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• Stochastic control problems are standard in energy management

Short-term: unit commitment problem minimizing production costs to satisfy a
stochastic demand;

Long-term: investment decisions evaluating power plants flexibility (Gas turbines
etc.), real options, when to invest ?

Increasing stochasticity due to demand, market prices (electricity, fuels, Co2),
production (with the emergence of intermittent energies) . . .

v0(x) = sup
ν

E

[
n∑

k=0

fk (X
νk
k , νk )

]
.

• American option pricing is a specific stochastic control problem from financial
mathematics, for which a great variety of numerical methods and variance reduction
techniques have been proposed

u0(x) = sup
τ∈Tn

E

[
n∑

k=0

f (Xk )1k=τ

]
.

Control variate, Quasi Monte Carlo, Antithetic variables, Importance
Sampling [7, 2, 1, 8, 6] . . .

• Goal: To extend and develop variance reduction techniques for the more complex
case of physical assets valuation (risk analysis, investment) and optimization.
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Optimal stopping problem

• (Xk )k≥0: a Markov chain taking values in (Ek , Ek )n≥0, with

initial distribution on E0: µ0 = Law(X0);

Markov transition from Ek−1 to Ek : Mk (xk−1, dxk ).
For any measurable function ϕ defined on Ek ,
Mk (ϕ) stands for the conditional expectation function on Ek−1:

Mk (ϕ)(xk−1) =

∫
Ek

Mk (xk−1, dxk ) ϕ(xk ) , xk−1 ∈ Ek−1

= E (ϕ(Xk ) |Xk−1 = xk−1) .

• fk : a sequence of non-negative measurable payoff functions on Ek .

• Goal: to compute the Snell envelope uk given by{
un = fn
uk = fk ∨Mk+1(uk+1) , for any 0 ≤ k < n .
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• Backward operator Hk , for k ≤ l ≤ n:

uk = Hk+1(uk+1) = fk ∨Mk+1(uk+1) = Hk,l (ul ) , for any k ≤ l ≤ n

Hk,l = Hk+1 ◦ Hk+1,l , with the convention Hk,k = Id .

• Lipschitz property:
∣∣Hk,l (u)−Hk,l (v)

∣∣ ≤ Mk,l (|u − v |) .

• Backward approximation operator Ĥk+1: ûk = Ĥk+1(ûk+1) = fk ∨ M̂k+1(ûk+1) .

Local error
∣∣∣Hk+1(u)− Ĥk+1(u)

∣∣∣ ≤ |(Mk+1 − M̂k+1)(u)|.

Error propagation: uk − ûk =
∑n

l=k

[
Ĥk,l (Hl+1(ul+1))− Ĥk,l (Ĥl+1(ul+1))

]
,

Lemma 1: Robustness Lemma

For any 0 ≤ k < n, on the state space Êk .

|uk − ûk | ≤
n−1∑
l=k

M̂k,l |(Ml+1 − M̂l+1)(ul+1)| .
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This Lemma has been applied in [4] to bound the error induced by
various type of approximation schemes . . .

Cut-off type models

Euler approximation models

Interpolation type models

Quantization tree models

Monte Carlo approximation models . . .
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• Path-space Markov chain

X ′n Markov chain with transitions M′k (xk−1, dx
′
k ) from E ′k−1 into E ′k .

Xn = (X ′0, . . . ,X
′
n) ∈ En = (E ′0 × . . .× E ′n) Markov chain with transition kernels

Mk (xk−1, dyk ) = δxk−1 (dyk−1) M′k (y ′k−1, dy
′
k ) , for any

{
xk−1 = (x ′0, . . . , x

′
k−1) ∈ Ek−1

yk = (y ′0, . . . , y
′
k ) ∈ Ek .

• Let us introduce a sequence of probability measures (ηk ) defined on (Ek ) st,

ηk (f ) :=
E
(
f (Xk )

∏k−1
p=0 Gp(Xp)

)
E
(∏k−1

p=0 Gp(Xp)
) , for any measurable function f on Ek ,

where (Gk )0≤k<n are non-negative functions defined on (Ek )0≤k<n designed

to concentrate the computational effort in regions pointed out by the payoff e.g.
Gk (x ′k−1, x

′
k ) = exp(−α(log fk (x ′k )− log fk−1(x ′k−1))) for α > 0.

by a first estimation of the snell envelope Gk (x ′k−1, x
′
k ) =

ûk (x′k )

ûk−1(x′
k−1

)
known to

approximate the zero variance measure see [6].

