

School of Mathematics

Linear Algebra in IPMs

Jacek Gondzio Email: J.Gondzio@ed.ac.uk URL: http://www.maths.ed.ac.uk/~gondzio

J. Gondzio

Outline

- Linear Algebra in IPMs for LP, QP and NLP
- Definite, Indefinite and Quasidefinite Systems
- Cholesky factorization
- Exploiting Sparsity in Gaussian Elimination
 - Minimum degree ordering
 - Nested dissection
- Very Large Scale Optimization
 - implicit inverse representation
 - from sparsity to block-sparsity
 - structured optimization problems
 - **OOPS**: Object-Oriented Parallel Solver
- Applications
 - financial planning problems (nonlinear risk measures)
 - data mining (nonlinear kernels in SVMs)

Summary: From LP to QP

Newton direction

$$\begin{bmatrix} A & 0 & 0 \\ -Q & A^T & I \\ S & 0 & X \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta s \end{bmatrix} = \begin{bmatrix} \xi_p \\ \xi_d \\ \xi_\mu \end{bmatrix},$$

where

$$\begin{split} \xi_p &= b - Ax, \\ \xi_d &= c - A^T y - s + Qx, \\ \xi_\mu &= \mu e - XSe. \end{split}$$

Augmented system

$$\begin{bmatrix} -Q - \Theta^{-1} & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} \xi_d - X^{-1} \xi_\mu \\ \xi_p \end{bmatrix}$$

Conclusion: QP is a natural extension of LP.

IPMs: LP vs QP

Augmented system in ${\bf LP}$

$$\begin{bmatrix} -\Theta^{-1} & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} \xi_d - X^{-1}\xi_\mu \\ \xi_p \end{bmatrix}$$

Eliminate Δx from the first equation and get normal equations $(A\Theta A^T)\Delta y = g.$

IPMs: LP vs QP

Augmented system in **QP**

$$\begin{bmatrix} -Q - \Theta^{-1} & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} \xi_d - X^{-1} \xi_\mu \\ \xi_p \end{bmatrix}.$$

Eliminate Δx from the first equation and get normal equations

$$(A(Q + \Theta^{-1})^{-1}A^T)\Delta y = g.$$

One can use normal equations in LP, but not in QP. Normal equations in QP may become almost completely dense even for sparse matrices A and Q. Thus, in QP, usually the indefinite augmented system form is used.

KKT systems in IPMs for LP, QP and NLP

LP	$\begin{bmatrix} \Theta^{-1} & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} f \\ d \end{bmatrix}$
\mathbf{QP}	$\begin{bmatrix} Q + \Theta^{-1} & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} f \\ d \end{bmatrix}$
NLP	$\begin{bmatrix} Q(x,y) + \Theta_P^{-1} & A(x)^T \\ A(x) & -\Theta_D \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} f \\ d \end{bmatrix}$

Cholesky factorization

Compute a decomposition

$$LDL^T = A\Theta A^T.$$

where:

L is a lower triangular matrix; and D is a diagonal matrix.

Cholesky factorization is simply the **Gaussian Elimination** process that exploits two properties of the matrix:

- symmetry;
- positive definiteness.

Use of Cholesky factorization

Replace the **difficult** equation

$$(A\Theta A^T) \cdot \Delta y = g,$$

with a sequence of **easy** equations:

$$L \cdot u = g,$$

$$D \cdot v = u,$$

$$L^T \cdot \Delta y = v.$$

Note that

$$g = Lu$$

= $L(Dv)$
= $LD(L^T \Delta y)$
= $(LDL^T)\Delta y$
= $(A\Theta A^T)\Delta y$.

