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Part VIII. Restoration of Uniqueness



Restoration of uniqueness

• General purpose is to restore uniqueness by forcing the equilibria by
a random noise

• Long history for ODEs

◦ ODE driven by bounded non-Lipschitz velocity field

Ẋt = b(t,Xt), with prescribed X0

 b continuous⇒ existence but uniqueness

◦ well-known: noise may restore ! [Veretennikov, Krylov...]

◦ perturb the dynamics by a Brownian motion (Bt)t≥0

dXt = b(t,Xt)dt + dBt

◦ based on smoothing properties of the heat kernel{ use the fact
that the PDE

∂tu(t, x) + 1
2∆u(t, x) + b(t, x) · Dxu(t, x) = f (t, x)

has a strong generalized solution if f is bounded



Part VIII. Restoration of Uniqueness

a. A toy example



Linear quadratic control problem
• Dynamics of tagged player (in Rd)

dXt = αtdt + σdWt

◦ cost functional of the form

J(α) = E
[

1
2

∣∣∣cgXT + g(µ̄T )
∣∣∣2 +

∫ T

0

[
1
2

∣∣∣cf Xt + f (µ̄t)
∣∣∣2 + 1

2

∣∣∣αt
∣∣∣2]dt

]
◦ coefficients cf , cg may be arbitrarily chosen (say 1)

◦ σ may be 0 or 1{ matters from numerical point of view

◦ µ̄t is the mean of µt

• General form of the optimizer over α when µ is fixed

◦ optimal trajectories

dXt =
(
−ηtXt−ht

)
dt + σdWt
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]
◦ coefficients cf , cg may be arbitrarily chosen (say 1)

◦ σ may be 0 or 1{ matters from numerical point of view

◦ µ̄t is the mean of µt

• General form of the optimizer over α when µ is fixed

◦ optimal trajectories

dXt =
(
−ηtXt−ht

)
dt + σdWt

◦ X is an O.-U. process{ conditional on X0, marginal of X is
Gaussian with fixed variance{ fixed point on the mean only!



Search for equilibria
• Characterization of (η, h) for a given µ

◦ equation for η{ Riccati equation

η̇t = ηt
2 − c2

f , ηT = c2
g

◦ equation for h{ backward linear ODE

ḣt = −
(
cf f (µ̄t) − ηtht

)
, hT = cgg(µ̄T )

• Equilibrium condition{ find µ s.t. µ̄t is the marginal mean of

dXt =
(
−ηtXt − ht

)
dt + dWt

• End up with forward backward ODE

˙̄µt =
(
−ηtµ̄t − ht

)
ḣt = −

(
cf f (µ̄t) − ηtht

)
, hT = cgg(µ̄T )
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Uniqueness to the FB system

• FB system{ finite-dimensional writing of the MFG system

◦ Cauchy-Lipschitz theory in small time only

◦ may loose existence / uniqueness on a given time interval

• Characteristics system of finite-dimensional master equation

∂tv(t, x) +
(
−ηtx − v(t, xt)

)
∂xv(t, x) +

(
f (x) − ηtv(t, x)

)
v(T , x) = g(x)

◦ if smooth solution ht = v(t, µ̄t)

•Well-posedness if b̄ ≡ 0, f̄ , ḡ↗⇒ ! of characteristics

◦ if not⇒ shocks may emerge in finite time...

• σ = 1 does not help
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Common noise
• Return to the FB system and add a noise

dµ̄t =
(
−ηtµ̄t − ht

)
dt + εdBt

dht = −
(
f (µ̄t) − ηtht

)
dt − εktdBt

hT = g(µ̄T )

◦ B new Brownian motion ⊥⊥ of W, ε > 0

• Known fact: If f and g are Lipschitz and bounded⇒ ∃!

