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Random Convex Programs (RCP) Preliminaries

RCP theory
Introduction

Random convex programs (RCPs) are convex optimization problems subject
to a finite number of constraints (scenarios) that are extracted according to
some probability distribution.

The optimal objective value of an RCP and its associated optimal solution
(when it exists), are random variables: RCP theory is mainly concerned with
providing probabilistic assessments on the objective and on the probability of
constraint violation for RCPs.

We give a synthetic overview of RCP theory.

Discuss impact and some applicative examples.
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Random Convex Programs (RCP) Preliminaries

RCP theory
Preliminaries

A finite-dimensional convex optimization problem

P[K ] : minx∈X c>x subject to: (1)

fj(x) ≤ 0, ∀j ∈ K ,

x ∈ X is the optimization variable, X ⊂ Rd is a compact and convex
domain, c 6= 0 is the objective direction, K is a finite set of indices, and
fj(x) : Rd → R are convex in x for each j ∈ K .

Each constraint thus defines a convex set {x : fj(x) ≤ 0}.

We denote with Opx[K ] an optimal solution of problem P[K ], whenever it
exists, and with Obj[K ] the optimal objective.

If P[K ] is unfeasible, we assume by convention that Obj[K ] = +∞;

G. Calafiore (Politecnico di Torino) 4 / 57



Random Convex Programs (RCP) Preliminaries

A model paradigm
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Random Convex Programs (RCP) Preliminaries

RCP theory
Formalization

Let δ ∈ ∆ denote a vector of random parameters, with ∆ ⊆ R`, and let P
be a probability measure on ∆.

Let x ∈ Rd be a design variable, and consider a family of functions
f (x , δ) : (Rd ×∆)→ R defining the design constraints and parameterized
by δ.

Specifically, for a given design vector x and realization δ of the uncertainty,
the design constraint are satisfied if f (x , δ) ≤ 0.

Assumption (convexity)

The function f (x , δ) : (Rd ×∆)→ R is convex in x, for each fixed δ ∈ ∆.
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Random Convex Programs (RCP) Preliminaries

RCP theory
Formalization

Define
ω
.

= (δ(1), . . . , δ(N)) ∈ ∆N ,

where δ(i) ∈ ∆, i = 1, . . . ,N, are independent random variables, identically
distributed (iid) according to P, and where ∆N = ∆×∆ · · ·∆ (N times).

Let PN denote the product probability measure on ∆N .

To each δ(j) we associate a constraint function

fj(x)
.

= f (x , δ(j)), j = 1, . . . ,N.

Therefore, to each randomly extracted ω there correspond N random
constraints fj(x), j = 1, . . . ,N.
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Random Convex Programs (RCP) Preliminaries

RCP theory
Formalization

Given ω = (δ(1), . . . , δ(N)) ∈ ∆N we define the following convex optimization
problem:

P[ω] : minx∈X c>x subject to: (2)

fj(x) ≤ 0, j = 1, . . . ,N,

where fj(x) = f (x , δ(j)).

For each random extraction of ω, problem (2) has the structure of a generic
convex optimization problem P[ω], as defined in (1).

We denote with J∗ = J∗(ω) = Obj(ω) the optimal objective value of P[ω],
and with x∗ = x∗(ω) = Opx[ω] the optimal solution of problem (2), when it
exists.

Problem (2) is named a random convex program (RCP), and the
corresponding optimal solution x∗ is named a scenario solution.
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Random Convex Programs (RCP) Preliminaries

RCP theory
Remarks on the generality of the model

Model (2) encloses a quite general family of uncertain convex programs.

Problems with multiple uncertain (convex) constraints of the form

minx∈X c>x subject to:

f (1)(x , δ(j)) ≤ 0, . . . , f (m)(x , δ(j)) ≤ 0;

j = 1, . . . ,N,

can be readily cast in the form of (2) by condensing the multiple constraints
in a single one:

f (x , δ)
.

= max
i=1,...,m

f (i)(x , δ).