Symmetric Gaussian Elimination

Let $H \in \mathbb{R}^{m \times m}$ be a symmetric positive definite matrix

$$H = \begin{bmatrix} h_{11} & h_{12} & \cdots & h_{1m} \\ h_{21} & h_{22} & \cdots & h_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ h_{m1} & h_{m2} & \cdots & h_{mm} \end{bmatrix}$$

By applying Gaussian Elimination to it, we can represent it in the following form:

$$\begin{bmatrix} 1 & 0 & \cdots & 0 \\ l_{21} & 1 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ l_{m1} & l_{m2} & \cdots & 1 \end{bmatrix} \begin{bmatrix} d_{11} & 0 & \cdots & 0 \\ 0 & d_{22} & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & d_{mm} \end{bmatrix} \begin{bmatrix} 1 & l_{21} & \cdots & l_{m1} \\ 0 & 1 & \cdots & l_{m2} \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

٠

٠

Symmetric GE: Examples

Example 1:

$$\begin{bmatrix} 1 & -1 & 2 \\ -1 & 3 & 0 \\ 2 & 0 & 9 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & -1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Example 2:

$$\begin{bmatrix} 1 & 1 & -1 \\ 1 & 5 & 7 \\ -1 & 7 & 22 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ -1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

Existence of LDL^T factorization

Lemma: The decomposition $H = LDL^T$ with $d_{ii} > 0, \forall i$ exists iff H is positive definite (PD).

Proof:

Part 1 (\Rightarrow) Let $H = LDL^T$ with $d_{ii} > 0$. Take any $x \neq 0$ and let $u = L^T x$. Since L is a unit lower triangular matrix it is nonsingular so $u \neq 0$ and

$$x^{T}Hx = x^{T}LDL^{T}x = u^{T}Du = \sum_{i=1}^{m} d_{ii}u_{i}^{2} > 0.$$

Proof (cont'd): Part 2 (\Leftarrow) Proof by induction on dimension of H. For m = 1. $H = h_{11} = d_{11} > 0$ iff H is PD. Assume the result is true for $m = k - 1 \ge 1$. Let $H = \begin{bmatrix} W & a \\ a^T & q \end{bmatrix} \in \mathcal{R}^{k \times k}$ be given $k \times k$ positive definite matrix with $W \in \mathcal{R}^{(k-1) \times (k-1)}$, $a \in \mathcal{R}^{k-1}$ and $q \in \mathcal{R}$. Note first that since H is PD, W is also PD. Indeed for any $(x, 0) \in \mathcal{R}^k$ we have $\begin{bmatrix} x^T, 0 \end{bmatrix} \begin{vmatrix} W & a \\ a^T & a \end{vmatrix} \begin{vmatrix} x \\ 0 \end{vmatrix} = x^T W x > 0 \quad \forall x \in \mathcal{R}^{k-1}, x \neq 0.$

From inductive hypothesis we know that $W = LDL^T$ with $d_{ii} > 0$. Let

$$\begin{bmatrix} W & a \\ a^T & q \end{bmatrix} = \begin{bmatrix} L & 0 \\ l^T & 1 \end{bmatrix} \begin{bmatrix} D & 0 \\ 0 & d \end{bmatrix} \begin{bmatrix} L^T & l \\ 0 & 1 \end{bmatrix},$$

J. Gondzio

where l is the solution of equation (LD)l = a (it is well defined since L and D are nonsingular) and d is given by $d = q - l^T D l$. Hence matrix $H = \begin{bmatrix} W & a \\ a^T & q \end{bmatrix}$ has an $\overline{L}\overline{D}\overline{L}^T$ decomposition. It remains to prove that d > 0. Consider the vector

$$x = \begin{bmatrix} -L^{-T}l \\ 1 \end{bmatrix}.$$

Since H is positive definite, we get

$$0 < x^{T}Hx$$

= $\begin{bmatrix} -l^{T}L^{-1}, 1 \end{bmatrix} \begin{bmatrix} L & 0 \\ l^{T} & 1 \end{bmatrix} \begin{bmatrix} D & 0 \\ 0 & d \end{bmatrix} \begin{bmatrix} L^{T} & l \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -L^{-T}l \\ 1 \end{bmatrix}$
= $\begin{bmatrix} 0, 1 \end{bmatrix} \begin{bmatrix} D & 0 \\ 0 & d \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = d,$

which completes the proof.

Definite & Indefinite Systems

Cholesky factorization fails for indefinite matrix.