◦ roughly speaking, add ε2∂2
xx in master equation

◦ or Girsanov for decoupling the forward and backward equations

• Interpretation of B in the definition of the equilibria?

dXt = αtdt + σdWt + εdBt

◦ fixed point condition{ µt = L(X?,µ
t |B) and µ̄t = E[X?,µ

t |B]

◦ B is common noise!
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Selection of equilibria
• Use vanishing viscosity to select equilibria

◦ focus on simpler (but typical of LQ models) case (X0 = 0)

dXt = αtdt + dWt, J(α) = E
[
XTg(µT ) + cgg(µT )2 + 1

2

∫ T

0
α2

t dt
]

• Same analysis as before{ ODE system

˙̄µt = −ht, ḣt = 0, hT = ḡ(µ̄T )
(
µ̄0 = 0

)
◦ choose ḡ(x) =

{
−x x ∈ [−1, 1]
−sign(x) |x| ≥ 1

• Equilibria parametrized by A = hT ⇔ A = ḡ
(
−TA

)
◦ T > 1 (1 = time to observe a shock)⇒ A ∈ {−1, 0, 1}

A = 0⇒ Jopt = 0, A = ±1⇒ Jopt = −TA2 + cgA2 + 1
2 TA2

◦ if cg large then equilibrium of lower cost is A = 0!
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Vanishing viscosity
• Restore uniqueness by adding a common noise

dµ̄εt = −hεt dt + εdBt,

dhεt = dMε
t , hεT = ḡ

(
µ̄εT

)

• PDE interpretation{ hεt = vε(t, µ̄εt )

◦ vε solves viscous Burgers equation

∂tvε − vε∂xvε +
ε2

2
vε = 0, vε(T , ·) = ḡ

◦ known fact: vε(t, x)→ −sign(x) as ε ↘ 0 for t < T − 1

• Statement: As ε ↘ 0 (µ̄εt )t converges (in law) to 1
2δ(t)t + 1

2δ(−t)t

◦ do not see A = 0!

0
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◦ known fact: vε(t, x)→ −sign(x) as ε ↘ 0 for t < T − 1

• Statement: As ε ↘ 0 (µ̄εt )t converges (in law) to 1
2δ(t)t + 1

2δ(−t)t

◦ do not see A = 0!

0



Sketch of proof
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• In time ε, the particle should go beyond ε2− with high probability

◦ then, the drift is very close to ±1 the particle follows the drift
with very high probability



Part VIII. Restoration of Uniqueness

b. What next?



Other models
• General purpose is to understand the action of the common noise
onto uniqueness of equilibria without monotonicity

• Several instances in the Euclidean case

◦ 1d LQ MFG with common noise [Foguen, 18]
Conditional on common noise, equilibria are
Gaussian  problem is parameterised by the
mean and master equation becomes a parabolic
nonlinear PDE

◦ general MFG with∞ dimensional common noise [Delarue, 19]

Master equation becomes a parabolic nonlinear on
L2 space but requires local interactions

• Finite state space

◦ use a variant of Wright-Fischer/Moran model, see [Bayraktar,
Cecchin, Cohen, D., 21]
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Selection of equilibria
• Back to MFG without uniqueness: any possible selection?

◦ challenging question in full generality

• ... but several instances

◦ 1d LQ MFG [Delarue Foguen, 20]

◦MFG with {0, 1} as state space [Cecchin, Dai Pra, Fischer,
Pellino, 19]

• Both cases share similar features

◦ selection is performed by addressing directly the asymptotic
behavior of the equilibria of the finite player game

◦ selection is connected with the fact that selection principle is
also possible for the related master equation (Nash system), which is
then a scalar conservation law

• Generalization to finite state MFG with state space of any cardinal

◦ ... but POTENTIAL only [Cecchin, D., to appear]
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Potential case in LQ setting
• Choose d = 1, cf = 0, f ≡ 0 and cg = 1 and g(x) = cos(10x + β) − 2β
in such way that there are several Nash equilibria including 0

• Call G a primitive of g (second plot){ physical equilibria are
expected to be given by minima of G!

◦ mean-field control problem{ minimise

J(α) = E
[1
2
|X1|

2 + G
(
E(X1)

)
+

1
2

∫ 1

0
|αt|

2dt
]
,

◦ over dXt = αtdt + dBt



Part VIII. Restoration of Uniqueness

c. Finite State Spaces



MFG with a finite state space
• State space E = {1, · · · , d}

◦ standard MFG [Gueant et al., Gomes et al., Bensoussan et al.,
Beyraktar et al.]

