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J. Gondzio L7&8: Linear Algebra in IPMs

Outline
• Linear Algebra in IPMs for LP, QP and NLP

• Definite, Indefinite and Quasidefinite Systems

• Cholesky factorization

• Exploiting Sparsity in Gaussian Elimination

– Minimum degree ordering
– Nested dissection

• Very Large Scale Optimization
– implicit inverse representation
– from sparsity to block-sparsity
– structured optimization problems
– OOPS: Object-Oriented Parallel Solver

• Applications
– financial planning problems (nonlinear risk measures)
– data mining (nonlinear kernels in SVMs)
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Summary: From LP to QP

Newton direction




A 0 0
−Q AT I
S 0 X





[
∆x
∆y
∆s

]

=

[
ξp
ξd
ξµ

]

,

where
ξp = b− Ax,

ξd = c− ATy − s+Qx,
ξµ = µe−XSe.

Augmented system
[

−Q− Θ−1 AT

A 0

] [

∆x
∆y

]

=

[

ξd −X−1ξµ
ξp

]

.

Conclusion:
QP is a natural extension of LP.
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IPMs: LP vs QP

Augmented system in LP
[

−Θ−1 AT

A 0

] [

∆x
∆y

]

=

[

ξd −X−1ξµ
ξp

]

.

Eliminate ∆x from the first equation and get normal equations

(AΘAT )∆y = g.

Paris, January 2018 4



J. Gondzio L7&8: Linear Algebra in IPMs

IPMs: LP vs QP

Augmented system in QP

[

−Q− Θ−1 AT

A 0

] [

∆x
∆y

]

=

[

ξd −X−1ξµ
ξp

]

.

Eliminate ∆x from the first equation and get normal equations

(A(Q + Θ−1)−1AT )∆y = g.

One can use normal equations in LP, but not in QP. Normal equa-
tions in QP may become almost completely dense even for sparse
matrices A and Q. Thus, in QP, usually the indefinite augmented
system form is used.
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KKT systems in IPMs for LP, QP and NLP

LP

[

Θ−1 AT

A 0

] [

∆x
∆y

]

=

[

f
d

]

QP

[

Q + Θ−1 AT

A 0

] [

∆x
∆y

]

=

[

f
d

]

NLP

[

Q(x, y) + Θ−1
P A(x)T

A(x) −ΘD

] [

∆x
∆y

]

=

[

f
d

]
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Cholesky factorization

Compute a decomposition

LDLT = AΘAT .

where:
L is a lower triangular matrix; and
D is a diagonal matrix.

Cholesky factorization is simply the Gaussian Elimination
process that exploits two properties of the matrix:

• symmetry;

• positive definiteness.
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Use of Cholesky factorization

Replace the difficult equation

(AΘAT ) ·∆y = g,

with a sequence of easy equations:

L · u = g,
D · v = u,

LT ·∆y = v.

Note that

g = Lu
= L(Dv)

= LD(LT∆y)

= (LDLT )∆y

= (AΘAT )∆y.
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Symmetric Gaussian Elimination

Let H∈Rm×m be a symmetric positive definite matrix

H =






h11 h12 · · · h1m
h21 h22 · · · h2m
... ... . . . ...
hm1 hm2 · · · hmm




 .

By applying Gaussian Elimination to it, we can represent it in the
following form:






1 0 · · · 0
l21 1 · · · 0
... ... . . . ...
lm1 lm2 · · · 1











d11 0 · · · 0
0 d22 · · · 0
... ... . . . ...
0 0 · · · dmm











1 l21 · · · lm1
0 1 · · · lm2
... ... . . . ...
0 0 · · · 1





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Symmetric GE: Examples

Example 1:
[

1 −1 2
−1 3 0
2 0 9

]

=

[
1 0 0
−1 1 0
2 1 1

][
1 0 0
0 2 0
0 0 3

][
1 −1 2
0 1 1
0 0 1

]

.

Example 2:
[

1 1 −1
1 5 7
−1 7 22

]

=

[
1 0 0
1 1 0
−1 2 1

][
1 0 0
0 4 0
0 0 5

][
1 1 −1
0 1 2
0 0 1

]

.
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Existence of LDLT factorization

Lemma: The decomposition H = LDLT with dii > 0,∀i exists
iff H is positive definite (PD).