Example 1: Negative pivot $d_{22} < 0$. $\begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2/3 & 1 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & -1/3 \end{bmatrix} \begin{bmatrix} 1 & 2/3 \\ 0 & 1 \end{bmatrix}.$

Example 2: $d_{11} = 0$. Can't even start the elimination.

$$\begin{bmatrix} 0 & 2 \\ 2 & 5 \end{bmatrix} = ???$$

Definite & Indefinite Systems (cont'd)

IPMs:

For indefinite *augmented system*

$$\begin{bmatrix} -\Theta^{-1} & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} r \\ h \end{bmatrix}.$$

one needs to use some **special tricks**.

For positive definite *normal equations*

$$(A \Theta A^T) \Delta y \; = \; g.$$

one can compute the **Cholesky factorization**.

L7&8: Linear Algebra in IPMs

Major Cholesky

Andre-Louis Cholesky (1875-1918)

Major of French Army, descendant from the Cholewski family of Polish imigrants.

Read: M. A. Saunders, Major Cholesky would feel proud, ORSA Journal on Computing, vol 6 (1994) No 1, pp 23–27.

Symmetric Factorization

Two step solution method:

- factorization to LDL^T form,
- backsolve to compute direction Δy .

A symmetric nonsingular matrix H is **factorizable** if there exists a diagonal matrix D and unit lower triangular matrix L such that $H = LDL^{T}$.

A symmetric matrix H is **strongly factorizable** if for any permutation matrix P a factorization $PHP^T = LDL^T$ exists.

The general symmetric indefinite matrix is not factorizable.

Factoring Indefinite Matrix

Two options are possible:

1. Replace diagonal matrix D with a block-diagonal one and allow 2×2 (indefinite) pivots

$$\begin{bmatrix} 0 & a \\ a & 0 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 0 & a \\ a & d \end{bmatrix}.$$

Hence obtain a decomp. $H = LDL^T$ with **block-diagonal** D.

2. Regularize indefinite matrix to produce a **quasidefinite** matrix

$$K = \begin{bmatrix} -E & A^T \\ A & F \end{bmatrix},$$

where

 $E \in \mathcal{R}^{n \times n}$ is positive definite, $F \in \mathcal{R}^{m \times m}$ is positive definite, and $A \in \mathcal{R}^{m \times n}$ has full row rank.

Quasidefinite (QDF) Matrices

Symmetric matrix is called **quasidefinite** if

$$K = \begin{bmatrix} -E & A^T \\ A & F \end{bmatrix},$$

where $E \in \mathcal{R}^{n \times n}$ and $F \in \mathcal{R}^{m \times m}$ are positive definite, and $A \in \mathcal{R}^{m \times n}$ has full row rank.

QDF matrices are **strongly factorizable**. For any quasidefinite matrix there exists a **Cholesky-like** factorization

$$K = LDL^T,$$

where

D is diagonal but not positive definite:

n negative pivots; and m positive pivots.

From Indefinite to Quasidefinite

Indefinite matrix

$$H = \begin{bmatrix} -Q - \Theta^{-1} & A^T \\ A & 0 \end{bmatrix}.$$

in IPMs can be converted to a quasidefinite one. Regularize indefinite matrix to produce a **quasi-definite** matrix. Use **dynamic regularization**

$$\bar{H} = \begin{bmatrix} -Q - \Theta^{-1} & A^T \\ A & 0 \end{bmatrix} + \begin{bmatrix} -R_p & 0 \\ 0 & R_d \end{bmatrix},$$

where $R_p \in \mathcal{R}^{n \times n}$ and $R_d \in \mathcal{R}^{m \times m}$ are the *primal* and *dual* regularizations. For any quasidefinite matrix there exists a Cholesky-like factorization

$$\bar{H} = LDL^T,$$

where D is **diagonal** but **not positive definite**: n negative pivots and m positive pivots.

Large Problems are Sparse

Suppose a large LP is solved: $m, n \sim 10^4 - 10^6$. Can all variables be linked at the same time? No, usually only a subset of them is linked.

There are usually only *several* nonzeros per row in an LP. Large problems are always **sparse**.

Exploiting sparsity in computations leads to huge savings.

Exploiting sparsity means mainly avoiding doing useless computations: the computations for which the result is known, as for example multiplications with zero.