◦ case d = 2 [Cecchin et al.] { selection of equilibria

◦MFG with a common noise [Bertucci et al., 2018] force the
system to have many jumps at a given time

• Here, makes it easier since the space of probability measures is of
finite dimension... but remains very difficult to address convergence
of equilibria of the finite games

• Methodology

◦ restore uniqueness by means of common noise{ new MFG

◦ let the common noise tend 0{ select limiting solutions (very
similar to vanishing viscosity method)

◦ even that is difficult{ focus on potential games!! Strong
limitation but contains d = 2 case
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Simple MFG on E [Guéant; Gomes et al.]

• Tagged player { interacting with E-valued population p

P
(
Xt+dt = j |Xt = i

)
= α

i,j
t dt + o(dt), α

i,j
t ≥ 0, i , j

P
(
Xt+dt = i |Xt = i

)
= 1 + αi,i

t dt + o(dt), αi,i
t = −

∑
j,i

α
j,i
t

• Fokker-Planck equation{ qi
t = P(Xt = i)

dqi
t =

d∑
j=1

qj
tα

j,i
t dt

• Cost {
d∑

i=1

[
qi

Tg
(
i, pT

)
+

∫ T

0
qi

s

(
f
(
i, ps

)
+

1
2

∑
j,i

|α
i,j
s |

2
)
ds

]
◦ pi

t = proportion of the population in state i at time t⇒
p1

1 + · · · + pd
t = 1

• Fixed point / Nash { find (pt)t and optimal control ((α?,i,jt )i,j)t s.t.

pi
t = P

(
X?

t = i
)
, t ∈ [0,T]
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MFG with common noise
• Randomize the Fokker-Planck equation directly

• Freeze (pt)t as a continuous stochastic path with values in
P({1, · · · , d}) and that is adapted w.r.t. (W i,j)i,j

dqi
t =

d∑
j=1

qj
tα

j,i
t dt +

ε
√

2

qj
t

pi
t

d∑
j=1

√
pi

tp
j
td

[
W i,j

t −W j,i
t
]

α
i,j
t ≥ 0, i , j ; αi,i

t = −
∑
j,i

α
j,i
t

◦ take (αi,j
t )t adapted w.r.t. noise W

◦ makes sense if p stays away from boundary

{ solution stays within the orthant (R+)d!

{ but NOT within the simplex! ⇒ allow the total mass to

vary... but E
[∑d

i=1 qi
t

]
= 1

{ does not make a density on E but on Ω × E

◦ player is
willing to minimize

d∑
i=1

E
[
qi

Tg
(
i, pT

)
+

∫ T

0
qi

s

(
f
(
i, ps

)
+

1
2

∑
j,i

|α
i,j
s |

2
)
ds

]

• Find (pt)t and optimal control ((α?,i,jt )i,j)t such that (pt)t = (q?t )t

dpi
t =

d∑
j=1

pj
tα
?,j,i
t dt +

ε
√

2

d∑
j=1

(√
pi

tp
j
td

[
W i,j

t −W j,i
t
])

◦ solution takes values in the simplex!
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MFG System
• Best response{ freeze (pt)t as a continuous stochastic path with
values in P({1, · · · , d}) and that is adapted w.r.t. (W i,j)i,j

• Stochastic HJB{ Common noise makes HJB stochastic

dui
t = −

(
Hi(ut)︸︷︷︸

− 1
2

d∑
j=1

(ui
t − uj

t)
2
+

+ f i(pt)
)
dt

−
ε
√

2

d∑
j=1

√
pi

tp
j
t
(
vi,i,j

t − vi,j,i
t

)
︸                              ︷︷                              ︸

Itô-Wentzell term

dt +

d∑
j,k=1

vi,j,k
t dW j,k

t

ui
T = g(i, pT )

 yields α?,i,jt =
(
ui

t − uj
t
)
+ as optimal transition rate i , j

• Coupling { solve the MFG by coupling with the forward equation

dpi
t =

d∑
j=1

[
pj

t
(
uj

t − ui
t
)
+ − pi

t
(
ui

t − uj
t
)
+

]
dt +

ε
√

2

d∑
j=1

(√
pi

tp
j
td

[
W i,j

t −W j,i
t
])
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Master equation
•MFG system as system of characteristics

ui
t = Ui(t, pt), t ∈ [0,T], i = 1, · · · , d

◦ U =
(
U1, · · · ,Ud) solution of some PDE

•Meta-statement [Cardaliaguet et al.] { if classical solution⇒ !
equilibrium

• U solves second order master PDE on simplex

∂tU
i(t, p) +

ε2

2

∑
j,k=1···d

(
pjδj,k − pjpk

)
∂2

pjpk
Ui(t, p)