The case when the problem has an uncertain and nonlinear (but convex)
objective function g(x , δ) can also be fit in the model by adding one slack
decision variable t and reformulating the problem with linear objective t and
an additional constraint g(x , δ)− t ≤ 0.
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Random Convex Programs (RCP) Probabilistic properties of scenario solutions

Violation probability

Definition (Violation probability)

The violation probability of problem P[ω] is defined as

V ∗(ω)
.

= P{δ ∈ ∆ : J∗(ω, δ) > J∗(ω)}.

To each random extraction of ω ∈ ∆N it corresponds a value of V ∗, which is
therefore itself a random variable with values in [0, 1].

For given ε ∈ (0, 1), let us define the “bad” event of having a violation
larger than ε:

B .
= {ω ∈ ∆N : V ∗ > ε}

We prove that it holds that PN{B} ≤ β(ε), for some explicitly given
function β(ε) that goes to zero as N grows.

In other words, if N is large enough, the scenario objective is a-priori
guaranteed with probability at least 1− β(ε) to have violation probability
smaller than ε.
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Random Convex Programs (RCP) Probabilistic properties of scenario solutions

RCP theory
Main result

Theorem

Consider problem (2), with N ≥ d + 1. Let

V ∗(ω)
.

= P{δ ∈ ∆ : J∗(ω, δ) > J∗(ω)}.

Then,
PN{ω ∈ ∆N : V ∗(ω) > ε} ≤ Φ(ε; d ,N)

where

Φ(ε; d ,N)
.

=
d∑

j=0

(
N

j

)
εj(1− ε)N−j

is a beta cumulative distribution.
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where

Φ(ε; d ,N)
.

=
d∑

j=0

(
N

j

)
εj(1− ε)N−j

is a beta cumulative distribution.

The proof of this result is far from obvious...
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Random Convex Programs (RCP) Probabilistic properties of scenario solutions

Remark

PN{ω ∈ ∆N : V ∗(ω) > ε} ≤ Φ(ε; d ,N)

Φ(ε; d ,N)
.

=
d∑

j=0

(
N

j

)
εj(1− ε)N−j

This bound is UNIVERSAL:

Does not depend on problem type (LP, QP, SDP, generic convex);

Does not depend on the distribution law P of the uncertain parameters;

Depends on the problem structure only via the dimension, d ;

Provides an explicit assessment on the violation probability tail, for finite N.

Learning-theoretic flavor: “training” on a finite batch of samples N provides a
solution which is still optimal, with high probability, on a new, unseen, scenario...
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Random Convex Programs (RCP) Probabilistic properties of scenario solutions

Reversing the bound

Corollary

Given ε ∈ (0, 1), β ∈ (0, 1). If N is an integer such that

N ≥ 2

ε

(
lnβ−1 + d

)
.

then it holds that
PN{V ∗ > ε} ≤ β.

Observe that β−1 is under a log: achieving small β is “cheap” in terms of the
required number of samples N.
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Random Convex Programs (RCP) Probabilistic properties of scenario solutions

A Practitioner’s viewpoint

Set β to a very small level, say β = 10−10

Bound becomes

N ≥ 2

ε
(21 + d) .

The event {V ∗ > ε} has vanishing probability ≤ 10−10, that is, the
complementary event {V ∗ ≤ ε} holds with practical certainty.

Scenario optimization guarantees, with practical certainty, that

V ∗ ≤ ε.

These statements are more easily understandable by engineers. The
neglected event is so remote that before worrying about it the designer
should better check many other simplifying assumptions and uncertainties
on her model...
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Random Convex Programs (RCP) Example

Example
Linear Support Vector Machine

z (i) ∈ Rn, i = 1, . . . ,N, are n-dimensional training features (representing,
e.g., patients, images, etc.).

yi ∈ {−1,+1}, i = 1, . . . ,N, are given labels for the observed features.

The linear SVM is a supervised linear classifier: it seeks to separate the
points with positive labels from the negative ones via a slab of maximum
thickness.