Exploiting sparsity: Example

$$Ax = \begin{bmatrix} 2 & 1 & 0 & 4 & 0 & 0 \\ 0 & 2 & 0 & -1 & 5 & -1 \\ 3 & 0 & 3 & 8 & 0 & 5 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 5 \\ 0 \\ 0 \\ -2 \end{bmatrix}.$$

It requires computing

$$2\cdot A_{.1} + 5\cdot A_{.3} - 2\cdot A_{.6}$$

and involves only five multiplications and five additions. We say that this matrix-vector multiplication needs 5 flops. A **flop** is a *floating point operation*:

$$x := x + a \cdot b.$$

General Sparse Systems

Single step in Gaussian Elimination

$$A = \begin{bmatrix} \mathbf{p} & v^T \\ u & A_1 \end{bmatrix}$$

produces the following Schur complement $A_1 - p^{-1}uv^T$.

Markowitz Pivot Choice

Let r_i and c_i , i = 1, 2, ..., n be numbers of nonzero entries in row and column *i*, respectively. The elimination of the pivot a_{ij} needs $f_{ij} = (r_i - 1)(c_j - 1)$

flops to be made. This step creates at most f_{ij} new nonzero entries in the Schur complement.

General Sparse Systems

The effect of pivot elimination on the sparsity pattern

	1	2	3	4	5	6	7	8	
1	\mathbf{p}			x	x		x	x	
2		x				x	x	x	
3	x	x	x		x				nivet.
4			x	x		x			pivot : p
5	x				x	x			nonzero : x
6				x			x		
7		x			x	x			
8	x				x		x	x	
	1	2	3	Δ	5	6	7	8	
1	1	2	3	4	5	6	7	8	
1	1 p	2	3	4 x	5 x	6	$7 \mathbf{x}$	8 x	
$\frac{1}{2}$	1 p	2	3	4 x	5 x	6	$7 \\ \mathbf{x} \\ x$	8 x <i>x</i>	
$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$	1 p x	2 x x	3 <i>x</i>	4 x f	5 x f	6 <i>x</i>	7 x <i>x</i> f	8 x <i>x</i> f	pivot : p
$\begin{array}{c}1\\2\\3\\4\end{array}$	1 p x	2 x x	3 x x	4 x f x	5 x f	6 <i>x</i> <i>x</i>	7 x x f	8 x <i>x</i> f	pivot : \mathbf{p} nonzero : x
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} $	1 p x x	2 x x	3 x x	4 x f x f	5 x f f	6 x x x	7 x x f f	8 x x f f	pivot : \mathbf{p} nonzero : x fill - in : \mathbf{f}
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array} $	1 p x x	2 x x	3 x x	4 x f x f x f x	5 x f f	6 x x x	7 x x f f x	8 x f f	pivot : \mathbf{p} nonzero : x fill - in : \mathbf{f}
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{array} $	1 p x x	2 x x	3 x x	4 x f x f x	5 x f f x	6 x x x x	7 x x f f x	8 x f f	pivot : \mathbf{p} nonzero : x fill - in : \mathbf{f}

Markowitz Pivot Choice: Example

Markowitz: Choose the pivot with $\min_{i,j} f_{ij}$.

	1	2	3	4	5	6	7	8	
1	x			x	x		x	x	
2		x				x	x	x	
3	x	x	x		x				
4			x	x		x			
5	x				x	x			
6				\mathbf{p}			x		
7		x			x	x			
8	x				x		x	x	
	1	2	3	4	5	6	7	8	
1	$\begin{array}{c} 1 \\ x \end{array}$	2	3	4 x	$5 \\ x$	6	7 f	$8 \\ x$	
1 2	$\frac{1}{x}$	2 x	3	4 x	$5 \\ x$	6 <i>x</i>	7 f <i>x</i>	$8 \\ x \\ x$	
1 2 3	$\begin{array}{c} 1 \\ x \\ x \end{array}$	2 x x	3 <i>x</i>	4 x	$5 \\ x \\ x$	6 <i>x</i>	7 f <i>x</i>	$8 \\ x \\ x$	
$\begin{array}{c} 1\\ 2\\ 3\\ 4\end{array}$	$\begin{array}{c} 1 \\ x \\ x \end{array}$	2 x x	3 x x	4 x x	$5 \\ x \\ x$	6 <i>x</i> <i>x</i>	7 f <i>x</i> f	$8 \\ x \\ x$	
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} $	$\begin{array}{c} 1 \\ x \\ x \\ x \end{array}$	2 x x	3 x x	4 x x	$5 \\ x \\ x \\ x \\ x$	6 <i>x</i> <i>x</i> <i>x</i>	7 f <i>x</i> f	$8 \\ x \\ x$	
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array} $	$\begin{array}{c} 1 \\ x \\ x \\ x \end{array}$	2 x x	3 x x	4 x x p	$5 \\ x \\ x \\ x \\ x$	$6 \\ x \\ x \\ x \\ x$	7 f <i>x</i> f x	$8 \\ x \\ x$	
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{array} $	$\begin{array}{c} 1 \\ x \\ x \\ x \end{array}$	2 x x	3 x x	4 x x p	5 x x x x x	6 <i>x</i> <i>x</i> <i>x</i> <i>x</i>	7 f <i>x</i> f x	8 x x	