+
∑
j,k

pk
((
Uk(t, p) −Uj(t, p)

)
+

)(
∂pjU

i(t, p) − ∂pkU
i(t, p)

)
+ ε2

∑
j,i

pj
(
∂piU

i(t, p) − ∂pjU
i(t, p)

)
︸                                       ︷︷                                       ︸

pay for stochasticity

+ Hi(U(t, p)
)

+ f i(p) = 0

with the boundary conditionUi(T , p) = gi(p)



Ellipticity at the boundary
• Theory for linear PDEs [Epstein & Mazzeo] but not enough for
nonlinear

• Force players to escape from the boundary{ new dynamics

dqi
t =

d∑
j=1

qj
t
(
φ(pi

t) + α
j,i
t
)
dt +

ε
√

2

qi
t

pi
t

d∑
j=1

(√
pi

tp
j
td

[
W i,j

t −W j,i
t
])

◦ with φ↘ from [0,∞) into itself φ(r) =

{
κ if r < δ
0 if r > 2δ

◦ if pj < δ⇒ player may jump to site j with rate κ for free

◦ αi,i
t = −

∑
j,i α

i,j
t −

∑
j φ(pj

t)

• Keep the same cost functional
d∑

i=1

E
[
qi

Tg
(
i, pT

)
+

∫ T

0
qi

s

(
f
(
i, ps

)
+

1
2

∑
j,i

|α
i,j
s |

2
)
ds

]
◦ equilibrium { find (pt)t and optimal control ((α?,i,jt )i,j)t s.t.
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)
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Main statement
• New master equation

∂tU
i(t, p) +

ε2

2

∑
j,k=1···d

(
xjδj,k − xjxk

)
∂2

pjpk
Ui(t, p)

+
∑

j,k=1···d

pk
(
φ(pj) +

(
Uk(t, p) −Uj(t, p)

)
+

)(
∂pjU

i(t, p) − ∂pkU
i(t, p)

)
+ ε2

∑
j,i

pj
(
∂piUi(t, p) − ∂pjUi(t, p)

)
+ Hi(U(t, p)

)
+ f i(p) = 0

• Assume that gi and f i are sufficiently smooth

• Theorem 1 { For any ε > 0, for any δ > 0,

◦ may choose κ with φ(r) =

{
κ if r < δ
0 if r > 2δ

such that

◦ the master equation has a unique classical solution in a suitable
space
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Part VIII. Restoration of Uniqueness

d. Selection for Finite State Spaces



Potential case
• Assume that

f (i, p) =
∂F
∂pi

(p), g(i, p) =
∂G
∂pi

(p)

• Central planner without common noise{ minimize

G(pT ) +

∫ T

0

[
F(pt) +

1
2

d∑
i=1

pi
t

∑
j,i

|α
i,j
t |

2
]
dt

over
dpi

t =
∑
j,i

pj
tα

j,i
t dt

◦ any minimizer solves MFG system!

◦ but exist solutions of the MFG system that are not in the set of
minimizers! Do they make sense?

• Statement : Common noise selects minimizers!
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Mean field control problem
•With control ((αi,j

t )i,j)t associate

◦ controlled path

dpi
t =

d∑
j=1

pj
t
(
φ(pi

t) + α
j,i
t
)
dt +

ε
√

2

d∑
j=1

(√
pi

tp
j
td

[
W i,j

t −W j,i
t
])

◦ cost functional

E
[
G(pT ) +

∫ T

0

[
F(pt) +

1
2

d∑
i=1

pi
t

∑
j,i

|α
i,j
t |

2
]
dt

]

• Theorem 2 { For any ε > 0,

◦ may choose κ with φε(r) = κε−2 if r < δ

such that, whatever δ > 0, the mean control problem has a
unique bounded optimal control and the related HJB equation has a
(unique) classical solutionVε(t, p)
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Potential structure with common noise
• Theorem 3 The unique optimizer of the mean field control problem
with common noise is the unique equilibrium of a new MFG!

