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Séminaire mensuel du PGMO, École Polytechnique, Paris
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Motivation: E-vehicles transporting goods from A to B

1. Where to place charging stations, and how many?
2. Where to use shortcuts (and pay a road toll)?
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Application Areas: E-Mobility and Design of Telecom
Networks

E-Mobility: E-cars need to recharge after traveling a certain distance

Congestion charging mechanisms

Goal: Fulfill the demands while minimizing the cost of road tolls and
charging stations.

Network Design: Signals can only be transmitted over limited distances (signal
deterioration). Signal regenerators to be placed, or additional lines to be
purchased.
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Problem Definition

Undirected graph G = (V ,E )

Edge costs w : E→ Q+
0 and edge lengths d : E→ Q+

Maximum distance dmax ∈ N+

Relay costs c : V→ Q+

Set of node pairs K that need to communicate

An s-t path p is feasible iff its length d(p) ≤ dmax.
Otherwise, relays {r1, . . . , rk} to be placed so that

p = (s, p1, r1, p2, r2, . . . , rk , pk+1, t),

and length of every subpath pi is d(pi ) ≤ dmax.

Goal:

Choose a subset of relays and edges with minimal total costs s.t. there
exists a feasible path for every pair in K.
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Example

Graph G = (V ,E), dmax = 4

K = {(0, 3), (0, 4), (2, 5), (3, 4)}

Free (existing) edges E0:

E0 = {e|w(e) = 0}
Augmenting edges E∗:

E∗ = {e|w(e) > 0}
nodes index (relay cost)

edges cost (distance)

Optimal solution:

1 + 3

0(4)

1(3)

2(2) 3(2)

4(3) 5(3)

3

1 13

1(3)

2(2) 2(2)

2(1)

3(2)

0

1

2 3

4

5
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Cycle Property

dmax = 4, K = {(0, 3)}

0(5) 1(5)

2(1)

3(5)

2(3)

1(0)

3(3)

0 1

2

3

Property 1

In an optimal solution there exists for every pair (u, v) ∈ K a path from u to v
visiting each relay at most once.

Property 2

In an optimal solution there exists for every pair (u, v) ∈ K a path from u to v
visiting each non-relay node at most twice.
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Our Contribution

Our contribution: We introduce 3 MIP models derived on the
communication graph.

Derive two Branch-and-Price and a Branch-Price-and-Cut algorithm.

Outperform heuristics on smaller instances from the literature and
solve them to optimality.

Provide best known UBs for unsolved instances.
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Communication Graph: Idea
Used by Chen et al. for solving the Regenerator Location Problem. Main
idea:

Graph GC = (V,C0 ∪ C∗)
Contains edges between all vertex pairs that can be connected
without the use of relays
Each edge b ∈ C 0 ∪ C ∗ corresponds to a set of paths Pb in G

0(4)

1(3)

2(2) 3(2)

4(3) 5(3)

3

1 13

1(3)

2(2) 2(2)

2(1)

3(2)

(a) Original Graph

0

1

2 3

4 5

(b) Final Communication Graph
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Communication Graph: Example

0(4)

1(3)

2(2) 3(2)

4(3) 5(3)

3

1 13

1(3)

2(2) 2(2)

2(1)

3(2)

(a) Original Graph

0

1

2 3

4 5

(b) Adding all feasible
connections using edges in E0

(dashed lines)

dmax = 4
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Communication Graph: Example
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(b) Adding all feasible
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Communication Graph: Example
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Communication Graph: Properties
Consider a pair (u, v) ∈ K.

Either u and v are directly connected in GC , or
Relays need to be placed, so that there is a u-v path in GC with
relay placed at all intermediate nodes

Identify cost-optimal connections among the exponentially many
possibilities ⇒ Column Generation

0(4)

1(3)

2(2) 3(2)

4(3) 5(3)

3

1 13

1(3)

2(2) 2(2)
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(a) Original Graph

0

1

2 3

4 5

(b) Final Communication Graph

GC = (V ,C ) where C = C 0 ∪ C ∗
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Communication Graph: Properties
Consider a pair (u, v) = (4, 5).

Place relay at node 1 and use path (4, 1, 5)

Edge (1, 5) ∈ C , so we should choose an appropriate 1-5 path in G.