Proof:
Part 1 ( ⇒ )
Let H = LDLT with dii > 0. Take any x 6= 0 and let u = LTx.
Since L is a unit lower triangular matrix it is nonsingular so u 6= 0
and

xTHx = xTLDLTx = uTDu =

m∑

i=1

diiu
2
i > 0.
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Proof (cont’d):
Part 2 ( ⇐ )
Proof by induction on dimension of H .
For m = 1. H = h11 = d11 > 0 iff H is PD.
Assume the result is true for m = k − 1 ≥ 1.

Let H =

[
W a
aT q

]

∈ Rk×k be given k × k positive definite matrix

with W ∈ R(k−1)×(k−1), a ∈ Rk−1 and q ∈ R. Note first that
since H is PD, W is also PD. Indeed for any (x, 0) ∈ Rk we have

[xT , 0]

[
W a
aT q

][

x
0

]

=xTWx>0 ∀x∈Rk−1, x 6= 0.

From inductive hypothesis we know that W =LDLT with dii> 0.
Let [

W a
aT q

]

=

[
L 0

lT 1

] [

D 0
0 d

] [

LT l
0 1

]

,
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where l is the solution of equation (LD)l = a (it is well defined
since L and D are nonsingular) and d is given by d = q − lTDl.

Hence matrix H =

[
W a
aT q

]

has an L̄D̄L̄T decomposition.

It remains to prove that d > 0. Consider the vector

x =

[

−L−T l
1

]

.

Since H is positive definite, we get

0 < xTHx

= [−lTL−1, 1]

[
L 0
lT 1

] [

D 0
0 d

] [

LT l
0 1

] [

−L−T l
1

]

= [0, 1]

[

D 0
0 d

] [

0
1

]

= d,

which completes the proof.
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Definite & Indefinite Systems

Cholesky factorization fails for indefinite matrix.

Example 1: Negative pivot d22 < 0.
[

3 2
2 1

]

=

[

1 0
2/3 1

] [

3 0
0 −1/3

] [

1 2/3
0 1

]

.

Example 2: d11 = 0. Can’t even start the elimination.
[

0 2
2 5

]

=???

Paris, January 2018 14



J. Gondzio L7&8: Linear Algebra in IPMs

Definite & Indefinite Systems (cont’d)

IPMs:

For indefinite augmented system
[

−Θ−1 AT

A 0

] [

∆x
∆y

]

=

[

r
h

]

.

one needs to use some special tricks.

For positive definite normal equations

(AΘAT )∆y = g.

one can compute the Cholesky factorization.
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Major Cholesky

Andre-Louis Cholesky (1875-1918)
Major of French Army,
descendant from the Cholewski family of Polish imigrants.

Read: M. A. Saunders, Major Cholesky would feel proud,
ORSA Journal on Computing, vol 6 (1994) No 1, pp 23–27.
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Symmetric Factorization

Two step solution method:

• factorization to LDLT form,

• backsolve to compute direction ∆y.

A symmetric nonsingular matrix H is factorizable if there exists
a diagonal matrix D and unit lower triangular matrix L such that
H = LDLT .

A symmetric matrix H is strongly factorizable if for any per-
mutation matrix P a factorization PHPT = LDLT exists.

The general symmetric indefinite matrix is not factorizable.
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Factoring Indefinite Matrix

Two options are possible:

1. Replace diagonal matrix D with a block-diagonal one and allow
2× 2 (indefinite) pivots

[

0 a
a 0

]

and

[

0 a
a d

]

.

Hence obtain a decomp. H = LDLT with block-diagonal D.

2. Regularize indefinite matrix to produce a quasidefinite matrix

K =

[

−E AT

A F

]

,

where
E ∈ Rn×n is positive definite,
F ∈ Rm×m is positive definite, and
A ∈ Rm×n has full row rank.
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Quasidefinite (QDF) Matrices

Symmetric matrix is called quasidefinite if

K =

[

−E AT

A F

]

,

where E ∈ Rn×n and
F ∈ Rm×m are positive definite, and
A ∈ Rm×n has full row rank.

QDF matrices are strongly factorizable. For any quasidefinite
matrix there exists a Cholesky-like factorization

K = LDLT ,

where
D is diagonal but not positive definite:
n negative pivots; and m positive pivots.
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From Indefinite to Quasidefinite

Indefinite matrix

H =

[

−Q− Θ−1 AT

A 0

]

.

in IPMs can be converted to a quasidefinite one.
Regularize indefinite matrix to produce a quasi-definite matrix.
Use dynamic regularization

H̄ =

[

−Q− Θ−1 AT

A 0

]

+

[

−Rp 0
0 Rd

]

,

where Rp ∈ Rn×n and Rd ∈ Rm×m are the primal and dual regu-
larizations. For any quasidefinite matrix there exists a Cholesky-like
factorization

H̄ = LDLT ,

where D is diagonal but not positive definite:
n negative pivots and m positive pivots.
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Large Problems are Sparse

Suppose a large LP is solved: m,n ∼ 104 − 106.
Can all variables be linked at the same time?
No, usually only a subset of them is linked.