Exploiting Sparsity in Cholesky Factorization

Matrix H and its Cholesky Factor

$$H = \begin{bmatrix} \mathbf{p} \ \mathbf{x} \ \mathbf{x} \ \mathbf{x} \\ \mathbf{x} \ x \\ \mathbf{x} \ x \end{bmatrix} \Rightarrow L = \begin{bmatrix} x \\ x \ x \\ x \ x \\ x \ x \ x \end{bmatrix}$$

Reordered Matrix H and its Cholesky Factor

From Sparsity to Block-Sparsity:

Sparse Matrix

Block-Sparse Matrix

Minimum Degree Ordering (MDO)

In symmetric positive definite case: pivots are chosen from the diagonal and $r_i = c_i$ hence choose the pivot with $\min_i r_i$

Minimum degree ordering:

choose an element with the minimum number of nonzeros in a row,

that is, choose a node with the minimum number of neighbours (a node with the *minimum degree*) in a graph related to sparsity pattern of the matrix.

Minimum Degree Ordering (MDO)

Minimum degree ordering:

choose a diagonal element corresponding to a row with the <u>minimum</u> number of nonzeros.

Permute rows and columns of H accordingly.

MDO is simply the symmetric version of Markowitz pivot rule.

From Sparsity to Block-Sparsity:

Apply minimum degree ordering to **(sparse) blocks**:

Block-Sparse Matrix Pivot Block H_{11} Pivot Block H_{22}

Choose a diagonal block-pivot corresponding to a block-row with the $\underline{minimum}$ number of blocks. Permute block-rows and block-columns of H accordingly.

Nested Dissection:

Original Matrix

Reordered Matrix

	1	2	3	4	5	6	7	8	9	10	11		1	2	3	5	6	8	9	10	11	4	7
1	x	X	\mathcal{X}		X							1	x	X	X	X							
2	x	\mathcal{X}		\mathcal{X}	\mathcal{X}		\mathcal{X}					2	x	X		X						\mathbf{X}	\mathbf{X}
3	x		\mathcal{X}	\mathcal{X}	\boldsymbol{x}							3	x		${\mathcal X}$	X						\mathbf{X}	
4		X	X	\mathcal{X}	\mathcal{X}	X				X		5	\mathcal{X}	X	X	X						\mathbf{X}	
5	\mathcal{X}	X	X	X	X							6					\mathcal{X}	X		\mathcal{X}		\mathbf{X}	X
6				X		X	X	X		X		8					\mathcal{X}	X	X	x	X		
7		X				X	X				\mathcal{X}	9						X	X	x	X		
8						X		X	\mathcal{X}	X	${\mathcal X}$	10					x	X	X	x	X	\mathbf{X}	
9								X	\mathcal{X}	X	${\mathcal X}$	11						\mathcal{X}	X	x	X		X
10				X		X		X	\mathcal{X}	X	${\mathcal X}$	4		\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}			\mathbf{X}		\mathbf{X}	
11							\mathcal{X}	\mathcal{X}	\mathcal{X}	${\mathcal X}$	X	7		\mathbf{X}			\mathbf{X}				\mathbf{X}		\mathbf{X}

Structured Problems

Observation:

Truly large scale problems are not only sparse... \rightarrow such problems are structured

Structure is displayed in:

- Jacobian matrix A
- Hessian matrix Q

Structure can be exploited in:

- IPM Algorithm
- Linear Algebra of IPM→(focus of this lecture)

Primal Block-Angular Structure:

Reorder blocks: $\{1, 3; 2, 4; 5\}$.