Linear SVM

min
w∈Rn,b∈R

‖w‖2
2

s.t.: 1− yi (w
>z (i) + b) ≤ 0 i = 1, . . . ,N
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Random Convex Programs (RCP) Example

Example
Linear Support Vector Machine

Linear SVM

min
w∈Rn,b∈R

‖w‖2
2

s.t.: 1− yi (w
>z (i) + b) ≤ 0 i = 1, . . . ,N

If the data set is linearly separable, all points with yi = +1 lie in the
halfspace

H+ = {z ∈ Rn : w>z + b ≥ 1}

while points with yi = −1 lie in the halfspace

H− = {z ∈ Rn : w>z + b ≤ −1}

The two halfspaces are separated by a margin of thickness 2/‖w‖2.
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Random Convex Programs (RCP) Example

Example
Linear Support Vector Machine
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Random Convex Programs (RCP) Example

Example
Linear Support Vector Machine

Linear SVM

min
w∈Rn,b∈R

‖w‖2
2

s.t.: 1− yi (w
>z (i) + b) ≤ 0 i = 1, . . . ,N

Decision variable is x = (w , b), of dimension d = n + 1;

Uncertainty parameters are δ(i) = (z (i), yi ), i = 1, . . . ,N;

Constraint function is f (x , δ) = 1− yi (w
>z + b);

Reliability is R∗ = 1− V ∗ = P{(z , y) is correctly classified with margin}.

Assuming the data is separable:
If N ≥ 2

ε (22 + n), then R∗ ≥ 1− ε, with practical certainty!
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Random Convex Programs (RCP) Example

Example
Linear Support Vector Machine

For a numerical example in R2, taking ε = 0.05 we have that N = 1000
training samples suffice for guaranteeing an out-of-sample reliability
R∗ ≥ 95%, with practical certainty.

Data:
z =

[
7
2

]
+

[
1 −0.5
−0.5 1

]
ξ, y = 1, with probability 0.5;

z =

[
1
1

]
+

[
1 0
0 1

]
ξ, y = −1, with probability 0.5,

where ξ is a standard Normal vector.

We achieve separation 1/‖w∗‖2 = 0.4753.
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Random Convex Programs (RCP) Example

Example
Linear Support Vector Machine
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Beyond plain RCP theory RCPs with violated constraints

A step further
RCPs with violated constraints (RCPV)
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A step further
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See N points

Fit model...

Suitably discard r of the
N points, and refit
model...

As r ↗ we get better
(smaller) models...

But model reliability
(prob. new point is in)
intuitively gets worse...

...FUNDAMENTAL TRADEOFF!



Beyond plain RCP theory RCPs with violated constraints

RCPs with violated constraints (RCPV)

Extend the basic RCP setup to the case when r ≥ 0 of the N extracted
constraints are purposely a-posteriori violated, with the aim of improving the
optimal objective value.

We select r and apply some optimal or sub-optimal strategy in order to find
a subset of the N sampled constraints of cardinality N − r so that the
objective of the optimization problem with this subset of constraints is
significantly reduced. We call this modified class of problems RCPs with
violated constraints, or RCPVs for short.

RCPVs provide an effective tool for modulating the robustness of the
solution (i.e. the violation probability) and the achievable optimality level.

Call ωr the subset of N − r elements from ω = (δ(1), . . . , δ(N)) that are
a-posteriori selected by the rule.
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Beyond plain RCP theory RCPs with violated constraints

RCPs with violated constraints
A key result

Theorem

Define
V ∗(ω)

.
= P{δ ∈ ∆ : J(ωr , δ) > J(ωr )}.

and B = {ω ∈ ∆N : V ∗(ω) > ε}. Then,

PN{B} ≤ βr ,d(ε),

where

βr ,d(ε)
.

=

(
r + d

r

)
Φ(ε; r + d ,N),

being Φ the cumulative beta distribution.
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Beyond plain RCP theory RCPs with violated constraints

RCPs with violated constraints
Reversing the bound

Corollary

Given ε ∈ (0, 1), β ∈ (0, 1) and integer r ≤ N − d − 1. If N is an integer such that

N ≥ 2

ε
lnβ−1 +

4

ε
(r + d), r > 0,

then it holds that
PN{V ∗ > ε} ≤ β.

