
Claudia Sagastizábal
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Program

1. Yesterday morning:
Introduction to nonsmooth convex
optimization

2. Yesterday afternoon:
Models and the proximal point algorithm

3. Today morning:
Bundle methods and the Moreau-Yosida
regularization

4. Today afternoon:
Beyond first order: VU-decomposition
methods



Bibliography and one comment
References in the conference paper
https://eta.impa.br/dl/064.pdf

Also the forthcoming book chapter

Beware that requiring the knowledge of the Lipschitz
constant of a function is not far from require to know the
full subdifferential

https://eta.impa.br/dl/064.pdf
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ε-subgradient descent methods
I PPA

xk+1 = pf
tk (xk ) = xk − tkGk+1 with Gk+1 ∈ ∂εk+1 f (xk )

(DR) is satisfied at all iterations (no hats needed)

may not be implementable

I Bundle method as inexact PPA
xk+1 = pMk

tk (x̂k ) = x̂k − tkGk with Gk ∈ ∂εk f (x̂k )

x̂k+1 = x̂k whenever (DR) is satisfied
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Bundle methods
0 Choose x1, t1 > 0, and set x̂1 = x1, k = 1.
1 Given x̂k , Mk and tk , compute

xk+1 = arg minMk (x) + 1
2tk
‖x− x̂k‖2 and

δk+1 = f (x̂k )−Mk (xk+1) = ε
k + tk‖Gk‖2

2 Call the oracle at xk+1. If δk+1 ≤ tol STOP
3 (Descent Rule)

f (xk+1)≤ f (x̂k )−mδk ?

{
yes SS: x̂k+1 = xk+1

no NS: x̂k+1 = x̂k

4 Choose a new model : f (·)≥Mk+1(·) and Mk+1(·)≥
max

(
Mk (xk+1) + Gk >(·− xk+1), f k+1 + gk+1>(·− xk+1)

)
Choose a bounded below stepsize tk+1 that, if NS, is
nondecreasing

5 Set k = k + 1, loop to 1.



Relatives in the family of bundle methods

I Proximal BM, parameter tk
I Trust-region BM, parameter ∆k

I Level BM, parameter `k

Using (DR) and the theory in [CL93], we
showed convergence for the proximal family

What about speed?
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Consider a method defining iterates

xk+1 = xk − tkgk for gk ∈ ∂ε f (xk) and such that

I (DR) holds with δk = ε + tk‖gk‖2

I tk ∈ [tmin, tmax] with 0 < tmin ≤ tmax < ∞

If f is not too “flat” around its set of minimizers X̄ ,

f (x)≥ inf f + cdist(x , X̄) for any x ∈ X̄ + ηB,
the rate of convergence if R-linear

note: condition
⇐⇒ “inverse growth condition”
⇐⇒ Kurdyka-Lojasiewicz inequality
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Jean-Jacques Moreau and its envelope
The Moreau-envelope of f is a C1,1-smoothing of f

Ft(x) := min

{
f (y) +

1
2t
‖y− x‖2

}

•the unique minimizer is the
proximal point mapping pf

t (x)

•the envelope’s gradient is

∇Ft(x) = 1
t

(
x−pf

t (x)
)
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Proximal point relations

min f (x) is equivalent to x∗ = pt(x
∗)

is equivalent to minFt(x)

Picard’s iteration xk+1 = pt(x
k)

= xk− t
t

(
xk−pt(x

k)
)

xk− t∇Ft(x
k)
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(curve-search on the metric)
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Generalizing Moreau’s envelope
Replace the proximal parameter by a matrix:

Instead of
1
t

use a positive definite matrix M :

FM(x) := min

{
f (y) +

1
2
‖y− x‖2

M

}
I There is a unique minimizer pM(x)
I The proximal point operator is Lipschitzian
I The relation ∇FM(x) = M(x−pM(x)) holds
I min f ⇐⇒ minFM ⇐⇒ x = pM(x)

Interest: now we perceive better the role of M
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The role of the metric

Picard’s iteration xk+1 = pM(xk)

= xk −M−1M
(

xk −pt(xk)
)

= xk −M−1
∇FM(xk)

a gradient method to minimize Moreau’s
envelope, preconditioned by the matrix
M−1 ≈ ∇−2FM(xk)

We know FM ∈ C1,1 . . . when does the
Hessian exist?
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Existe-t-il une géneralisation adéquate de la
notion de Hessien?. . . Cette question est la
plus passionnante qui se pose actuellement,
et une réponse satisfaisante marquerait prob-
ablement pour longtemps une étape décisive
dans les recherches fondamentales en pro-
grammation mathématique.
“Does an adequate generalization for the no-
tion of a Hessian exist?. . . This is today’s most
interesting question, to which a satisfactory
answer would probably start a new, long-
lasting and decisive era for basic research in
Mathematical Programming.”