There are usually only several nonzeros per row in an LP.
Large problems are always sparse.
Exploiting sparsity in computations leads to huge savings.
Exploiting sparsity means mainly avoiding doing useless computa-
tions: the computations for which the result is known, as for example
multiplications with zero.
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Exploiting sparsity: Example

Ax =

[
2 1 0 4 0 0
0 2 0 −1 5 −1
3 0 3 8 0 5

]










2
0
5
0
0

−2










.

It requires computing

2 · A.1 + 5 · A.3 − 2 · A.6

and involves only five multiplications and five additions.
We say that this matrix-vector multiplication needs 5 flops.

A flop is a floating point operation:

x := x + a · b.
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General Sparse Systems

Single step in Gaussian Elimination

A =

[

p vT

u A1

]

produces the following Schur complement

A1 − p−1uvT .

Markowitz Pivot Choice

Let ri and ci, i = 1, 2, ..., n be numbers of nonzero entries in row
and column i, respectively. The elimination of the pivot aij needs

fij = (ri − 1)(cj − 1)

flops to be made. This step creates at most fij new nonzero entries
in the Schur complement.
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General Sparse Systems

The effect of pivot elimination on the sparsity pattern
1 2 3 4 5 6 7 8

1 p x x x x
2 x x x x
3 x x x x
4 x x x
5 x x x
6 x x
7 x x x
8 x x x x

pivot : p
nonzero : x

1 2 3 4 5 6 7 8

1 p x x x x
2 x x x x
3 x x x f f f f
4 x x x
5 x f f x f f
6 x x
7 x x x
8 x f f f f

pivot : p
nonzero : x
fill− in : f
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Markowitz Pivot Choice: Example

Markowitz: Choose the pivot with mini,j fij.

1 2 3 4 5 6 7 8

1 x x x x x
2 x x x x
3 x x x x
4 x x x
5 x x x
6 p x
7 x x x
8 x x x x

1 2 3 4 5 6 7 8

1 x x x f x
2 x x x x
3 x x x x
4 x x x f
5 x x x
6 p x
7 x x x
8 x x x x
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Exploiting Sparsity in Cholesky Factorization

Matrix H and its Cholesky Factor

H =






p x x x
x x
x x
x x




 ⇒ L =






x
x x
x x x
x x x x






Reordered Matrix H and its Cholesky Factor

PHPT =






x x
x x
x x

x x x x




 ⇒ L =






x
x
x

x x x x





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From Sparsity to Block-Sparsity:

Sparse Matrix Block-Sparse Matrix

H=






p x x x
x x
x x
x x




⇒L=






x
x x
x x x
x x x x











P



⇒L=











PHPT =






x x
x x
x x

x x x x




⇒L=






x
x
x

x x x x














⇒L=










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Minimum Degree Ordering (MDO)

In symmetric positive definite case:
pivots are chosen from the diagonal and ri = ci
hence choose the pivot with mini ri

Minimum degree ordering:
choose an element with the minimum number of nonzeros in a row,

that is, choose a node with the minimum number of neighbours
(a node with the minimum degree)
in a graph related to sparsity pattern of the matrix.
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Minimum Degree Ordering (MDO)

Sparse Matrix Pivot h11 Pivot h22

H =










x x x x
x x

x x x
x x x
x x x

x x x



















p x x x
x x

x x f f x
x f x f x
x x f f x

x x x



















x x x x
p x

x x x
x x x
x x x

x x x










Minimum degree ordering:
choose a diagonal element corresponding to a row with theminimum
number of nonzeros.
Permute rows and columns of H accordingly.