For r = 0, the lower bound simplifies to previous one:

N ≥ 2

ε

(
lnβ−1 + d

)
, for r = 0.
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Beyond plain RCP theory RCPs with violated constraints

Some numerical values

For various values of N and ε, we can find explicitly the maximum allowed
number r of constraints that can be a-posteriori removed while still guaranteeing
that PN{B} ≤ β, with β = 10−9.

ε = 0.5 ε = 0.4 ε = 0.3 ε = 0.2 ε = 0.1 ε = 0.01 ε = 0.001

N = 60 2 - - - - - -
N = 100 11 5 0 - - - -
N = 200 42 26 13 3 - - -
N = 500 153 109 69 34 6 - -
N = 1000 358 265 179 100 32 - -
N = 2000 793 602 421 250 96 - -
N = 5000 2160 1673 1201 748 322 5 -
N = 10000 4506 3523 2563 1629 735 30 -
N = 40000 18959 14992 11071 7206 3426 237 2

Table: Maximum number r of removable constraints guaranteeing PN{B} ≤ 10−9, for problems of dimension d = 5.
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Beyond plain RCP theory Applications in finance

RCPV
Application in finance

A collection of assets a1, . . . , an

pi (k) is the market price of ai at time kT , where T is a fixed period of time

Simple return of an investment in asset i over the k-th period:

ri (k) =
pi (k)− pi (k − 1)

pi (k − 1)
, i = 1, . . . , n; k = 1, 2, . . .

r(k)
.

= [r1(k) · · · rn(k)]> is the vector of returns over the k-th period.

Assumption

The returns {r(k)}k=1,2,... form an iid (independent, identically distributed)
random sequence. In particular, each r(k) is distributed according to the same
and possibly unknown probability distribution P having support ∆ ⊆ Rn.
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Beyond plain RCP theory Applications in finance

Preliminaries

A portfolio of assets a1, . . . , an is defined by a vector x ∈ Rn whose entry xi ,
i = 1, . . . , n, describes the (signed) fraction of an investor’s wealth invested
in asset ai , where xi ≥ 0 denotes a “long” position, and xi < 0 denotes a
“short” position

Constraints on the portfolio vector (e.g., no short-selling: x ≥ 0) are taken
into account in generality, by considering that x is constrained in a given
polytope X

Assumption

Portfolio composition constraints are expressed by the condition x ∈ X , where X
is a given nonempty polytope. ?

E.g., in the classical (Markovitz) case X is the standard simplex:

xi ≥ 0,
n∑

i=1

xi = 1.
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Portfolio composition constraints are expressed by the condition x ∈ X , where X
is a given nonempty polytope. ?
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xi = 1.
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Preliminaries

The portfolio return over any period of duration ∆ is described by a random
variable %(x) = r>x , where r is distributed according to P

Consider a sequence of returns of finite length N: r(1), r(2), . . . , r(N),
collected by rows in matrix RN :

R>N = [r(1) r(2) · · · r(N)] ∈ Rn,N

RN is a random matrix, with each column independently distributed
according to the unknown distribution P; events related to RN are measured
by the product probability measure PN

If x ∈ X is a given portfolio vector, then such a portfolio produces a random
sequence of returns for k = 1, . . . ,N:

ρN(x) = RNx = [%1(x) %2(x) · · · %N(x)]> ∈ RN , %i (x)
.

= r>(i)x
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Return selection rule

Let q ≤ N − n − 1 be a given nonnegative integer. We introduce a rule Sq
for selecting a subset of cardinality N − q of returns in RN .

The rule selects q returns in the sequence {%i (x)} such that γ∗ is the largest
lower bound over a (suitably selected) subset of N − q returns, while q of
the returns fall below γ∗.

The advantage of doing so is to obtain a return level γ∗ which is generally
larger than the level obtained for q = 0.