Since (1, 5) ∈ C ∗, edge costs are involved

Optimal path chosen by Column Generation

0(4)

1(3)

2(2) 3(2)

4(3) 5(3)

3

1 13

1(3)

2(2) 2(2)

2(1)

3(2)

(a) Original Graph

0

1

2 3

4 5

(b) Final Communication Graph
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Ivana Ljubić Optimal Design of Charging Stations September 17, 2015 19 / 41



Communication Graph Models

Theorem

In an optimal solution mapped on a communication graph there exists for
every u ∈ KS an arborescence rooted at u reaching all targets v ∈ K (u).

Three MIP Formulations

Model Name Graphs Connectivity Type
MCF comm.graph multi-commodity flow B&P
SCF comm.graph single-commodity flow B&P
CUT directed comm. graph cutset inequalities B&P&C

Major Difficulty

Connect the arborescences in the communication graph with the edges of
the original graph.
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MCF Variables

xe =

{
1, e is in solution,

0, otherwise
∀e ∈ E

yi =

{
1, relay is placed at i ,

0, otherwise
∀i ∈ V

f uva =

{
1, a is used to connect (u, v) in GC,

0, otherwise
∀(u, v) ∈ K, ∀a ∈ AC

Ivana Ljubić Optimal Design of Charging Stations September 17, 2015 21 / 41



Path Variables

Consider a vertex pair b = (u, v). Let

Pb = {p | p is a u-v path in G , s.t. d(p) ≤ dmax}

Basic idea:

represent each feasible path p ∈ Pb for a given commodity pair
b = (u, v) ∈ K as a simple path from u to v in GC.

Path Variables

Mapping between edges in GC and paths in G :

λpb =

{
1, p is used to connect node pair b,

0, otherwise
∀b ∈ C ∗, ∀p ∈ Pb

Exponential number of λ variables ⇒ column generation.
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MCF Model

min
∑
i∈V

ciyi +
∑
e∈E∗

wexe

∑
a∈δ−(i)

f uva −
∑

a∈δ+(i)

f uva =


−1 i = u

0 i 6= u, i 6= v

1 i = v

∀(u, v) ∈ K,
∀i ∈ V u

C

(1)

∑
a∈δ+(i)

f uva ≤ yi

∀(u, v) ∈ K,
∀i ∈ V ,

i 6= u, i 6= v

(2)

f uvij + f uvji ≤
∑
p∈Pb

λpb
∀(u, v) ∈ K,

∀b = {i , j} ∈ C∗
(µuv

b ) (3)

∑
p∈Pb :e∈p

λpb ≤ xe ∀e ∈ E∗,∀b ∈ C∗ (αe
b) (4)
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MCF : Pricing Subproblem

Given current LP solution, let µ̃uvb and α̃e
b be values of dual variables.

Pricing Subproblem for each b = {i , j} ∈ C ∗

Find a feasible path p ∈ Pb with minimum reduced costs:

arg min
p∈Pb

 ∑
e∈E∗∩p

α̃e
b −

∑
(u,v)∈K

µ̃uvb


For a fixed b,

∑
(u,v)∈K µ̃

uv
b is a constant, the problem boils down to:

p̃b = arg min
p∈Pb

∑
e∈E∗∩p

α̃e
b ∀b ∈ C ∗

Weight Constrained Shortest Path Problem. Pseudo-polynomial time.
Dynamic programming procedure proposed by Gouveia et al (2008).
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MCF : Pros and Cons

Cons:
Huge number of design variables (|V |+ |E |+ |K||V |2) (in addition to λ!)

Pros:
Strong LBs!

Trade the size of the model and the strength of the bounds:
single-commodity flow model SCF
(not shown in this talk)
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CUT Formulation: Directed Communication Graph

Basic idea:
A feasible path p for a given commodity
pair b = (u, v) ∈ K is a directed path
from u to v in G ′C.

xe =

{
1, e is in solution,

0, otherwise
∀e ∈ E

Xa =

{
1, a is used in a feasible path,

0, otherwise
∀a ∈ A′C

One-to-one correspondence between the

arcs in Ar
C and the relays.