MDO is simply the symmetric version of Markowitz pivot rule.
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From Sparsity to Block-Sparsity:

Apply minimum degree ordering to (sparse) blocks:

Block-Sparse Matrix Pivot Block H11 Pivot Block H22

H=




























P


















P










Choose a diagonal block-pivot corresponding to a block-row with
the minimum number of blocks.
Permute block-rows and block-columns of H accordingly.
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Nested Dissection:
5

6

1

4

8

9

10
3

2 7

11

Original Matrix Reordered Matrix

1 2 3 4 5 6 7 8 91011
1 x x x x
2 x x x x x
3 x x x x
4 x x x x x x
5 x x x x x
6 x x x x x
7 x x x x
8 x x x x x
9 x x x x
10 x x x x x x
11 x x x x x

1 2 3 5 6 8 91011 4 7
1 x x x x
2 x x x x x
3 x x x x
5 x x x x x
6 x x x x x
8 x x x x x
9 x x x x
10 x x x x x x
11 x x x x x
4 x x x x x x
7 x x x x
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Structured Problems

Observation:

Truly large scale problems are not only sparse...
→ such problems are structured

Structure is displayed in:

• Jacobian matrix A

• Hessian matrix Q

Structure can be exploited in:

• IPM Algorithm

• Linear Algebra of IPM−→(focus of this lecture)
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Primal Block-Angular Structure:

Q =

[ ]

, A =

[ ]

and AT =

[ ]

Reorder blocks: {1, 3; 2, 4; 5}.

H =












, PHPT =












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Dual Block-Angular Structure:

Q =







 , A =
[ ]

and AT =









Reorder blocks: {1, 4; 2, 5; 3}.

H =














, PHPT =














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Row & Col Bordered Block-Diag Structure:

Q =







 , A =

[ ]

and AT =









Reorder blocks: {1, 4; 2, 5; 3, 6}.

H =

















, PHPT =

















Paris, January 2018 35



J. Gondzio L7&8: Linear Algebra in IPMs

Example: Bordered Block-Diagonal Structure







Φ1 B⊤
1. . . ...

Φn B⊤
n

B1 ... Bn Φ0







︸ ︷︷ ︸

Φ

=

=






L1
. . .

Ln
L1,0 ... Ln,0 L0






︸ ︷︷ ︸

L






D1
. . .

Dn
D0






︸ ︷︷ ︸

D








L⊤
1 L⊤

1,0
. . . ...

L⊤
n L⊤

n,0

L⊤
0








︸ ︷︷ ︸

L⊤

The blocks Φi, i = 0, 1, ..., n are KKT systems.
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Example: Bordered Block-Diagonal Structure

• Cholesky-like factors obtained by Schur-complement:

Φi = LiDiL
⊤
i

Li,0 = BiL
−⊤
i D−1

i , i = 1..n

C = Φ0 −
∑n

i=1Li,0DiL
⊤
i,0 = L0D0L

⊤
0

• And the system Φx = b is solved by

zi = L−1
i bi

z0 = L−1
0 (b0 −

∑

Li,0zi)

yi = D−1
i zi

x0 = L−⊤
0 y0

xi = L−⊤
i (yi − L⊤

i,0x0)

• Operations (Cholesky, Solve, Product) performed on sub-blocks

Paris, January 2018 37



J. Gondzio L7&8: Linear Algebra in IPMs

Abstract Linear Algebra for IPMs

Execute the operation

“solve (reduced) KKT system”

in IPMs for LP, QP and NLP.

It works like the “backslash” operator in MATLAB.

Assumptions:

Q and A are block-structured
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Linear Algebra of IPMs

[

−Q− Θ−1
P A⊤

A ΘD

]

︸ ︷︷ ︸

Φ (NLP )

[

∆x
∆y

]

=

[

f
d

]

Tree representation of matrix A:













D10

D30

D20

23D

22D

21D

12D

11D

C

BB

B B B

D1

D2

21 23

1211

C32

31

22














D
ua

l B
lo

ck
 A

ng
ul

ar
 S

tr
uc

tu
re

Pr
im

al
 B

lo
ck

 A
ng

ul
ar

 S
tr

uc
tu

re

Pr
im

al
 B

lo
ck

 A
ng

ul
ar

 S
tr

uc
tu

re

D30

C31
A

D1 D2

D D1211 D10 B B11 12 D D D D B B B21 22 23 20 21 22 23

C32
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Structures of A and Q imply structure of Φ:
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OOPS: Object-oriented linear algebra for IPM

• Every node in the block elimination tree has its own linear
algebra implementation (depending on its type)

• Each implementation is a realisation of an abstract linear al-
gebra interface.

