,); as a continuous stochastic path with values in
P({1,---,d}) and that is adapted w.r.t. (WiJ)iJ

d% Z q,ta'] dt t—== Z tptd W;l]

o player is willing to minimize

N

E[qrg(l,pTH fo a\(fGps) + 5 le”l ds]

j#t



MFG with common noise

e Randomize the Fokker-Planck equation directly

e Freeze (p,); as a continuous stochastic path with values in
P({1,--- ,d}) and that is adapted w.r.t. (W"),

d
dgi = qicrj’idt+—— ppd "’ W”]
t J:Z1 1%y \/51%]2‘ Pt

e Find (p,); and optimal control ((a/t ”/), ;)¢ such that (p,); = (g

d
2 i ij i
dpt Zplz *Jldt"' = Z( 2 zd[WtJ - W ])
\/E ]:1
o solution takes values in the simplex!



MFG System

e Best response ~» freeze (p;), as a continuous stochastic path with
values in P({1, - - - ,d}) and that is adapted w.r.t. (WiJ)iJ

e Stochastic HIB ~» Common noise makes HJB stochastic

du=—(  H@)  +f(p))dt
d
-3 Z(uﬁ — u))?
Z P, t(vl g ldl)dl+ Z ij.k Wj,k

Jk=1

[t6-Wentzell term
ulT = g(l’pT)

~» yields a:"i‘i = (u - ui) . as optimal transition rate i # j



MFG System

e Best response ~» freeze (p;); as a continuous stochastic path with
values in P({1,- - - ,d}) and that is adapted w.r.t. (W"), ;

e Stochastic HIB ~ Common noise makes HJB stochastic

du, = —(H(i,u;) + f(i.p,))dt
z il — e 3w

Jk=1
MiT = gi(PT)

o | Coupling |~ solve the MFG by coupling with the forward equation

d d
dpy = Dl =) = it =) i+ 3 (\plpld(w = wi)
2 45

=



Master equation

e MFG system as system of characteristics
u =Utp), tel0,T), i=1,--,d
oU = (U",---,U) solution of some PDE

e Meta-statement [Cardaliaguet et al.] ~» if classical solution = !
equilibrium

e U solves second order | master PDE | on simplex

2 .
U CP) + 7 D, (s = pp)dy, U L)
jhk=1-d
+ 3 (U t.p) - W (t.p)), ) (0, U 2. p) - 8, U (1, p)
j#k

+8° > pi (0, U 1p) = 0, U 1.p)) + H(U@wP) +f'(p) = 0

J#I

pay for stochasticity

with the boundary condition U (T, p) = g'(p)



Ellipticity at the boundary

e Theory for linear PDEs [Epstein & Mazzeo] but not enough for
nonlinear

e Force players to escape from the boundary ~» new dynamics
d i d
. . . i e q . .. i
dg} = )" q(o(p}) + o)t + o D (Npiplalw;’ - wi'])
= 2p: 53

K ifr<é
0 ifr>26

o if p/ < 6 = player may jump to site j with rate « for free

i y .
oy ==Y = Y 6()

o with ¢ N\, from [0, co0) into itself ¢(r) = {



Ellipticity at the boundary

e Theory for linear PDEs but not enough for nonlinear

e Force players to escape from the boundary ~» new dynamics

d i d
dg} =" q(o(p) +af )dr + —=2 3" (\pipld[w;’ — wi'])
= ‘/ipt =
K ifr<o

o with ¢ N\, from [0, c0) into itself ¢(r) = { 0 ifr>26
oif p/ < § = player may jump to site j with rate « for free

e Keep the same cost functional
d

D E|dretipr)+ fo (1) + N Js|

i=1 J#i

o ~» find (p,); and optimal control ((a/:(”""),-z,-), s.t.