Example: a path between 0 and 3 in

communication using a relay at 1

0

1

2

3

3 3

5

2

6

0

1

2

3
01

02

11 12

22

21

31 32
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CUT

min
∑
i∈V

ciX(i1,i2) +
∑
e∈E∗

wexe

∑
a∈δ−(W )

Xa ≥ 1
∀(u, v) ∈ K, ∀W ⊂ V ′C

v1 ∈W , u2 /∈W

Xuv ≤
∑
p∈Pb

λpb ∀b = {u, v} ∈ C∗ (µ1
b)

Xvu ≤
∑
p∈Pb

λpb ∀b = {u, v} ∈ C∗ (µ2
b)

∑
p∈Pb :e∈p

λpb ≤ xe ∀e ∈ E∗, ∀b ∈ C∗ (αe
b)

Xa, xe ∈ {0, 1} ∀e ∈ E∗, ∀a ∈ A′C

λpb ≥ 0 ∀b ∈ C∗, p ∈ Pb
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Ivana Ljubić Optimal Design of Charging Stations September 17, 2015 27 / 41



CUT

min
∑
i∈V

ciX(i1,i2) +
∑
e∈E∗

wexe

∑
a∈δ−(W )

Xa ≥ 1
∀(u, v) ∈ K, ∀W ⊂ V ′C

v1 ∈W , u2 /∈W

Xuv ≤
∑
p∈Pb

λpb ∀b = {u, v} ∈ C∗ (µ1
b)

Xvu ≤
∑
p∈Pb

λpb ∀b = {u, v} ∈ C∗ (µ2
b)

∑
p∈Pb :e∈p

λpb ≤ xe ∀e ∈ E∗, ∀b ∈ C∗ (αe
b)

Xa, xe ∈ {0, 1} ∀e ∈ E∗, ∀a ∈ A′C

λpb ≥ 0 ∀b ∈ C∗, p ∈ Pb
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CUTS : Pricing Subproblem

Pricing Subproblem for each b ∈ C ∗

Find a feasible path p ∈ Pb with minimum reduced costs:

arg min
p∈Pb

 ∑
e∈E∗∩p

α̃e
b − µ̃1

b − µ̃2
b


For a fixed b, µ̃1

b + µ̃2
b is a constant, the problem boils down to:

p̃b = arg min
p∈Pb

∑
e∈E∗∩p

α̃e
b ∀b ∈ C ∗

Weight Constrained Shortest Path Problem. Advantage: connectivity
cuts do not influence the pricing subproblem. Row- and column-generation
can be performed independently!!
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Ivana Ljubić Optimal Design of Charging Stations September 17, 2015 29 / 41



Cabral - Instances

Originally introduced in Cabral
et al. [2007]

4-grid graphs

Only augmenting edges

Cost and edge length values are
selected uniformly at random
from [10, 30]

Communication pairs have a
common origin node

Instance |V | |E ∗| |E 0| |K| dmax

4A5B70L5K 20 31 5
4A5B70L10K 20 31

0
10

70

5A5B70L5K 25 40 5
5A5B70L10K 25 40

0
10

70

6A5B70L5K 30 49 5
6A5B70L10K 30 49

0
10

70

7A5B70L5K 35 58 5
7A5B70L10K 35 58

0
10

70

8A5B70L5K 40 67 5
8A5B70L10K 40 67

0
10

70

9A5B70L5K 45 76 5
9A5B70L10K 45 76

0
10

70

10A5B70L5K 50 85 5
10A5B70L10K 50 85

0
10

70

11A5B70L5K 55 94 5
11A5B70L10K 55 94

0
10

70

12A5B70L5K 60 103 5
12A5B70L10K 60 103

0
10

70
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Results: Cabral - Instances1

Instance
LP Gap [%] LP - t [s] Optimality Gap [%] t [s]