• The sequence of measures (ηk ) satisfies the following dynamic η0 = µ0 and

ηk = Φk (ηk−1) , where
(
Φk (η)

)
(f ) =

η(Gk−1Mk (f ))

η(Gk−1)
.
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In the same vein as Broadie-Glasserman models ([2] (2004)), the conditional
expectation is replaced by a simple expectation.

• Assumption: M′n(x ′n−1, ·)� λn with

(H0) Hn(x ′n−1, xn) =
dMn(x ′n−1, .)

dλn
(xn) > 0 , ∀(xn−1, xn) ∈ (En−1 × En) ,

where Hn is supposed to be known up to a normalizing constant.

Lemma 2: Snell envelope under the new measure

Under Assumption (H0), uk (xk ) = fk (xk ) ∨ ηk+1

(
R
ηk
k+1(xk , ·)uk+1

)
,

where ηk+1 = Φk+1(ηk ) and for any measure η on Ek ,

Rηk+1(xk , xk+1) =
η(Gk )Hk+1(xk , xk+1)

η
(
GkHk+1(·, xk+1)

) , for any (xk , xk+1) ∈ Ek × Ek+1 .

• Next step: approximating the instrumental measure (ηk ) by particle systems, with
(Gk ) known up to a normalizing constant.
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Particle system (ξk ) :=
(
ξik
)

1≤i≤N
∈ EN

k evolving according the following dynamic

ξk ∈ EN
k

Selection
−−−−−−−−→ ξ̂k :=

(
ξ̂ik

)
1≤i≤N

∈ EN
k

Mutation
−−−−−−−→ ξk+1 ∈ EN

k+1 .

• Let ηNk and η̂Nk be the occupation measures of the genealogical tree model after the
mutation and the selection steps;

ηNk :=
1

N

∑
1≤i≤N

δξi
k

and η̂Nk :=
1

N

∑
1≤i≤N

δ
ξ̂i
k
.

1 Initialization: ξ0 =
(
ξi0
)

0≤i≤N0
, i.i.d. random copies of X0.

2 Selection: ξk  ξ̂k

with probability ∝ (Gk (ξik ))1≤i≤N select N particles ξ̂k :=
(
ξ̂ik

)
1≤i≤N

among

the N particles ξk = (ξik )1≤i≤N

3 Mutation: ξ̂k  ξk+1

Each ξ̂ik evolves independently to ξik+1 = x randomly chosen with the

distribution Mk+1(ξ̂ik , x), with 1 ≤ i ≤ N.
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Convergence of the occupation measures to the underlying measure

Lemma 2: Convergence of the particle approximation of the measures

For any p ≥ 1, we denote by p′ the smallest even integer greater than p.

For any k ≥ 0 and any integrable function f ∈ Lp′ (ηn) on Ek+1, we have

E
(
ηNk+1(f )|FN

k

)
= Φk+1(ηNk )(f )

√
NE
(∣∣∣(ηNk − Φk (ηNk−1)(f )

∣∣∣p |FN
k

) 1
p ≤ 2 a(p)

[
Φk+1(ηNk )(|f |p

′
)
] 1

p′

If moreover for any k, supx,y Gk (x)/Gk (y) <∞ then for any bounded
measurable function f , with ‖f ‖ ≤ 1,

√
N E

(∣∣∣[ηNn − ηn](f )
∣∣∣p)1/p

≤ c(p, n) ,

with the collection of constants (a(p)) and (c(p, n)) depending only on p and
(p, n) resp. (see [3]).
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Convergence of the Interacting stochastic Mesh approximation scheme ûn = fn

ûk (xk ) = fk (xk ) ∨ ηNk+1

(
R
ηNk
k+1(xk , ·)uk+1

)
, for any 0 ≤ k < n , with

R
ηNk
k+1(xk , xk+1) =

ηNk (Gk )Hk+1(xk , xk+1)

ηNk
(
GkHk+1(·, xk+1)

) , for any (xk , xk+1) ∈ Ek × Ek+1 .