Dual Block-Angular Structure:

Reorder blocks: $\{1, 4; 2, 5; 3\}$.

Row & Col Bordered Block-Diag Structure:

Reorder blocks: $\{1, 4; 2, 5; 3, 6\}$.

Example: Bordered Block-Diagonal Structure

The blocks Φ_i , i = 0, 1, ..., n are KKT systems.

J. Gondzio

Example: Bordered Block-Diagonal Structure

• Cholesky-like factors obtained by Schur-complement:

$$\Phi_{i} = L_{i}D_{i}L_{i}^{\top}
L_{i,0} = B_{i}L_{i}^{-\top}D_{i}^{-1}, \quad i = 1..n
C = \Phi_{0} - \sum_{i=1}^{n} L_{i,0}D_{i}L_{i,0}^{\top} = L_{0}D_{0}L_{0}^{\top}$$

• And the system $\Phi x = b$ is solved by

$$z_{i} = L_{i}^{-1}b_{i}$$

$$z_{0} = L_{0}^{-1}(b_{0} - \sum L_{i,0}z_{i})$$

$$y_{i} = D_{i}^{-1}z_{i}$$

$$x_{0} = L_{0}^{-\top}y_{0}$$

$$x_{i} = L_{i}^{-\top}(y_{i} - L_{i,0}^{\top}x_{0})$$

• Operations (Cholesky, Solve, Product) performed on sub-blocks

Abstract Linear Algebra for IPMs

Execute the operation "solve (reduced) KKT system" in IPMs for LP, QP and NLP.

It works like the "backslash" operator in MATLAB.

Assumptions:

Q and **A** are block-structured

Linear Algebra of IPMs

$$\begin{bmatrix} -Q - \Theta_P^{-1} & A^{\top} \\ A & \Theta_D \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} f \\ d \end{bmatrix}$$
$$\Phi(NLP)$$

Tree representation of matrix A:

Structures of A and Q imply structure of Φ :

J. Gondzio

OOPS: Object-oriented linear algebra for IPM

- Every node in the *block elimination tree* has its own linear algebra implementation (depending on its type)
- Each implementation is a realisation of an abstract linear algebra interface.
- Different implementations are available for different structures

 \Rightarrow Rebuild *block elimination tree* with matrix interface structures

L7&8: Linear Algebra in IPMs

OOPS: Matrix Revolutions, Matrix Reloaded

Structured Problems

... are present everywhere.

$\mathbf{Dynamics} \rightarrow \mathbf{Staircase} \ \mathbf{structure}$

$\mathbf{Uncertainty} \rightarrow \mathbf{Block}\textbf{-}\mathbf{angular} \ \mathbf{structure}$

Common resource constraint

 $\sum_{i=1}^{k} B_i x_i = b \rightarrow \text{Dantzig-Wolfe structure}$

Other types of **near-separability**

 \rightarrow Row and column bordered block-diagonal structure

(low) **rank-corrector** $A + VV^T = C$

and networks, ODE- or PDE-discretizations, etc.

Example Applications:

- financial planning problems (nonlinear risk measures)
- machine learning (nonlinear kernels in SVMs)

Financial Planning Problems (ALM)

- A set of assets $\mathcal{J} = \{1..J\}$ given (bonds, stock, real estate)
- At every stage t = 0..T 1 we can buy or sell different assets
- The return of asset j at stage t is *uncertain*

Investment decisions: **what to buy or sell, at which time stage** Objectives:

 \Rightarrow

- maximize the final wealth
- minimize the associated risk

Mean Variance formulation: $\max I\!\!\!E(X) - \rho \operatorname{Var}(X)$

- \Rightarrow Stochastic Program: \Rightarrow formulate deterministic equivalent
 - standard QP, but huge
 - extentions: **nonlinear risk measures** (log utility, skewness)