RMPI
MCFM SCFM CUTS MCFM SCFM CUTS MCFM SCFM CUTS MCFM SCFM CUTS

4A5B70L5K 18.8 69.0 23.7 0 0 0 0.0 0.0 0.0 1 1 1 1
4A5B70L10K 36.6 79.5 42.2 0 0 0 0.0 0.0 0.0 5 17 7 4

5A5B70L5K 28.6 67.9 33.8 0 0 0 0.0 0.0 0.0 2 9 5 2
5A5B70L10K 39.3 81.2 46.8 1 0 0 0.0 0.0 0.0 18 196 25 30

6A5B70L5K 27.9 67.0 32.9 0 0 0 0.0 0.0 0.0 6 30 10 8
6A5B70L10K 40.3 78.6 46.3 2 0 1 0.0 0.0 0.0 42 433 40 88

7A5B70L5K 32.8 66.4 38.7 0 0 0 0.0 0.0 0.0 8 21 11 7
7A5B70L10K 39.7 78.5 45.1 4 0 1 0.0 0.0 0.0 102 1312 89 184

8A5B70L5K 31.8 69.2 36.0 1 0 0 0.0 0.0 0.0 21 238 32 34
8A5B70L10K 38.5 79.9 43.1 5 0 1 0.0 1.9 0.0 130 3772 157 523

9A5B70L5K 31.8 67.7 38.5 1 0 0 0.0 0.0 0.0 24 257 36 21
9A5B70L10K 39.0 81.7 42.5 8 0 2 0.0 10.8 0.0 282 5303 271 339

10A5B70L5K 31.2 65.9 34.8 2 0 0 0.0 1.3 0.0 59 1068 81 46
10A5B70L10K 38.1 77.4 42.7 13 0 1 0.0 12.4 0.0 844 5674 547 1419

11A5B70L5K 34.0 67.0 39.1 2 0 0 0.0 0.0 0.0 40 458 50 34
11A5B70L10K 38.0 76.7 42.4 22 0 2 0.0 18.3 0.0 1073 7056 588 3496

12A5B70L5K 34.9 68.0 39.1 3 0 1 0.0 2.3 0.0 459 1085 660 549
12A5B70L10K 38.0 78.3 42.2 27 0 2 4.1 25.0 1.3 2661 6587 2196 4656

1Each row corresponds to the mean over 10 instances.
RMPI: Cabral et al. (2007) report gaps between 3% and 21%.
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NDPR - Instances

Modified version of the instances
provided in Konak [2012]

Euclidean distances have been
rounded up to obtain integral
edge weights and lengths

Only augmenting edges

Type I: we = de

Type II: we = dmax − de

Instance |V | |E ∗| |E 0| |K| dmax

40N5K30L 198 5 30
40N5K35L 272 5 35
40N10K30L 198 10 30
40N10K35L

40

272

0

10 35

50N5K30L 279 5 30
50N5K35L 372 5 35
50N10K30L 279 10 30
50N10K35L

50

372

0

10 35

60N5K30L 305 5 30
60N5K35L 412 5 35
60N10K30L 305 10 30
60N10K35L

60

412

0

10 35

80N5K30L 641 5 30
80N5K35L 853 5 35
80N10K30L 641 10 30
80N10K35L

80

853

0

10 35

160N5K30L 2773 5 30
160N5K35L 3624 5 35
160N10K30L 2773 10 30
160N10K35L

160

3624

0

10 35
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Results: NDPR - Instances (Type I)

Instance
LP Gap [%] LP - t [s] Optimality Gap [%] t [s]

MCFM SCFM CUTS MCFM SCFM CUTS MCFM SCFM CUTS MCFM SCFM CUTS

40N 5K 30L 21.5 21.5 24.9 0 0 0 0.0 0.0 0.0 76 72 98
40N 5K 35L 38.5 38.5 43.4 3 3 1 11.6 11.4 11.8 7200 7200 7200
40N 10K 30L 26.2 26.9 28.9 4 3 0 0.0 0.0 0.0 2850 3109 1163
40N 10K 35L 40.1 40.3 44.6 6 5 2 17.5 17.5 20.8 7200 7200 7200

50N 5K 30L 8.5 13.5 15.5 1 1 1 0.0 0.0 0.0 6 8 20
50N 5K 35L 22.5 25.4 27.6 2 2 2 0.0 0.0 0.0 39 46 83
50N 10K 30L 24.6 25.2 31.1 9 7 2 0.0 0.0 0.0 737 828 1841
50N 10K 35L 27.6 28.1 37.4 22 18 6 0.0 0.0 0.0 2098 1890 3209

60N 5K 30L 28.1 28.1 35.8 2 2 2 0.0 0.0 0.0 63 67 236
60N 5K 35L 24.3 24.3 34.1 4 5 4 0.0 0.0 0.0 141 121 429
60N 10K 30L 32.3 32.3 40.3 11 11 2 0.0 0.0 5.0 2534 2908 7200
60N 10K 35L 33.1 33.1 43.7 17 36 6 0.0 3.6 12.8 7155 7200 7200

80N 5K 30L 44.6 51.0 52.2 24 16 14 28.6 34.4 33.9 7200 7200 7200
80N 5K 35L 53.7 59.2 61.6 83 49 33 41.8 47.9 45.0 7200 7200 7200
80N 10K 30L 53.1 56.5 59.9 195 139 26 44.0 46.4 47.4 7200 7200 7200
80N 10K 35L 66.3 68.3 73.1 1046 602 63 63.7 65.1 64.2 7200 7200 7200