Theorem: Convergence of the Snell envelope approximation scheme

For any 0 ≤ k ≤ n and any integer p ≥ 1 and x ∈ Ek ,

‖(ûk − uk )(x)‖Lp ≤
∑

k<l<n

2 a(p)
√
N

qk,l

[
Mk,l+1(up

′

l+1)(x)
] 1

p′ , with

qk,l :=

[
‖hk+1‖‖hl+1‖

l∏
m=k

‖Gm‖2

] p′−1
p′

and hk (xk ) := sup
x,y∈Ek−1

Hk (x , xk )

Hk (y , xk )
.
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Price dynamics and payoffs

Asset prices (Xt) follows a geometric Brownian motion under the risk-neutral
measure,

dXt(i)

Xt(i)
= rdt + σidz

i
t , for assets i = 1, · · · , d ,

where z i , for i = 1, · · · , d are independent standard Brownian motions.

Interest rate r = 5% annually, Xt0 (i) = 1, for all i = 1, · · · , d , volatilities

σi = 20% annually, for arithmetic puts and r = 10%/d , σi = 20%/
√
d for the

geometric puts.

Maturity T = 1 year, n + 1 = 11 equally distributed exercise opportunities.

Geometric average put option with payoff (K −
∏d

i=1 XT (i))+;

Arithmetic average put option with payoff (K − 1
d

∑d
i=1 XT (i))+.

Potential functions:
G1(x1) = (f1(x1) ∨ ε)α ,

Gk (xk ) = (fk (xk )∨ε)α

(fk−1(xk−1)∨ε)α
, for all k = 2 , · · · , n − 1 ,

where fk are the payoff functions and α ∈ (0, 1] and ε > 0 are parameters fixed
in our simulations to the values α = 1/5 and ε = 10−7.
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Variance ratio ( Var(v̂SM )
Var(v̂SMCM )

) and (within parentheses) Bias ratio (E(v̂SM )−E(v̂SMCM )
E(v̂SM )

)

computed over 1000 runs for N = 3200 mesh points.

Payoff K d = 1 d = 2 d = 3 d = 4 d = 5
Geometric 0.95 1 (1%) 1 (3%) 1 (6%) 1 (9%) 1 (10%)

Put 0.85 5 (2%) 8 (6%) 6 (11%) 4 (14%) 3 (14%)
0.75 18 (6%) 28 (11%) 18 (17%) 16 (18%) 11 (16%)

Arithmetic 0.95 1 (1%) 3 (2%) 3 (7%) 4 (13%) 5 (18%)
Put 0.85 5 (2%) 13 (6%) 24 (19%) 56 (24%) 100 (20%)

0.75 18 (6%) 71 (15%) 363 (14%) 866 (16%) − (−)

(For the arithmetic put, when d = 5 and K = 0.75, the 1000 estimates provided by

the standard SM algorithm were all equal to zero, hence the associated variance ratio

has not been reported).
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Arithmetic put with d = 3 assets

(a) K = 0.95 (b) K = 0.85 (c) K = 0.75

Positively-biased option values estimates (average estimates with 95% confidence

interval computed over 1000 runs) and Negatively-biased option values estimates

(average estimates over the 1000 runs each forward estimate being evaluated over

10000 forward Monte Carlo simulations), computed by the SM algorithm (Stochastic

Mesh in blue line) and the SMCM algorithm (Stochastic Mesh with particle change of

measure in red line), as a function of the number of mesh points.
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Arithmetic put with d = 4 assets

(d) K = 0.95 (e) K = 0.85 (f) K = 0.75

Positively-biased option values estimates (average estimates with 95% confidence

interval computed over 1000 runs) and Negatively-biased option values estimates

(average estimates over the 1000 runs each forward estimate being evaluated over

10000 forward Monte Carlo simulations), computed by the SM algorithm (Stochastic

Mesh in blue line) and the SMCM algorithm (Stochastic Mesh with particle change of

measure in red line), as a function of the number of mesh points.
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Arithmetic put with d = 5 assets

(g) K = 0.95 (h) K = 0.85 (i) K = 0.75

Positively-biased option values estimates (average estimates with 95% confidence

interval computed over 1000 runs) and Negatively-biased option values estimates

(average estimates over the 1000 runs each forward estimate being evaluated over

10000 forward Monte Carlo simulations), computed by the SM algorithm (Stochastic

Mesh in blue line) and the SMCM algorithm (Stochastic Mesh with particle change of

measure in red line), as a function of the number of mesh points.
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Geometric put with d = 3 assets