The portfolio allocation strategy x∗ that we propose is a solution of the
following LP

γ∗ = max
x∈X ,γ

γ (3)

subject to: r>(i)x ≥ γ, i ∈ IN−q,

where IN−q are the return indices selected by the rule.
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Intuition behind selection rule
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Intuition behind selection rule

We are in the presence of a fundamental tradeoff here:

while level γ∗ increases by increasing q, intuitively this level also
becomes less and less reliable that is, informally, the probability of the
actual portfolio return %(x∗) being larger than γ∗ decreases

This fact should not come too much as a surprise, since level γ∗ can
also be interpreted as the empirical (q/N)-quantile of the return
sequence {%i (x∗)}i=1,...,N

We shall make this tradeoff rigorously precise.
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The short-fall probability of optimal portfolio

For a fixed portfolio x ∈ X and return level γ ∈ R, we define the short-fall
probability as

V (x , γ) = P{r : r>x < γ};

such a probability is a number in [0, 1].

However, if we now ask about the short-fall probability relative to the
optimal solution of (3), we have

V ∗
.

= V (x∗, γ∗) = P{r : r>x∗ < γ∗},

and this is, a priori, a random variable, since x∗, γ∗ are so.

Therefore, V ∗ is a random variable with support [0, 1], and events related to
V ∗ are measured by the product probability PN .
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The short-fall probability of optimal portfolio

We consider as a measure of “riskiness” of the optimal portfolio the
expected value (w.r.t. PN) of the short-fall probability V ∗

Definition (Expected short-fall probability)

The expected short-fall probability of the optimal portfolio resulting from
(3) is defined as

EPN{V ∗} = EPN{P{r : r>x∗ < γ∗}}

Our key result concerns a quantification of an upper bound on the
expected short-fall probability of the optimal portfolio.
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On the expected short-fall probability

Lemma (Upper bound on the expected short-fall probability)

Let x∗, γ∗ be the optimal solution of problem (3), under any given
selection rule. Then it holds that

EPN{V ∗} ≤
q

N
+

(
n

N
+
ω(n, q)

2
√
N

)
,

where ω(n, q) = O(
√

2n ln(q + n)) and, more precisely,

ω(n, q) =
2n(1 + ln(q + n)− ln n)− 2 ln 2 + 1√

2n(1 + ln(q + n)− ln n)− 2 ln 2
.

?
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Explicit conditions on N and q

Corollary (Explicit conditions on N and q)

Let β ∈ (0, 1) be a very small probability level chosen by the user (e.g., set
β = 10−6, or lower, for “practical certainty”). Let zexp ∈ (0, 1) be a desired
expected short-fall probability level, and let q ≤ N − n − 1.
If

N ≥ 4
q + n

zexp
+

(c + 1/c)2

4z2
exp

, (4)

with c
.

=
√

2n + 2n ln n+q
q − 2 ln 2, then it holds that EPN{V ∗} ≤ zexp.

For “large” q, bound (4) simplifies approximately to

N ≥ 4
q + n

zexp
+

2n + 2n ln n+q
q − 2 ln 2

4z2
exp

.

?
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Some remarks

(i) For fixed N and for a given desired level of expected short-fall probability zexp,
it is the investor’s interest to make γ∗ as large as possible.

On a given realization of the returns, level γ∗ increases if we increase the number
q of suppressed returns, hence we want to make q as large as possible.

However, if one increases q too much, then the resulting portfolio will fail to
satisfy the expected short-fall probability requirement.

The right-hand-side of (4) is increasing in q, hence this term tells us precisely how
large q can be made, while satisfying the requirement EPN{V ∗} ≤ zexp:
we choose q such that the right-hand-side of (4) is the largest integer that does
not exceed N.
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Some remarks

(ii) All the other parameters being the same, the expected short-fall probability
bound increases as n (the number of securities) increases.

There is a fundamental tradeoff between the complexity of the random
optimization model (here, the number of variables, n + 1) and the out-of-sample
reliability of the model: the more complex the model is (i.e., the larger n is), the
more training data we need for achieving a given reliability level (i.e., the larger N
needs to be, see eq. (4)).

A financial interpretation of this phenomenon is that high diversification of a
portfolio (large n) needs a large number N of data in order to provide meaningful
portfolios.

This fact is often overlooked in standard portfolio optimization, where one may
be lead to think that more diversification leads to less risk: not necessarily so,
since the larger n the more accurate the parameter estimation must be, for
otherwise the actual decrease in risk level may just be illusory.
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Repetitive scenario design (RSD)

Repetitive Scenario Design (RSD) is a randomized approach to robust
design based on iterating two phases: a standard scenario design phase that
uses N scenarios (design samples), followed by randomized feasibility phase
that uses No test samples on the scenario solution.