◦ same dynamics as before but new cost functional

d∑
i=1

E
[
qi

Tg
(
i, pT

)
+

∫ T

0
qi

s

(
f
(
i, ps

)
+ ϑε,φ

(
i, s, ps

)
+

1
2

∑
j,i

|α
i,j
s |

2
)
ds

]
◦ master equation has a unique classical solutionUε,i(t, p)

Uε,i(t, p) −Uε,j(t, p) =
∂Vε

∂pi
(t, p) −

∂Vε

∂pj
(t, p)

Theorem 4 We can cook φε converging to 0 inside the simplex s.t.

1. additional cost ϑε,φ(i, s, ps) has vanishing contribution along the
equilibria

2. equilibria of the new MFG are tight; weak limits are supported
by minimizers of the original mean field control problem
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Master equation for original MFG
• Back to the case without common noise: the value functionV is
Lipschitz in time and space

◦ a.e. differentiable in (t, p)⇒ uniqueness of the minimizer a.e.
[Cannarsa and Sinestrari] and hence unique selected equilibrium

• Theorem 5 With the same choice of φε as in Theorem 4, we have
a.e.

Uε,i(t, p) −Uε,j(t, p) −→
ε↘0

∂V

∂pi
(t, p) −

∂V

∂pj
(t, p)

• Theorem 6 Characterization [Kruzkov] of the limit as unique weak
solution to the master equation deriving from a semiconcave potential

∂tU
i(t, p) + Hi(U(t, p)

)
+ f i(p)

+
∑
j,k

pk
()(
∂pjU

i(t, p) − ∂pkU
i(t, p)

)︸                              ︷︷                              ︸
−

1
2
∂pi

[(
Uk(t, p) −Uj(t, p)

)2
+

]
= 0

◦ ! result even if non smooth solution and non-unique equilibria
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Part IX. Learning



Part IX. Learning

a. General philosophy



General objective
• Learning equilibria in mean-field games

◦ with a numerical method...

◦ ... or without exhaustive knowledge of what is inside the MFG

◦ ... but using observations of the outputs of the MFG black-box

• General strategy

Tagged
controlled player

State of the population
(environment)

(MFG) black-box

Law of optimal state
of tagged player
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UPDATE



What does UPDATE mean?
• Adapt the fixed point problem

(1) fix a flow of probability measures (µt)0≤t≤T (with values in
P2(Rd))

(2) solve the stochastic optimal control problem in the environment
(µt)0≤t≤T

dXt = b(Xt, µt, αt)dt + σ(Xt, µt)dWt

◦ with X0 = ξ being fixed on some set-up (Ω,F,P) with a
d-dimensional B.M.

◦ with cost J(α) = E
[
g(XT , µT ) +

∫ T
0 f (Xt, µt, αt)dt

]
(3) let (X?,µ

t )0≤t≤T be the unique optimizer (under nice assumptions)
{ let

Φt(µ) = L
(
X?,µ

t
)
, t ∈ [0,T]

• Use Φ to update!
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• Use Φ to update!



What does UPDATE mean?
• Adapt the fixed point problem

(1) fix a flow of probability measures (µt)0≤t≤T (with values in
P2(Rd))

(2) solve the stochastic optimal control problem in the environment
(µt)0≤t≤T

dXt = b(Xt, µt, αt)dt + σ(Xt, µt)dWt

◦ with X0 = ξ being fixed on some set-up (Ω,F,P) with a
d-dimensional B.M.

◦ with cost J(α) = E
[
g(XT , µT ) +

∫ T
0 f (Xt, µt, αt)dt

]
(3) let (X?,µ

t )0≤t≤T be the unique optimizer (under nice assumptions)
{ let

Φt(µ) = L
(
X?,µ

t
)
, t ∈ [0,T]

• Use Φ to update!



Part IX. Learning

b. Which updates?



Picard does NOT work
• Describe state of the population as (µt)0≤t≤T

◦ µt is a probability measure describing statistical state at time t

• Bad idea : Picard update

Tagged
controlled player

State of the population
(µn

t )0≤t≤T

Black-box

Optimal law
(mn+1

t )0≤t≤T

µn+1
t = mn+1

t

◦ fails unless T small: forward-backward problem behind!!!
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State of the population
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t )0≤t≤T
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Optimal law
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t )0≤t≤T
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t = mn+1

t

◦ fails unless T small: forward-backward problem behind!!!