160N 5K 30L 55.8 55.8 64.5 4183 3625 1414 55.8 54.9 62.9 7200 7200 7200
160N 5K 35L - - 73.4 7200 7200 6402 - - 73.2 7200 7200 7200
160N 10K 30L - - 74.5 7200 7200 7200 - - 74.5 7200 7200 7200
160N 10K 35L - - 85.8 7200 7200 7200 - - 85.8 7200 7200 7200
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Results: NDPR - Instances (Type II)

Instance
LP Gap [%] LP - t [s] Optimality Gap [%] t [s]

MCFM SCFM CUTS MCFM SCFM CUTS MCFM SCFM CUTS MCFM SCFM CUTS

40N 5K 30L p3 0.3 0.3 1.6 0 0 0 0.0 0.0 0.0 0 0 0
40N 5K 35L p3 7.8 7.8 12.9 2 1 1 0.0 0.0 0.0 6 4 6
40N 10K 30L p3 6.6 8.0 9.7 2 2 0 0.0 0.0 0.0 11 10 9
40N 10K 35L p3 10.1 10.9 16.1 7 7 1 0.0 0.0 0.0 61 55 29
50N 5K 30L p3 0.0 6.5 0.0 0 0 0 0.0 0.0 0.0 0 1 0
50N 5K 35L p3 1.9 9.8 7.4 1 1 2 0.0 0.0 0.0 2 4 22
50N 10K 30L p3 2.5 5.7 7.6 1 1 2 0.0 0.0 0.0 3 2 21
50N 10K 35L p3 3.0 4.0 11.4 7 8 7 0.0 0.0 0.0 56 39 64

60N 5K 30L p3 14.9 14.9 23.0 1 2 1 0.0 0.0 0.0 8 8 27
60N 5K 35L p3 0.0 0.0 0.0 0 0 2 0.0 0.0 0.0 0 0 2
60N 10K 30L p3 13.7 13.7 19.6 4 5 2 0.0 0.0 0.0 58 53 44
60N 10K 35L p3 6.9 6.9 10.2 6 7 4 0.0 0.0 0.0 39 30 39

80N 5K 30L p3 7.8 15.9 13.3 8 6 11 0.0 0.0 0.0 54 85 117
80N 5K 35L p3 6.2 16.1 12.0 13 14 36 0.0 0.0 0.0 59 208 229
80N 10K 30L p3 12.1 16.1 18.4 86 55 22 0.0 0.0 0.0 1227 1105 526
80N 10K 35L p3 18.9 23.4 25.6 348 244 118 14.5 15.0 8.6 7200 7200 7200

160N 5K 30L p3 7.3 7.3 11.6 715 658 882 0.0 0.0 0.0 1896 1954 6641
160N 5K 35L p3 10.9 10.9 14.1 1301 1348 2119 5.1 5.7 9.5 7200 7200 7200
160N 10K 30L p3 14.1 14.1 19.4 2553 2843 2584 13.8 13.8 17.8 7200 7200 7200
160N 10K 35L p3 - - 33.2 7200 7200 7200 - - 33.2 7200 7200 7200
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ARLP - Instances

New Instances with a high
amount of commodities

Edge lengths based on rounded
up euclidean distances

Edge costs normally distributed
around edge lengths
(µ = de , σ = 5)

Also free edges

Instance |V | |E ∗| |E 0| |K| dmax

40N50L20F A 124 26 724
40N50L20F B 123 35 688
40N50L50F A 78 89 513
40N50L50F B 72 71 586
40N50L80F A 32 146 443
40N50L80F B

40

35 154 423

50

50N50L20F A 212 44 1111
50N50L20F B 235 59 1022
50N50L50F A 157 132 719
50N50L50F B 132 117 873
50N50L80F A 51 175 788
50N50L80F B

50

58 212 682

50

60N50L20F A 269 72 1549
60N50L20F B 268 63 1588
60N50L50F A 204 216 1036
60N50L50F B 200 197 1103
60N50L80F A 85 311 854
60N50L80F B

60

74 283 1041

50

80N50L20F A 557 145 2599
80N50L20F B 545 124 2659
80N50L50F A 345 313 1922
80N50L50F B 375 366 1902
80N50L80F A 148 548 1834
80N50L80F B