This novel approach broadens the applicability of the scenario technology,
since the user is now presented with a clear tradeoff between the number N
of design samples and the ensuing expected number of repetitions required
by the RSD algorithm.

The plain (one-shot) scenario design becomes just one of the possibilities,
sitting at one extreme of the tradeoff curve, in which one insists in finding a
solution in a single repetition: this comes at the cost of possibly high N.
Other possibilities along the tradeoff curve use lower N values, but possibly
require more than one repetition.
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Repetitive scenario design (RSD)
Idea

Each time we solve a scenario problem with N scenarios, we “toss a coin.”
The toss is successful if V (θ∗) ≤ ε, while it fails if V (θ∗) > ε.

The a-priori probability of success in a coin toss is ≥ 1− βε(N), where

βε(N) = Φ(ε; d ,N)
.

=
d∑

j=0

(
N

j

)
εj(1− ε)N−j

Plain scenario technology works by selecting N such that βε(N) is very small
(say, ≤ 10−9).

This means biasing the coin so to be successful with practical certainty (i.e.,
w.p. ≥ 1− 10−9) in one single coin toss!

Success in one toss comes at the price of possibly high N...
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Repetitive scenario design (RSD)
Idea

What if we use a lower N (i.e., we bias the coin with higher βε(N)) and then
check the resulting solution?

Idea: while the probability of being successful in one shot is low, if we toss
the coin repeatedly, the probability of being successful at some toss becomes
arbitrarily high...

We thus set up an iterative approach in two stages: a scenario optimization
stage, and a feasibility check phase.

‘

( )

( )
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Repetitive scenario design (RSD)
Ideal oracle

We first assume we have an ideal feasibility oracle, called a Deterministic
Violation Oracle (DVO), that returns true if V (θ∗) ≤ ε and false

otherwise.

We apply the following algorithm:

Algorithm (RSD with ε-DVO)
Input data: integer N ≥ n, level ε ∈ [0, 1].
Output data: solution θ∗. Initialization: set iteration counter to k = 1.

1 (Scenario step) Generate N i.i.d. samples ω(k) .
= {q(1)

k , . . . , q
(N)
k } according

to P, and solve scenario problem. Let θ∗k be the resulting optimal solution.

2 (ε-DVO step) If V (θ∗k ) ≤ ε, then set flag to true, else set it to false.

3 (Exit condition) If flag is true, then exit and return current solution
θ∗ ← θ∗k ; else set k ← k + 1 and goto 1.
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Repetitive scenario design (RSD)
Ideal oracle

Theorem

Given ε ∈ [0, 1] and N ≥ n, define the running time K of the algorithm with DVO
as the value of the iteration counter k when the algorithm exits. Then:

1 The solution θ∗ returned by the algorithm is an ε-probabilistic robust design,
i.e., V (θ∗) ≤ ε.

2 The expected running time of the algorithm is ≤ (1− βε(N))−1, and
equality holds if the scenario problem is f.s. w.p. 1.

3 The running time of the algorithm is ≤ k with probability ≥ 1− βε(N)k ,
and equality holds if the scenario problem is f.s. w.p. 1.
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Repetitive scenario design (RSD)
Randomized oracle

Since the ideal oracle is hardly realizable in practice, we next introduce a
Randomized Violation Oracle (RVO):

ε′-RVO (Randomized ε′-violation oracle)
Input data: integer No , level ε′ ∈ [0, 1], and θ ∈ Rn. Output data: a logic flag,
true or false.

1 Generate No i.i.d. samples ωo
.

= {q(1), . . . , q(No)}, according to P.

2 For i = 1, . . . ,No , let vi = 1 if f (θ, q(i)) > 0 and vi = 0 otherwise.

3 If
∑

i vi ≤ ε′No , return true, else return false.
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Repetitive scenario design (RSD)
Randomized oracle

Algorithm (RSD with ε′-RVO)
Input data: integers N, No , level ε′ ∈ [0, 1]. Output data: solution θ∗.
Initialization: set iteration counter to k = 1.