Fictitious play
• Describe state of the population as (µt)0≤t≤T

◦ µt is a probability measure describing statistical state at time t

• Good idea : Fictitious play

Tagged
controlled player

State of the population
(µn

t )0≤t≤T

Black-box

Optimal law
(mn+1

t )0≤t≤T

µn+1
t

= 1
n+1 mn+1

t + n
n+1µ

n
t

◦ in few cases! [Cardaliaguet,Hadikhanloo, Silva, Elie, Laurière]



Fictitious play
• Describe state of the population as (µt)0≤t≤T

◦ µt is a probability measure describing statistical state at time t

• Good idea : Fictitious play

Tagged
controlled player

State of the population
(µn

t )0≤t≤T

Black-box

Optimal law
(mn+1

t )0≤t≤T

µn+1
t

= 1
n+1 mn+1

t + n
n+1µ

n
t

◦ in few cases! [Cardaliaguet,Hadikhanloo, Silva, Elie, Laurière]



Part IX. Learning

c. Exploration



Randomisation

• Describe state of the population as (µt)0≤t≤T

◦ µt is a probability measure describing statistical state at time t

• Good idea : Fictitious play

Tagged
controlled player

State of the population
(µn

t )0≤t≤T

Black-box

Optimal (mn+1
t )0≤t≤T

NOW RANDOM

Exploration

Randomisation

µn+1
t

= 1
n+1 mn+1

t + n
n+1µ

n
t

◦ Does it help for convergence?
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Randomisation

• Describe state of the population as (µt)0≤t≤T

◦ µt is a probability measure describing statistical state at time t

• Good idea : Fictitious play

Tagged
controlled player

State of the population
(µn

t )0≤t≤T

Black-box

Optimal (mn+1
t )0≤t≤T

NOW RANDOM

ExplorationRandomisation

µn+1
t

= 1
n+1 mn+1

t + n
n+1µ

n
t

◦ Does it help for convergence?



How to use this additional noise? (ε = 1)
• Fictitious play for new optimisation problem

◦ proxy m̄n = (m̄n
t )0≤t≤T for RANDOM mean state of population

◦ same cost functional but over dynamics with common noise

J(α) = E
[

1
2

∣∣∣cgXT + g(m̄n
T )

∣∣∣2 +

∫ T

0

[
1
2

∣∣∣cf Xt + f (m̄n
t )
∣∣∣2 + 1

2

∣∣∣αt
∣∣∣2]dt

]
over

dXt = αtdt + σdWt + εdBt

◦ conditional mean of optimal mean state

dmn+1
t = −

(
ηtmn+1

t + hn+1
t

)
dt + dBt, mn+1

0 = E(X0)

dhn+1
t = −

(
cf f (mn

t ) − ηthn+1
t

)
dt + kn+1

t dBt, hn+1
T = cgg(mn

T )

◦ update proxy of the environment

mn+1
t =

1
n + 1

mn+1
t +

n
n + 1

mn
t

• Not able to prove convergence!



Scheme that forces decoupling
• Two proxies

◦ proxy m̄n = (m̄n
t )0≤t≤T for RANDOM mean state of population

◦ proxy hn = (hn
t )0≤t≤T for RANDOM intercept of feedback

• New dynamics
◦ tilt the common noise

dXt = αtdt + σdWt + d
(
Bt +

∫ t

0
hn

s ds
)

◦ new cost functional

E
[
E(hn)

(
1
2

∣∣∣cgXT + g(m̄n
T )

∣∣∣2 +

∫ T

0

[
1
2

∣∣∣cf Xt + f (m̄n
t )
∣∣∣2 + 1

2

∣∣∣αt
∣∣∣2]dt

)]

◦ with E(hn) = exp
(
−

∫ T

0
hn

s dBs −
1
2

∫ T

0
|hn

s |
2ds

)
• Same fictitious play as before. It works!