d d
dp = )" pl(owh) + e + @ > (Npipldlwy’ - wi'l)
=1

J J=1



Main statement

e New master equation

i & 2 i
QUM+ = Y (07— x5y, U 1.p)
jk=1-d

+ >0 (o) + (Uep) - W, p)), ) (9, U (1,p) - 3, U1, p))
jk=1-d

+8 ) (0, U'tp) - 0y Ut p)) + H (U P) +f(p) = 0

J#i

e Assume that g and f* are sufficiently smooth



Main statement

e New master equation

2
. Fo .
o U (t,p) + > Z (xj0jx — xjxk)alz,jpkﬂt(t,p)

Jok=1--d
+ >0 (o) + (Uep) - W, p)), ) (9, U (1,p) - 3, U1, p))
jk=1-d
+82 " P (9,U (1, p) - By U'(t,p)) + H'(ULp)) +(p) = 0
JEI

e Assume that g and f* are sufficiently smooth

o«»Foranys>O,f0rany6>0,

k ifr<éd

o may choose « with ¢(r) = { 0 ifr>2s

such that

o the master equation has a unique classical solution in a suitable
space



Part VIII. Restoration of Uniqueness

d. Selection for Finite State Spaces



Potential case

e Assume that

oF oG
f(l’p) = a_(p)’ g(l’p) = _(p)
pi Ipi



Potential case

e Assume that

oF oG
f(l’p) = 6_(p)’ g(l’p) = _(P)
pi Ipi

¢ | Central planner ‘ without common noise ~» minimize

G(pr) + j(; [F(p,) + % Zp; Z |a;=/|2]dt

=1 j#i

over . o
dpi = plajdr

J#i
o any minimizer solves MFG system!

o but exist solutions of the MFG system that are not in the set of
minimizers! Do they make sense?



Potential case

e Assume that

oF oG
f(l’p) = 6_(p)’ g(l’p) = _(P)
pi Ipi

¢ | Central planner ‘ without common noise ~» minimize

G(pr) + j(; [F(p,) + % Zp; Z |a;=/|2]dt
i=1

=1 A

over . o
dpi = plajdr

J#i
o any minimizer solves MFG system!

o but exist solutions of the MFG system that are not in the set of
minimizers! Do they make sense?

o | Statement | Common noise selects minimizers!



Mean field control problem

e With control ((aﬁJ)[zj), associate

o controlled path

d d
dpi = 3" Pl + aNdr + — 3" (\p )
j:l VE j=1

o cost functional

E[G(pr)+ f F(p,) + %Zd: Zla,’/l dt]
i=1 J#EL



Mean field control problem

e With control ((aﬁJ)[zj), associate

o controlled path
. d . . .. For N
dp =" pl(o(p}) + )t + 7 > (Npipldlw - wi)
=1 j=1

o cost functional

d
1 2/
E[G(pr)+ f F(p,) + 52‘ Z;‘ Idt]
o Theorem 2 |~ For any & > 0,

o may choose k with ¢.(r) = ke ifr<é

such that, whatever ¢ > 0, the mean control problem has a
unique bounded optimal control and the related HIB equation has a
(unique) classical solution V?(¢, p)



Potential structure with common noise

. The unique optimizer of the mean field control problem

with common noise is the unique equilibrium of a new MFG!

o same dynamics as before but new cost functional

M-

|a}sipy) + f G(f@.pg) + Deolis.p) + 5 =S lalp) Jas|
0

i=1 J#i

o master equation has a unique classical solution U&/(z, p)

& &

U (1,p) = U™ (1, p) = oo P~ 5
i j

(. p)



Potential structure with common noise

. The unique optimizer of the mean field control problem

with common noise is the unique equilibrium of a new MFG!

o same dynamics as before but new cost functional

d T
i . i . . 1 ij
> Eldretirn) + [ al(rGp) +0ustisp) + 5 Y P o

i= J#i

o master equation has a unique classical solution U®(z, p)

& &

. . oV
U (t,p) — U (t,p) = (t,p) - F)
D;

Opi

We can cook ¢, converging to 0 inside the simplex s.t.