1 (Scenario step) Generate N i.i.d. samples ω(k) .
= {q(1)

k , . . . , q
(N)
k } according

to P, and solve scenario problem. Let θ∗k be the resulting optimal solution.

2 (ε′-RVO step) Call the ε′-RVO with current θ∗k as input, and set flag to
true or false according to the output of the ε′-RVO.

3 (Exit cond.) If flag is true, then exit and return current solution θ∗ ← θ∗k ;
else set k ← k + 1 and goto 1.

‘

( )

( )
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Repetitive scenario design (RSD)
Randomized oracle

Theorem (RSD with ε′-RVO)
Let ε, ε′ ∈ [0, 1], ε′ ≤ ε, and N ≥ n be given. Define the event BadExit in which
the algorithm exits returning a “bad” solution θ∗:

BadExit
.

= {algorithm returns θ∗: V (θ∗) > ε}.

The following statements hold.

1

P{BadExit} ≤ Fbeta((1− ε′)No , ε
′No + 1; 1− ε)

1− H1,ε′(N,No)
βε(N).

2 The expected running time of the algorithm is ≤ (1− H1,ε′(N,No))−1, and
equality holds if the scenario problem is f.s. w.p. 1.

3 The running time of the algorithm is ≤ k with probability
≥ 1−H1,ε′(N,No)k , and equality holds if the scenario problem is f.s. w.p. 1.

Here, Fbeta denotes the cumulative distribution of a beta density, and
H1,ε′(N,No) has an explicit expression in terms of beta-Binomial distributions.
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Repetitive scenario design (RSD)
Randomized oracle

A key quantity related to the expected running time of the algorithm is
H1,ε′(N,No), which is the upper tail of a beta-Binomial distribution.

This quantity is related to the hypergeometric function 3F2, and to ratios of
Gamma functions, which may be delicate to evaluate numerically for large
values of the arguments. It is therefore useful to have a more “manageable,”
albeit approximate, expression for H1,ε′(N,No).

Corollary

For No →∞ it holds that H1,ε′(N,No)→ βε′(N).

For large No , and ε′ ≤ ε, we have H1,ε′(N,No) ' βε′(N) ≥ βε(N), whence

K̂
.

=
1

1− H1,ε′(N,No)
' 1

1− βε′(N)
≥ 1

1− βε(N)
.

This last equation gives us an approximate, asymptotic, expression for the
upper bound K̂ on the expected running time of the algorithm.
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Example
Robust finite-horizon input design

We consider a system of the form

x(t + 1) = A(q)x(t) + Bu(t), t = 0, 1, . . . ; x(0) = 0,

where u(t) is a scalar input signal, and A(q) ∈ Rna,na is an interval uncertain
matrix of the form

A(q) = A0 +
na∑

i,j=1

qijeie
>
j , |qij | ≤ ρ, ρ > 0,

where ei is a vector of all zeros, except for a one in the i-th entry.

Given a final time T ≥ 1 and a target state x̄ , the problem is to determine
an input sequence {u(0), . . . , u(T − 1)} such that (i) the state x(T ) is
robustly contained in a small ball around the target state x̄ , and (ii) the
input energy

∑
k u(k)2 is not too large.
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Example
Robust finite-horizon input design

We write x(T ) = x(T ; q) = R(q)u, where R(q) is the T -reachability
matrix of the system (for a given q), and u

.
= (u(0), . . . , u(T − 1)).

We formally express our design goals in the form of minimization of a level γ
such that

‖x(T ; q)− x̄‖2
2 + λ

T−1∑
t=0

u(t)2 ≤ γ,

where λ ≥ 0 is a tradeoff parameter. Letting θ = (u, γ), the problem is
formally stated in our framework by setting

f (θ, q) ≤ 0, where f (θ, q)
.

= ‖R(q)u − x̄‖2
2 + λ‖u‖2

2 − γ.
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Example
Robust finite-horizon input design

Assuming that the uncertain parameter q is random and uniformly
distributed in the hypercube Q = [−ρ, ρ]na×na , our scenario design problem
takes the following form:

min
θ=(u,γ)

γ

s.t.: f (θ, q(i)) ≤ 0, i = 1, . . . ,N.