Why does it work? (cf = cg = 1 to simplify)

• Just replace Bt by Bt +
∫ t

0 hn
s ds

dmn+1
t = −

(
ηtmn+1

t + hn+1
t − hn

t
)
dt + dBt, mn+1

0 = E(X0)

dhn+1
t = −

(
f (mn

t ) − ηthn+1
t

)
dt + kn+1

t hn
t dt + kn+1

t dBt, hn+1
T = g(mn

T )

• Get

dm̄n+1
t = −

(
ηtm̄n+1

t + O(1/n)
)
dt + dBt, m̄n+1

0 = E(X0)

dhn+1
t = −

(
f (mn

t ) − ηthn+1
t

)
dt + kn+1

t hn
t dt + kn+1

t dBt, hn+1
T = g(mn

T )

• Equations decouple... to limiting equations

dm̄t = −ηtm̄tdt + dBt, m̄0 = E(X0)

dht = −
(
f (mt) − ηtht

)
dt + kthtdt + ktdBt, hT = g(mT )
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(
f (mn

t ) − ηthn+1
t

)
dt + kn+1

t hn
t dt + kn+1

t dBt, hn+1
T = g(mn

T )

• Implement m̄n+1
t =

1
n + 1

n+1∑
j=1

mj
t

• Get
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ηtm̄n+1
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)
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Why does it work? (cf = cg = 1 to simplify)

• Get

dm̄n+1
t = −

(
ηtm̄n+1

t + O(1/n)
)
dt + dBt, m̄n+1

0 = E(X0)

dhn+1
t = −

(
f (mn

t ) − ηthn+1
t

)
dt + kn+1

t hn
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t dBt, hn+1
T = g(mn

T )

• Equations decouple... to limiting equations

dm̄t = −ηtm̄tdt + dBt, m̄0 = E(X0)

dht = −
(
f (mt) − ηtht

)
dt + kthtdt + ktdBt, hT = g(mT )

• Statement : for F 1-bounded and 1-Lipschitz∣∣∣∣∣E[E(hn
)
F
(
m̄n,hn)] − E[E(h)

F
(
m̄,h

)]∣∣∣∣∣ ≤ C
n



Why does it work? (cf = cg = 1 to simplify)

• Get

dm̄n+1
t = −

(
ηtm̄n+1

t + O(1/n)
)
dt + dBt, m̄n+1

0 = E(X0)

dhn+1
t = −

(
f (mn

t ) − ηthn+1
t

)
dt + kn+1

t hn
t dt + kn+1

t dBt, hn+1
T = g(mn

T )

• Equations decouple... to limiting equations

dm̄t = −ηtm̄tdt + dBt, m̄0 = E(X0)

dht = −
(
f (mt) − ηtht

)
dt + kthtdt + ktdBt, hT = g(mT )

• Statement : for F 1-bounded and 1-Lipschitz and restore ε∣∣∣∣∣E[E(hn

ε

)
F
(
m̄n,hn)] − E[E(h

ε

)
F
(
m̄,h

)]∣∣∣∣∣ ≤ C
nε



6. Back to the original problem



Two drawbacks
• Provides a solution of the mean-field game with common noise!

• Does not fit within the inputs of the black-box!

Tagged
controlled player

State of the population
(µn

t )0≤t≤T

Black-box

Optimal (mn+1
t )0≤t≤T

NOW RANDOM

UPDATE



Two drawbacks
• Provides a solution of the mean-field game with common noise!

◦ solution to mean-field game with ε common noise gives
Cε-Nash equilibrium to original mean-field game

inf
α
EB

[
Joriginal(α,mε)

]
≥ inf
α
EB

[
Joriginal(α?,ε,mε)

]
− Cε

◦ can choose ε as small as we want!

State of the population
(µn

t )0≤t≤T

Black-box

Optimal (mn+1
t )0≤t≤T

NOW RANDOM

UPDATE



Two drawbacks
• Does not fit within the inputs of the black-box!

Action of
controlled player

State of the population
(µn

t )0≤t≤T

Black-box

Optimal (mn+1
t )0≤t≤T

NOW RANDOM

UPDATE



Two drawbacks
• Does not fit within the inputs of the black-box!

αt + εḂt
State of the population

(µn
t )0≤t≤T

Black-box

Optimal (mn+1
t )0≤t≤T

NOW RANDOM

UPDATE

◦ Require action process (αt)0≤t≤T to be constant on
[(k/p)T , (k + 1)T/p) and corrupt αkT/p by εp/T(B(k+1)T/p − BkT/p)

◦ correct cost by −ε2p/(2T).