(j) K = 0.95 (k) K = 0.85 (l) K = 0.75

Positively-biased option values estimates (average estimates with 95% confidence

interval computed over 1000 runs) and Negatively-biased option values estimates

(average estimates over the 1000 runs each forward estimate being evaluated over

10000 forward Monte Carlo simulations), computed by the SM algorithm (Stochastic

Mesh in blue line) and the SMCM algorithm (Stochastic Mesh with particle change of

measure in red line), as a function of the number of mesh points.
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Geometric put with d = 4 assets

(m) K = 0.95 (n) K = 0.85 (o) K = 0.75

Positively-biased option values estimates (average estimates with 95% confidence

interval computed over 1000 runs) and Negatively-biased option values estimates

(average estimates over the 1000 runs each forward estimate being evaluated over

10000 forward Monte Carlo simulations), computed by the SM algorithm (Stochastic

Mesh in blue line) and the SMCM algorithm (Stochastic Mesh with particle change of

measure in red line), as a function of the number of mesh points.
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Geometric put with d = 5 assets

(p) K = 0.95 (q) K = 0.85 (r) K = 0.75

Positively-biased option values estimates (average estimates with 95% confidence

interval computed over 1000 runs) and Negatively-biased option values estimates

(average estimates over the 1000 runs each forward estimate being evaluated over

10000 forward Monte Carlo simulations), computed by the SM algorithm (Stochastic

Mesh in blue line) and the SMCM algorithm (Stochastic Mesh with particle change of

measure in red line), as a function of the number of mesh points.
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Characteritics of the thermal asset

• Study period: one year discretized into n + 1 regular instants.
• Payoff: at each time step tk , one decides to produce electricity on the period
[tk , tk+1), with a power Pk ∈ {0,Pmin

k ,Pmax
k } generating the payoff:

ϕk (P, S) = P
(
S1 − Hrate

k (P)
(
S2 + JkS

3 + Fk

))
δt , (1)

• Start-up costs: if the thermal unit is not producing at the preceding period
[tk−1, tk ), then starting the unit at time tk will imply an additional cost C start

k .

S = (S1, S2, S3) the electricity, fuel (coal) and Co2 spot prices (the stochastic
process S is modelized as a function of an Rd valued Markov process X i.e.
Stk = fk (Xtk ));

Hrate
k is the heat rate i.e. the unity of fuel (in Tc) needed to produce one MWh

of electricity (for technical reasons it decreases with P);

Jk represents the rate of released Co2 for each unity of burnt fuel (to
compensate for the environmental damage one has to pay JS3 Pounds for each
Tc of burnt coal);

Fk denotes the variable fuel cost;
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• Goal: to maximize the expected return of the thermal unit over strategies
(Pk )k=0,···n adapted to the information structure (Fk )k=0,···n generated by the
discrete observations of the stochastic process X i.e. Fk = σ(Xt0 , · · · ,Xtk ).

V0(x) = max
(Pk )k=0,···n−1

n∑
k=1

E0,x [ϕk (Pk , Stk )− C start
k 1Pk−1=0∩Pk>0] , (2)

• Some model simplifications:

Minimal running durations are not considered: the discretization step chosen in
the present study (12 hours) being greater than the actual minimal running
duration (4 hours), this constraint is then naturally inactivated.

Forced outages are not considered: their are taken into account by multiplying
the real values of Pmax and Pmin by an average disponibility coefficient.

These approximations are proved to be acceptable in first approximation (with no

significant impact on pricing and hedging results) in our empirical studies.
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Dynamic Programming Principle For each time step k = 0, 1, · · · n + 1, we define

V+
k and V−k defined on Rd{
x 7→ V+

k (x) max expected value knowing it was started on [tk−1, tk )

x 7→ V−k (x) knowing it was not started on [tk−1, tk ).

ϕ̃k defined for all x ∈ Rd , P ∈ {0,Pmin,Pmax},

ϕ̃k (P, x) = ϕk (P, fk (x)) . (3)

Recalling that Sk = fk (Xtk ) where X is a Markov process, we obtain

Dynamic programming equation



V+
n (x) = maxPn ϕ̃n(Pn, x)

V−n (x) = maxPn {ϕ̃n(Pn, x)− C start
n 1Pn>0}

V+
k (x) = maxPk

{
ϕ̃k (Pk , x) + Ek,x [V+

k+1(Xtk+1 )]1Pk>0 + Ek,x [V−k+1(Xtk+1 )]1Pk=0

}
V−k (x) = maxPk

{
ϕ̃k (Pk , x) +

(
Ek,x [V+

k+1]− C start
k

)
1Pk>0 + Ek,x [V−k+1]1Pk=0

}
,
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• Reformulation

Φk (x) = max
{
ϕ̃k (P, x) |P ∈ {Pmin,Pmax}

}
V+
k (x) = max

{
Φk (x), uk (x)

}
+ Ek,x [V+

k+1(Xtk+1 )] with V+
n+1 ≡ 0 ,

uk (x) = Ek,x

[
min

{
max

{
uk+1(Xtk+1 )− Φk+1(x),−C start

k+1

}
, 0
}]

with un ≡ 0 .