Chapter 5 in:

December 4th, 1980



How structural nonsmoothness has been exploited

Improving speed only possible if algorithm
incorporates structure information

1995-2000: U -Lagrangian (Lemaréchal, Oustry,
Sagastiz)

1999: VU -decomposition (Mifflin, Sagastiz)

2002: M-manifolds, partly smooth functions
(Lewis, Hare)

2003: Composite objective functions (Shapiro)

Later on, special minimization of composite objective
functions revisited: Lewis & Wright, Nesterov,
Planiden, Hare & Sagastiz, Liu, Sagastiz & Solodov



Illustrative examples
I The half-and-half function in IR2

f (x1,x2) = |x1|+ bx2
2



Proximal point: calculus rules

I separable sum:
f (x ,y) = g(x) + h(y) =⇒
pf

t (x) =
(

pg
t (x),ph

t (y)
)

I scalar factor (α 6= 0) and translation (v 6= 0):
f (x) = g(αx + v) =⇒
pf

t (x) = 1
α

(
pα2g

t (αx + v)− v
)

I “perspective” (α > 0):
f (x) = αg( 1

α
x) =⇒ pf

t (x) = αpg/α

t ( x
α

)



Proximal point: special functions
I + linear term (v 6= 0):

f (x) = g(x) + 〈v ,x〉=⇒ pf
t (x) = pg

t (x− v)
I + convex quadratic term (t > 0):

f (x) = g(x) +
1
2t
‖x− v‖2 =⇒

pf
t (x) = pλg

t (λx + (1−λ )v) for λ =
t

t + 1
I composition with linear term such that A>A = 1

α
I,

(α 6= 0):
f (x) = g(Ax + v) =⇒
pf

t (x) = (I−αA>A)x + αA>
[
pg/α

t (Ax + v)− v
]



Proximal calculations: half-and-half function
Since f (x1,x2) = |x1|+ b

2x2
2 is a separable sum,

f (x1,x2) = f1(x1) + f2(x2), the prox can be computed
separately for each component:

pf
t (x) =

(
pf1

t (x1),pf2
t (x2)

)

pf1
t (x1) = x1−proj[−t,t](x1)

pf2
t (x2) =

1
1 + bt

x2

Ft(x) =? and ∇Ft(x) =?

What about a Hessian?
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quasi-Newton update of {Mk = µkI}
I Let M be the current matrix
I for example, let u = ∆x , and v = ∆g

The quasi-Newton equation
M+u = v should hold for the update.
If M = µ I, a scalar multiple of the identity satisfying
the qN equation may be imposible, as it writes down

µk+1u = v

with u and v vectors.
Instead, µk+1 solves

min
µ

1
2
‖v/µ−u‖2

µ =?
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quasi-Newton update of {Mk = µkI}
I Let M be the current matrix
I for example, let u = ∆x , and v = ∆g← options!

The quasi-Newton equation
M+u = v should hold for the update.
If M = µ I, a scalar multiple of the identity satisfying
the qN equation may be imposible, as it writes down

µk+1u = v

with u and v vectors.
Instead, µk+1 solves

min
µ

1
2
‖v/µ−u‖2

µ =?



Reversal quasi-Newton update
I Given u and ∆g, invert the prox
I compute v accordingly

µ =? As in Lemaréchal C., Sagastizábal C. (1994) An approach to variable metric bundle methods. In: Henry

J., Yvon JP. (eds) System Modelling and Optimization, LNCIS vol 197. Springer, Berlin, Heidelberg
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How smooth is the regularization? drop M in FM

For Newton’s-type methods to apply, we need F to
have an invertible Hessian at x̄

A convex function ϕ has a generalized Hessian
Hϕ(x0) at x0 if the gradient ∇ϕ(x0) exists and there
exists a symmetric positive semidefinite operator
Hϕ(x0) such that

∂ϕ(x0 + d)⊂ ∇ϕ(x0) + Hϕ(x0)d +‖d‖B

I If f at a generalized Hessian at p(x0), then the
Hessian of F exists at x0 and

∇
2F(x0) = M−M[Hf (p(x0)) + M]−1M
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How smooth is the regularization? drop M in FM

For Newton’s-type methods to apply, we need F to
have an invertible Hessian at x̄

I We know that

f convex and lower sci =⇒ F is C1,1 everywhere

I BUT: F is C2 everywhere =⇒
f is C2 everywhere, too!