1. additional cost ¥, (i, 5, p,) has vanishing contribution along the
equilibria

(., p)

2. equilibria of the new MFG are tight; weak limits are supported
by minimizers of the original mean field control problem



Master equation for original MFG

e Back to the case without common noise: the value function V is
Lipschitz in time and space

o a.e. differentiable in (¢, p) = uniqueness of the minimizer a.e.
[Cannarsa and Sinestrari] and hence unique selected equilibrium



Master equation for original MFG

e Back to the case without common noise: the value function V is
Lipschitz in time and space

o a.e. differentiable in (¢, p) = uniqueness of the minimizer a.e.
[Cannarsa and Sinestrari] and hence unique selected equilibrium

° With the same choice of ¢, as in Theorem 4, we have

a.e.
; ; ov ov
WS’I(I’P) - ﬂg‘](t’p) : _(I’P) - 5

> o ) p)



Master equation for original MFG

e Back to the case without common noise: the value function V is
Lipschitz in time and space

o a.e. differentiable in (7, p) = uniqueness of the minimizer a.e.
[Cannarsa and Sinestrari] and hence unique selected equilibrium

° With the same choice of ¢, as in Theorem 4, we have

a.c.
: : oV oV
U (t,p) — U (¢, — —
(t,p) (t,p) ~ - )

° Characterization [Kruzkov] of the limit as unique weak

solution to the master equation deriving from a semiconcave potential
U () + H(ULP) + ')
+ 3 (U p) - W (t.p))., ) (0, U2 p) - 3, U (1,p)) = 0

7k

(I’P)_ (t’P)

] .
=5 0p[(U'(t.p) - U(t,p));]

o ! result even if non smooth solution and non-unique equilibria



Part IX. Learning



Part IX. Learning

a. General philosophy



General objective

e [earning equilibria in mean-field games
o with a numerical method...

o ... or without exhaustive knowledge of what is inside the MFG
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o ... but using observations of the outputs of the MFG black-box



General objective

e [earning equilibria in mean-field games
o with a numerical method...
o ... or without exhaustive knowledge of what is inside the MFG
o ... but using observations of the outputs of the MFG black-box

e General strategy

Tagged
controlled player

UPDATE




What does UPDATE mean?
e Adapt the | fixed point problem |
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(1) fix a flow of probability measures (u;)o<;<7 (With values in
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What does UPDATE mean?
e Adapt the ‘ fixed point problem ‘

(1) fix a flow of probability measures (u;)o<;<7 (With values in
P (RY))

(2) solve the stochastic optimal control problem in the environment

(:ut)OStST
dX; = b(X;, s, ap)dt + o(X;, ) dW;

o with Xy = £ being fixed on some set-up (Q2, F, P) with a
d-dimensional B.M.

o with [cost| J(@) = E[g(Xr.ur) + [} f(Xi.ur. ar)dt]



What does UPDATE mean?
e Adapt the ‘ fixed point problem ‘

(1) fix a flow of probability measures (u;)o<;<7 (With values in
P (RY))

(2) solve the stochastic optimal control problem in the environment

(:ut)OStST
dX; = b(X;, s, ap)dt + o(X;, ) dW;

o with Xy = £ being fixed on some set-up (Q2, F, P) with a
d-dimensional B.M.

o with [cost| J(@) = E[g(Xr.ur) + [} f(Xi.ur. ar)dt]

3) let (X,* M)o<i<T be the unique optimizer (under nice assumptions)
~> let

D) = LX), 1€]0,T]

e Use O to update!



Part IX. Learning

b. Which updates?



Picard does NOT work

e Describe state of the population as (u)o</<7

o u, is a probability measure describing statistical state at time ¢
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Picard does NOT work

e Describe state of the population as ()<<t

o u, is a probability measure describing statistical state at time ¢

. -: Picard update

Tagged
controlled player

o fails unless T small: forward-backward problem behind!!!