80

121 536 1709

50
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Results: ARLP - Instances

Instance
LP Gap [%] LP - t [s] Optimality Gap [%] t [s]

MCFM SCFM CUTS MCFM SCFM CUTS MCFM SCFM CUTS MCFM SCFM CUTS

40N50L20F A - 31.5 20.7 7200 177 4 - 0.0 0.0 7200 1517 189
40N50L20F B - 30.8 24.3 7200 113 2 - 0.0 0.0 7200 816 86
40N50L50F A 15.6 19.6 17.1 157 4 0 0.0 0.0 0.0 1733 57 4
40N50L50F B 6.6 13.2 9.0 471 5 0 0.0 0.0 0.0 3532 31 4
40N50L80F A 0.0 0.0 0.0 7 0 2 0.0 0.0 0.0 7 0 2
40N50L80F B 6.6 8.7 10.3 23 1 0 0.0 0.0 0.0 83 10 2
50N50L20F A ML 26.3 13.7 ML 746 8 ML 14.6 0.0 ML 7200 1268
50N50L20F B ML 26.1 9.5 ML 570 7 ML 9.1 0.0 ML 7200 110
50N50L50F A ML 14.7 16.3 ML 17 1 ML 0.0 0.0 ML 68 6
50N50L50F B ML 9.8 7.4 ML 21 1 ML 0.0 0.0 ML 192 22
50N50L80F A ML 14.1 17.1 ML 2 0 ML 0.0 0.0 ML 10 5
50N50L80F B ML 0.3 0.0 ML 1 4 ML 0.0 0.0 ML 2 4

60N50L20F A ML 25.8 13.6 ML 1193 15 ML 16.4 0.0 ML 7200 862
60N50L20F B ML 37.4 25.3 ML 1401 20 ML 33.1 0.0 ML 7200 4158
60N50L50F A ML 14.3 15.0 ML 49 1 ML 0.0 0.0 ML 436 21
60N50L50F B ML 20.4 10.4 ML 60 1 ML 0.0 0.0 ML 787 25
60N50L80F A ML 2.2 2.2 ML 12 1 ML 0.0 0.0 ML 27 9
60N50L80F B ML 12.1 12.7 ML 7 1 ML 0.0 0.0 ML 27 10
80N50L20F A ML - 26.0 ML 7200 89 ML - 20.5 ML 7200 7200
80N50L20F B ML - 31.9 ML 7200 94 ML - 30.9 ML 7200 7200
80N50L50F A ML 21.2 18.2 ML 438 3 ML 0.0 0.0 ML 6054 104
80N50L50F B ML 11.7 16.2 ML 497 3 ML 0.0 0.0 ML 3807 56
80N50L80F A ML 2.6 3.2 ML 49 4 ML 0.0 0.0 ML 107 29
80N50L80F B ML 4.2 5.8 ML 57 2 ML 0.0 0.0 ML 223 31
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Example 1

(a) 40N30C50L20F A (original) (b) 40N30C50L20F A (K′)

Solid lines: free edges, dashed lines: augmenting edges.
Selected relays: triangles. Single source: square.

724 commodities (left).
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Example 2

(a) 40N30C50L80F A (original) (b) 40N30C50L80F A (K′)

80% of free edges. Solid lines: free edges, dashed lines: augmenting edges.
Selected relays: triangles. Single source: square.

443 commodities (left).
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Conclusion

Summary:

First study on exact algorithms for NDPR

MIP models based on communication graph(s)

Flow-based models (B&P) work well if very few commodities involved

Cut-based model (B&P&C) better for a large number of commodities

The new algorithms find optimal solutions for instances of:
I 160 nodes and more than 3500 edges
I 80 nodes and more than 1900 commodity pairs
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Conclusion

Future Challenges:

Not included in our model:
I maximal number of charging stations along a single trip
I maximal detouring length
I maximal duration of the trip
I different charging technologies

Still, the obtained solutions:
I can be used within some decomposition schemes (Lagrangian, Benders)
I in a step-by-step planning approach
I as a starting heuristic solution that needs small repairs

More powerful exact algorithms, matheuristics, ...

Models on layered graphs
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Ivana Ljubić Optimal Design of Charging Stations September 17, 2015 40 / 41



Thank you for your Attention! Questions?
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