We set T = 10, thus the size of the decision variable θ = (u, γ) of the
scenario problem is n = 11.

We set the desired level of probabilistic robustness to 1− ε = 0.995, i.e.,
ε = 0.005, and require a level of failure of the randomized method below
β = 10−12, that is, we require the randomized method to return a good
solution with “practical certainty.”
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Example
Robust finite-horizon input design

Using a plain (one-shot) scenario approach, imposing βε(N) ≤ β would
require N ≥ 10440 scenarios.

Let us now see how we can reduce this N figure by resorting to a repetitive
scenario design approach.

Let us fix ε′ = 0.7ε = 0.0035, thus δ = ε− ε′ = 0.0015.

A plot of the (asymptotic) bound on expected number of iterations,
(1− βε′(N))−1, as a function of N is shown in the next figure. We see from
this plot, for instance, that the choice N = 2000 corresponds to a value of
about 10 for the upper bound on the expected number of iterations.

Let us choose this value of N = 2000 for the scenario block.
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Example
Robust finite-horizon input design

103 104
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103

Log-log plot of (1− βε′(N))−1 vs. N.
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Example
Robust finite-horizon input design

For N = 2000 a reliability level β = 10−12 is achieved for No ≥ 62403. Let
us then choose No = 63000 samples to be used in the oracle.

With the above choices we have H1,ε′(N,No) = 0.8963, thus the algorithm’s
upper bound on average running time is

K̂ = (1− H1,ε′(N,No))−1 = 9.64.

Notice that this upper bound is conservative (worst case) in general. Thus,
we may expect a performance which is in practice better than the one
predicted by the bound.
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Example
Robust finite-horizon input design

We considered the following data:

A0 =


−0.7214 −0.0578 0.2757 0.7255 0.2171 0.3901
0.5704 0.1762 0.3684 −0.0971 0.6822 −0.5604
−1.3983 −0.1795 0.1511 1.0531 −0.1601 0.9031
−0.6308 −0.0058 0.4422 0.8169 0.512 0.2105
0.7539 0.1423 0.2039 −0.3757 0.5088 −0.6081
−1.3571 −0.1769 0.1076 1.0032 −0.1781 0.9151

 , B =


0
1
0
1
0
1



We set target state x̄ = [1,−1/2, 2, 1,−1, 2]>, ρ = 0.001, and λ = 0.005.

We run the RSD algorithm for 100 times, and on each test run we recorded
the number of iterations and the solution returned upon exit. The algorithm
exited most of the times in a single repetition, with a maximum of 4
repetitions.
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Example
Robust finite-horizon input design
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(a) Repetitions of RSD algorithm in the 100 test runs.
(b) Levels of empirical violation probability evaluated by the oracle upon exit, in
the 100 test runs.
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Example
Robust finite-horizon input design

Computational improvements

Substantial reduction of the number of design samples (from the 10440 to
just 2000), at the price of a very moderate number of repetitions (the
average number of repetitions in the 100 test runs was 1.27).

On average over the 100 test experiments, the RSD method (with
N = 2000, No = 63000) required 224 s to return a solution.

A plain, one-shot, scenario optimization with N = 10440 scenarios required
2790 s. Using the RSD approach instead of a plain one-shot scenario design
thus yielded a reduction in computing time of about one order of magnitude.

The reason for this improvement is due to the fact that the scenario
optimization problem in the RSD approach (which uses N = 2000 scenarios)
took about 173 s to be solved on a typical run, and the subsequent
randomized oracle test (with No = 63000) is computationally cheap, taking
only about 3.16 s.
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Conclusions

Scenario design is a flexible technology that permits attacking a class of
robust design problems that are hard to deal with via conventional
deterministic methods.

Widely used in control design. Recently became particularly popular in
Model Predictive Control.

Interesting data-driven approaches in computational finance. Potential in
many engineering domains.

The repetitive approach further broadens the applicability of scenario design
to problems in which dealing with “large N” may be a problem in practice
(e.g., robust SDP problems).

THANK YOU!
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