I The Hessian of F exists at x0 if and only if p has a
Jacobian: ∇2F(x0) = M(I−p′(x0)) .

I When the Jacobian exists, its image lies in a very
specific subspace

I By considering trajectories not far from that
subspace we can define a 2nd-order object of f ,
even if f is not differentiable
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specific subspace

I By considering trajectories not far from that
subspace we can define a 2nd-order object of f ,
even if f is not differentiable



Views of some functions
The half-and-half
f (x1,x2) = |x1|+ bx2

2



Views of some functions

A max-variation
f (x1,x2) = max(|x1|,bx2

2 )
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For x ∈ IRn, given matrices A with nontrivial kernel,
B � 0,

f (x) = max
(
|x>Ax | ,x>Bx

)
has a unique minimizer at x̄∗= 0.

On N (A) the
function is not differentiable, and the first term
vanishes: f |N (A) looks smooth
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V parallel to ∂ f (x̄) U ⊥V
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VU -theory & primal-dual tracks
U -Lagrangian:
LU(u, ḡ) := infv∈V{f (x̄ + u⊕ v)−〈ḡ,v〉}

= f (x̄ + u⊕ v(u))−〈ḡ,v(u)〉
→ LU(0, ḡ) = f (x̄) , → LU(u, ḡ) ∈ C1(U)

→minimizer v = v(u) generates trajectories
smooth

tangent to U

χ(u) := x̄ + u⊕ v(u)
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χ(υ)

∀ḡ ∈ ri ∂ f (x̄) same v(u) and LU ∈ C2 i.e., has a U -Hessian



Dual tracks
(arg = 0)

u

v

 0 u

v

 0

γχ (u) (u)

χ(u) = x̄ +u⊕v(u) γ(u) = argmin
{
|g|2 : g ∈ ∂ f (χ(u))

}
(χ(u),γ(u))→ (x̄ ,0) as u→ 0

Good primal-dual track↔ LU ∈ C2 +
0 ∈ ri ∂ f (x̄) allows for Newton-like method to
minimize f :

corrector − predictor method
proximal point − Newton method

V − U



Approximating primal-dual tracks
Fundamental theoretical result:
Proximal Points are on the primal track If

arg = 0 ∈ ri∂ f (x̄), then ∃u(x) :

p(x) := argmin
{

f (y) +
1
2

µ|y− x |2
}

= χ(u(x))

for all x ≈ x̄ with µ = µ(x) : µ|x− x̄ | → 0 as x → x̄

⇒ use a bundle subroutine
to approximate the prox

and estimate the pair
(χ(u),γ(u))



Bundle approximation

With bundle (x i , f i ,g i )
build M, a model for f near x̂ , and find

f

f f + 0.5     | . −x|

ε=f(p)−f(p)

µ

p

2

χ-QP solution: p := argmin

{
M(y) +

1
2

µ|y− x̂ |2
}
≈ χ(u(x))

γ-QP solution: s := argmin
{
|g|2 : g ∈ ∂

hatfch(p)≈ γ(u(x))

UNTIL “good enough”: ε ≤ σ/µ|s|2

By-product: local V U -decomposition, VU



Newton-like corrector-predictor V U algorithm
Given x and a bundle:

- Corrector step: Solve (χ−and γ-QP)’s

⇒ new p,s,VU, and determine H (U-Hessian)

- Predictor step: Solve H∆u =−U>s⇒ x+ = p +U∆u



Convergence properties
– If infinite bundle steps, the inner sequence converges to a

minimizer of f
– Otherwise, either the outer sequence {p} is finite with s = 0

and last p minimizes f
– or, {f (p)} is infinite and decreasing⇒

– either f unbounded below,
– or s→ 0 and any acc({p}) minimizes f

when {σ/µ}→ 0 .

If the U -Hessian at x̄ is positive definite, 0 ∈ ri ∂ f (x̄), and
– σ

µ2 = O(|s−|2), bounded {H−1}, U→ U,

– Dennis-Moré-like condition for {H}
– s approximates γ superlinearly

⇒ superlinear convergence of {p} to x̄
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VU -Algorithm is globally and superlinearly
convergent

Comparison with BFGS method



Concluding comments

On-going & Future work
O: Derivative-free variant

O: ε-V U variant

F: Application to 2-stage stochastic
programming problems
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