Two drawbacks
• Does not fit within the inputs of the black-box!

αkT/p + ε
B(k+1)T/p−BkT/p

T/p
State of the population

(µn
t )0≤t≤T

Black-box

Optimal (mn+1
t )0≤t≤T

NOW RANDOM

UPDATE

• Statement : for F 1-bounded and 1-Lipschitz∣∣∣∣∣E[E(hn

ε

)
F
(
m̄n,hn)] − E[E(h

ε

)
F
(
m̄,h

)]∣∣∣∣∣ ≤ C
(n + p1/2)ε



7. Numerical experiments



Discretization
• Cost

min
{
En,(j) 1

MN

M∑
i=1

N∑
j=1

[ 1
2p

p∑
k=1

|α
(i,j)
tk |

2 +
1
2

∣∣∣∣x(i,j)
1 + g

(
mn,(j)

1

)∣∣∣∣2]},
where

En,(j) = exp
(
−

√
1
p

p−1∑
k=0

hn,(j)
tk · ∆tk+1w(j) −

1
2p

p−1∑
k=0

|hn,(j)
tk |

2
)
.

• Dynamics

x(i,j)
tk = x(i,j)

tk−1
+

1
p
α

(i,j)
tk +

1
√

p
∆tk b

(i), ` = 1, · · · , p ; x(i,j)
0 = x0,

α
(i,j)
tk = atk−1x(i,j)

tk−1
+ C(j)

tk−1
+ hn,(j)

tk−1
+
√

p∆tk w
(j), k = 1, · · · , p.

• Semi-feedback form

C(j)
tk =

∑
|`|≤D

ctk (`)H
d
`

((
Un

tk
)−1

(
mn,(j)

tk −
1
N

N∑
r=1

mn,(r)
k

))
,

where Un
tk is root of empirical covariance and Hd is Hermite

polynomial



2d example
• Choose d = 2, T = 1, cf = 0, f ≡ 0 and cg = 1 and
g1(x1, x2) = cos(10x1) cos(10x2), g2(x1, x2) = sin(10x1) sin(10x2)

• Learnt cost without common noise and with common noise

(p = 30, #i = 4E5 and no common noise in the left, no independent
noise but #j = 4E5 in the right)



2d example
• Choose d = 2, T = 1, cf = 0, f ≡ 0 and cg = 1 and
g1(x1, x2) = cos(10x1) cos(10x2), g2(x1, x2) = sin(10x1) sin(10x2)

• L2 error to the solution

(a) Riccati known (b) Riccati unknown

The experiments are computed with: n = 20 learning iterations,
p = 30 time steps, #i = 1, #j = 5 × 104, σ = 0 and ε = 1



2d example
• Choose d = 2, T = 1, cf = 0, f ≡ 0 and cg = 1 and
g1(x1, x2) = cos(10x1) cos(10x2), g2(x1, x2) = sin(10x1) sin(10x2)

• L2 error to the solution without the solution of Riccati (without and
with independent noise)

(a) #j = 4 × 104, #i = 1 (b) #j = 2 × 104, #i = 20

(c) #j = 104, #i = 40



Simulated annealing
• Decrease step by the step the intensity of the common noise starting
from the wrong equilibrium 0!

ε1 > ε2 > · · · > εq

• For viscosity εq+1, tilt the common noise using return h∞,q of
algorithm with previous viscosity

dXt = αtdt + σdWt + εq+1d
(
Bt +

∫ t

0

1
εq+1

(
hn

s − h∞,qs
)
ds

)
◦ new cost functional

E
[
E
(hn − h∞,q

εq+1

)(
1
2

∣∣∣cgXT + g(m̄n
T )

∣∣∣2 +

∫ T

0

[
1
2

∣∣∣cf Xt + f (m̄n
t )
∣∣∣2 + 1

2

∣∣∣αt
∣∣∣2]dt

)]
◦ with

E
(hn − h∞,q

εq+1

)
= exp

(
−

1
εq+1

∫ T

0

(
hn

s − h∞,qs
)
dBs −

1
2ε2

q+1

∫ T

0
|hn

s − h∞,qs |
2ds

)