J. Gondzio

ALM: Largest Problem Attempted

- Optimization of 21 assets (stock market indices) 7 time stages.
- Using multistage stochastic programming Scenario tree geometry: $128-30-16-10-5-4 \Rightarrow 16M$ scenarios.
- 3840 second level nodes with 350.000 variables each.
- Scenario Tree generated using geometric Brownian motion.
- \Rightarrow 1.01 billion variables, 353 million constraints

Sparsity of Linear Algebra

- $-63 + 128 \times 63 = 8127$ columns for Schur-complement
- Prohibitively expensive

- Need facility to exploit nested structure
 - Need to be careful that Schurcomplement calculations stay sparse on second level

J. Gondzio

Results (ALM: Mean-Variance QP formulation):

Prob	Stgs	Asts	Scen	Rows	Cols	iter	time	procs	machine
ALM8	7	6	13M	64M	154M	42	3923	512	BlueGene
ALM9	7	14	6M	96M	269M	39	4692	512	BlueGene
ALM10	7	13	12M	180M	$500\mathrm{M}$	45	6089	1024	BlueGene
ALM11	7	21	16M	353M	1.011M	53	3020	1280	HPCx

The problem with

- 353 million of constraints
- 1 billion of variables

was solved in 50 minutes using 1280 procs.

Equation systems of dimension **1.363 billion** were solved with the direct (implicit) factorization.

 \longrightarrow One IPM iteration takes less than a minute.

Support Vector Machines:

Formulated as the (dual) quadratic program:

min
$$-e^T y + \frac{1}{2} y^T K y$$
,
s.t. $d^T y = 0$,
 $0 \le y \le \lambda e$.

Ferris & Munson, *SIOPT* 13 (2003) 783-804.

Kernel function $K(x, z) = \langle \phi(x), \phi(z) \rangle$, where ϕ is a (nonlinear) mapping from X to feature space F Matrix K: $K_{ij} = K(x_i, x_j)$

Linear KernelIPolynomial KernelIGaussian KernelI

$$K(x, z) = x^{T} z.$$

$$K(x, z) = (x^{T} z + 1)^{d}.$$

$$K(x, z) = e^{-\gamma ||x - z||^{2}}.$$

SVMs with Nonlinear Kernels:

K is very large and dense! Approximate:

$$K \approx LL^T$$
 or $K \approx LL^T + D$

Introduce $v = L^T y$ and get a separable QP:

Structure can be exploited in:

• Linear Algebra of IPM

Kristian Woodsend: PhD Thesis, Edinburgh 2009.

References

- Gondzio and Sarkissian, Parallel interior point solver for structured linear programs, *Math Prog* 96 (2003) 561-584.
- Gondzio and Grothey, Reoptimization with the primaldual IPM, SIAM J. on Optimization 13 (2003) 842-864.
- Gondzio and Grothey, Parallel IPM solver for structured QPs: application to financial planning problems, Annals of Oper Res 152 (2007) 319-339.
- Woodsend and Gondzio, Hybrid MPI/OpenMP parallel linear support vector machine training, J. of Machine Learning Research 20 (2009) 1937-1953.

Papers available: http://www.maths.ed.ac.uk/~gondzio/

OOPS: Object-Oriented Parallel Solver

http://www.maths.ed.ac.uk/~gondzio/parallel/solver.html

Conclusions:

Interior Point Methods

 \rightarrow are well-suited to Large Scale Optimization

Direct Methods

 \rightarrow are well-suited to structure exploitation

Use IPMs in your research!

Implementation of IPMs

Andersen, Gondzio, Mészáros and Xu
Implementation of IPMs for large scale LP,
in: Interior Point Methods in Mathematical Programming,
T. Terlaky (ed.), Kluwer Academic Publishers, 1996, pp. 189–252.

Altman and Gondzio

Regularized symmetric indefinite systems in interior point methods for linear and quadratic optimization, *Optimization Methods and Software*, 11-12 (1999), pp 275–302.

Recent Survey on IPMs (easy reading)

Gondzio

Interior point methods 25 years later, European J. of Operational Research 218 (2012) 587-601. http://www.maths.ed.ac.uk/~gondzio/reports/ipmXXV.html