Fictitious play

e Describe state of the population as (u)o<i<7

o u, is a probability measure describing statistical state at time ¢
. _: Fictitious play

Tagged
controlled player

n+1
= aanm + n+1'ul




Fictitious play

e Describe state of the population as (u)o<i<7

o u, is a probability measure describing statistical state at time ¢
. _: Fictitious play

Tagged
controlled player

n_,n
n+1'ut

o in few cases! [Cardaliaguet,Hadikhanloo, Silva, Elie, Lauriere]



Part IX. Learning

c. Exploration



Randomisation

e Describe state of the population as ()<<t

o u, is a probability measure describing statistical state at time ¢
. _: Fictitious play
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Randomisation

e Describe state of the population as ()<<t

o u, is a probability measure describing statistical state at time ¢
. _: Fictitious play

Tagged
controlled player

f

Randomisation

Exploration

_ 1 n+tl , n  n
=tk

o Does it help for convergence?



How to use this additional noise? (¢ = 1)

e Fictitious play for new optimisation problem
o proxy m" = (in})o<;<r for RANDOM mean state of population

o same cost functional but over dynamics with common noise

T
J(a’) = E[% chT + g(ﬁ,ﬂ%)|2 + jo‘ [%|CfX[ +f(ﬁ’l:l)|2 + %|at|2:|d[:|

over
dX; = a;dt + odW; + £dB;
o conditional mean of optimal mean state
dm™! = —(gm* + 1 Ndt + dB,,  mit! = E(Xo)
dit = —(cpf Guf) — ek dt + KT aB,, W = cpg(my)
o update proxy of the environment

_ 1 _
mf” = m;‘“ + my,
n+1

n+1

e Not able to prove convergence!



Scheme that forces decoupling

e Two proxies
o proxy m" = (i} )o<<r for RANDOM mean state of population
o proxy h" = (h})o<<r for RANDOM intercept of feedback

e New dynamics
o tilt the common noise

!
dX; = a,dt + cdW; + d (B, + f H}ds)
0
o new cost functional

T
E[S(h”)(ﬂchr + g + f [LlerX + ramnf + %|a,|2]dt)]
0

o with a(h”):exp(— f H'dB, — f K| st

e Same fictitious play as before. It works!



Why does it work? (¢; = ¢, = 1 to simplify)

e Just replace B; by B; + fot hds

dm™* =~ + B = hdt + dB,,  mit! = E(Xo)
dn* = —(Fmt) — n e + K e+ KT AB,, W = gl



Why does it work? (¢ = ¢, = 1 to simplify)

e Just replace B; by B; + fot hlds

dm*t = —(m 4 W< de + dB, m = E(Xo)
dh*t = —(fGup) — o de + K Ry de + K By, W = g (i)

Implement /7! '
e Implement 7, n+IZ A

o Get

di}*! = (! + O(1/n))dt + dB,, it = E(Xo)

dntt = —(fm) — i de + KU+ K aB,, WP = gy
e Equations decouple... to limiting equations

dﬁ'l[ = —T]Iﬁ'ltdt + dBt, my = E(XO)
d]’l, = —(f(m[) - T]th;)d[ + kth[dt + ktdBt, hT = g(n_’lT)



Why does it work? (¢; = ¢, = 1 to simplify)

o Get

di*! = (™ + O(1/n))dt + dB,, it = E(Xo)

dntt = —(Fm) — i de + KU+ K aB,, W = g(my)
e Equations decouple... to limiting equations

dﬁ'lt = _n[ﬁ’ltdt + dBt, mo = ]E(X())
dh[ = _(f(n_’l[) - T]thz)dt + kthtdt + ktdBt, hT = g(mT)

. ﬁ: for F' 1-bounded and 1-Lipschitz

C
< —
n

‘E[S(h")F(m", h")] - E[S(h)F(rh, h)]




Why does it work? (¢cf = cg = 1 to simplify)

o Get

din™*" = —(na ! + O(1/n))dt + dB,,  mit! = E(Xo)
hr[+l — _(f( )_ rhh;l+1)dl, + k;’l+1h;’ldt + k;H—ldBt, h;lj'l — g(m'}‘)

¢ Equations decouple... to limiting equations

diny = —n,dt +dB,, iy = E(Xo)
dh, = —(f(m,) — ghy)dt + kihidt + kedB,,  hy = g(my)

o _: for F' 1-bounded and 1-Lipschitz and restore &

'E[S(h;n)F(ﬁz", h”)] - E[S(Z)F(ﬁz, h)




6. Back to the original problem



Two drawbacks

¢ Provides a solution of the mean-field game with common noise!

e Does not fit within the inputs of the black-box!