Let us introduce the sequence P̄k such that

P̄k (x) = Argmax
{
ϕ̃k (P, x) |P ∈ {Pmin

k ,Pmax
k }

}
,

Optimal strategies{
P+
k (x) knowing the Power plant was started on [tk−1, tk )

P−k (x) knowing the Power plant was not started on [tk−1, tk ).
P+
k (knowing

that the central produces on [tk−1, tk )) and P−k (knowing that the central does not
produce on [tk−1, tk )) are deduced as follows

P+
k (x) = P−k (x) = 0 if uk (x)− Φk (x) ≥ 0

P+
k (x) = P−k (x) = P̄k if uk (x)− Φk (x) < −C start

k
P+
k (x) = P̄k (x) and P−k = 0 if 0 > uk (x)− Φk (x) > −C start

k .

The sequence of functions (uk )k=0,···n can be learnt in a first step with a first set of
simulations.
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Electricity prices are modeled by a two factors model whereas coal and Co2 prices are
modeled by one long-term factor model. Let

B = (B1,B2,B3,B4) be a four dimensional standard Brownian motion

R = (Ri,j )1≤i,j≤4 the correlation matrix between the electricity short term
factor, the electricity long term factor, the coal and the CO2.

Z := R1/2W .

We define the d = 4-dimensional Markov process X = (X 1,X 2,X 3,X 4)T
dXt = µtdt + σtdBt with
µt = (−aX 1

t , 0, 0, 0)T

σt = diag([σS , σL, σcoal , σCo2])R1/2 .
(4)

and V (t) = (V 1(t),V 2(t),V 3(t))t then for i = 1, 2, 3,

S i
t = F i (0, t) exp

{
−

1

2
V i (t) + (AXt)

i

}
:= f it (Xt) with A =

 1 1 0 0
0 0 1 0
0 0 0 1

 .

(5)
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• Thermal asset parameters:

Delivery period from 04 January 2011 to 03 January 2012

time step tk+1 − tk = 12 hours;

minimal capacity Pmin
k = 0.915 ∗ 318MW ;

Maximal capacity Pmax
k = 0.915 ∗ 400MW ;

Heat Rate at minimal capacity Hrate(Pmin
k ) = 0.43 Tc/MWh;

Heat Rate at maximal capacity Hrate(Pmax
k ) = 0.37 Tc/MWh;

Rate of released CO2 J = 2.21 TCo2/Tc;

Variable Fuel Cost F = 23 Euros/Tc;

Startup costs C start = 27800 Euros.

• The price processes are modeled by a 3− d stochastic process S = (S1,S2, S3):

electricity prices S1: two factor-model with σS = 50% σL = 21% and a = 34 in
an annual basis;

CO2 prices S2: one factor-model with σcoal = 27% in an annual basis;

Coal prices S3: one factor-model with σCo2 = 20% in an annual basis;

the initial futures curve is flat [60, 14 ∗ EP, 115 ∗ DP];

the correlation matrix R between electricity, coal and CO2 is supposed to be the
identity matrix.
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Tests principles:

For both approaches, we have implemented M = 1000 independent tests;

We compute the variance of each approach over the M = 1000 tests;

N 50 100 500 1000 5000

E[V̂ Stand ](
σ(V̂ Stand )

) 50.981
(3.633)

51.188
(2.536)

51.029
(1.139)

51.061
(0.811)

51.023
(0.337)

E[V̂ IS ](
σ(V̂ IS )

) 51.092
(1.161)

51.005
(0.879)

50.975
(0.399)

50.985
(0.281)

50.965
(0.126)

Var stand

Var IS
10 8 8 8 7

Estimates mean, standard variance (in million of Pounds) and variance ratio for the

standard approach and Importance Sampling (IS) approach computed on 1000 tests.
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