• Different implementations are available for different structures

iA

iB

iC

iA

R

Rank corrector

implementation

RankCorrector

D

iA

iC

iB

y=Mtx

y=Mx

SolveLt

SolveL Implicit

PrimalBlockAngMatrix
Factorize

factorization

Implicit

DualBlockAng

factorization

Implicit

factorization

BorderedBlockDiag

linear algebra

General sparse

linear algebra

SparseMatrix

DenseMatrix

General dense

M
at

ri
x 

In
te

rf
ac

e

⇒ Rebuild block elimination tree with matrix interface structures
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OOPS: Matrix Revolutions, Matrix Reloaded
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Structured Problems

... are present everywhere.
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Sources of Structure

Dynamics → Staircase structure
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Sources of Structure

Uncertainty → Block-angular structure

T
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Sources of Structure

Common resource constraint
k∑

i=1
Bi xi = b → Dantzig-Wolfe structure

B B B

A

A

A

Paris, January 2018 46



J. Gondzio L7&8: Linear Algebra in IPMs

Sources of Structure

Other types of near-separability

→ Row and column bordered block-diagonal structure

B B B

A

A

A C

C

C

D
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Sources of Structure

(low) rank-corrector
A + V V T = C

+ =V VTA C

and networks, ODE- or PDE-discretizations, etc.
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Example Applications:

• financial planning problems
(nonlinear risk measures)

• machine learning (nonlinear kernels in SVMs)
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Financial Planning Problems (ALM)

• A set of assets J ={1..J} given (bonds, stock, real estate)
• At every stage t = 0..T−1 we can buy or sell different assets
• The return of asset j at stage t is uncertain

Investment decisions: what tobuyor sell, atwhich time stage

Objectives:

• maximize the final wealth

• minimize the associated risk
⇒

Mean Variance formulation:
max IE(X)− ρVar(X)

⇒ Stochastic Program: ⇒ formulate deterministic equivalent

• standard QP, but huge

• extentions: nonlinear risk measures (log utility, skew-
ness)
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ALM: Largest Problem Attempted

• Optimization of 21 assets (stock market indices) 7 time stages.

• Using multistage stochastic programming
Scenario tree geometry: 128-30-16-10-5-4 ⇒ 16M scenarios.

• 3840 second level nodes with 350.000 variables each.

• Scenario Tree generated using geometric Brownian motion.

• ⇒ 1.01 billion variables, 353 million constraints

30 nodes 30 nodes

128 nodes
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Sparsity of Linear Algebra

• ⇒ – 63 + 128 × 63 = 8127 columns
for Schur-complement

– Prohibitively expensive

• ⇒ – Need facility to exploit nested
structure

– Need to be careful that Schur-
complement calculations stay
sparse on second level
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Results (ALM: Mean-Variance QP formulation):

Prob Stgs Asts Scen Rows Cols iter time procs machine
ALM8 7 6 13M 64M 154M 42 3923 512 BlueGene
ALM9 7 14 6M 96M 269M 39 4692 512 BlueGene
ALM10 7 13 12M 180M 500M 45 6089 1024 BlueGene
ALM11 7 21 16M 353M 1.011M 53 3020 1280 HPCx

The problem with

• 353 million of constraints

• 1 billion of variables

was solved in 50 minutes using 1280 procs.

Equation systems of dimension 1.363 billion
were solved with the direct (implicit) factorization.

−→ One IPM iteration takes less than a minute.
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Support Vector Machines:
Formulated as the (dual) quadratic program:

min −eTy + 1
2y

TKy,

s.t. dTy = 0,
0 ≤ y ≤ λe.

Ferris & Munson, SIOPT 13 (2003) 783-804.

Kernel function K(x, z) = 〈φ(x), φ(z)〉,

where φ is a (nonlinear) mapping from X to feature space F

Matrix K: Kij = K(xi, xj)

Linear Kernel K(x, z) = xTz.

Polynomial Kernel K(x, z) = (xTz + 1)d.

Gaussian Kernel K(x, z) = e−γ‖x−z‖2.
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SVMs with Nonlinear Kernels:

K is very large and dense!
Approximate:

K ≈ LLT or K ≈ LLT +D

Introduce v = LTy and get a separable QP:

min −eTy + 1
2v

Tv + 1
2y

TDy,

s.t. dTy = 0,
v − LTy = 0,
0 ≤ y ≤ λe.

H =







LT

L







Structure can be exploited in:

• Linear Algebra of IPM

Kristian Woodsend: PhD Thesis, Edinburgh 2009.
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Conclusions:

Interior Point Methods

→ are well-suited to Large Scale Optimization

Direct Methods

→ are well-suited to structure exploitation

Use IPMs in your research!
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