Two drawbacks

e Provides a solution of the mean-field game with common noise!

o solution to mean-field game with £ common noise gives
Ce-Nash equilibrium to original mean-field game

inf EB [Joriginal(a,’ mS)] > inf EB [Joriginal(a,*,s, ms)] —Cse
a a

o can choose € as small as we want!



Two drawbacks

e Does not fit within the inputs of the black-box!

Action of
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UPDATE




Two drawbacks

e Does not fit within the inputs of the black-box!

[ a; + SB[

UPDATE

o Require action process (@;)o<<r to be constant on
[(k/p)T, (k + )T /p) and corrupt ayz/, by ep/T (B 1yr/p — Biryp)
o correct cost by —szp/ 27).



Two drawbacks

e Does not fit within the inputs of the black-box!

B nyr/p—Bit)p ]
Qkr/p T € Tip J

UPDATE

. -: for F' 1-bounded and 1-Lipschitz

e e, )] - Ele(2)ron ]| « —<

(n+p'?)e



7. Numerical experiments



Discretization

e Cost

oy L Sy P @) 4 g
DY EPWTRE & I

i=1 j=1 k=1

where

&l — exp(— Zhn O) Ay w o _ L Zlhn (/) )

e Dynamics
G _ @y Y oap L0 o )
X =x +patk + \/ﬁAlkb , =1, Py Xy = Xo,
ag{") =ay,_ lxg{‘ll) Cg{)l + h:i(]l) + \/ﬁA,kw(i), k=1,---,p.

e Semi-feedback form
N
. i 1 .
=y ctk(f)Hg((U;; Yo - Ly (r)))’
[{I<D —1

where Uj is root of empirical covariance and H 4 is Hermite



2d example
e Choosed =2,T=1,¢,=0,f =0and ¢, = 1 and
gl(xl,xz) = COS(IOxl)COS(lOXQ), gz(xl,XQ) = sin(lel) Sin(lOXQ)

e [_earnt cost without common noise and with common noise

cost cost

1275
1250
1225
1200 2.10
1175 205
1150

1125

1100

o 2 4 6 & 1 12 1 1 18 0 2 4 6 & 10 12 1 1 18

(p = 30, #i = 4ES and no common noise in the left, no independent
noise but #j = 4ES in the right)



2d example
e Choosed =2, T =1,¢,=0,f =0and ¢g = 1 and
g1(x1,x2) = cos(10x7) cos(10x7), g2(x1,x2) = sin(10x;) sin(10x;)

e L2 error to the solution

error error

o 2 4 6 8 10 12 ¥ 1 18 o 2 4 6 8 10 12 8 16 18

(a) Riccati known (b) Riccati unknown

The experiments are computed with: n = 20 learning iterations,
p=30timesteps, #i = 1,# =5x10*, s =0and e = |



2d example

e Choosed =2,T=1,¢,=0,f =0and ¢g = 1 and
g1(x1,x2) = cos(10x7) cos(10x7), g2(x1,x2) = sin(10x;) sin(10x;)

e [ error to the solution without the solution of Riccati (without and
with independent noise)

error

() # =4x 10, #i=1 (b) # =2 x 10%, #i = 20

ssssssssss

(c) #j = 10%, #i = 40



Simulated annealing

e Decrease step by the step the intensity of the common noise starting
from the wrong equilibrium 0!

g1>&>>&

e For viscosity &g441, tilt the common noise using return A*7 of
algorithm with previous viscosity

1

t
dXt = Q’[d[ + O'dW[ + 8q+1d (Bt + f (h? - h?oﬂ)ds)
0

Eg+1

o new cost functional

B — b r
E[S(—)(ﬂchr + g + j; [ LlerX, + | + %|a,|2]d;)]

Eg+1

o with

" — h*
&(—.)

Eg+1
1 r 1 T
[ nnam = —— [ pa)
8q+l 0 28é+1 0

el
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