On Optimal Design of Charging Stations for Electric Vehicles

Markus Leitner²

Ivana Ljubić¹ Martin Riedler³ Mario Ruthmair⁴

¹ESSEC Business School of Paris, France

²Department of Statistics and Operations Research, University of Vienna, Vienna, Austria

³Institute of Computer Graphics and Algorithms, TU Wien, Vienna, Austria

⁴Mobility Department, AIT Austrian Institute of Technology, Vienna, Austria

Séminaire mensuel du PGMO, École Polytechnique, Paris September 17, 2015

Motivation: E-vehicles transporting goods from A to B

Where to place charging stations, and how many?
 Where to use shortcuts (and pay a road toll)?

Application Areas: E-Mobility and Design of Telecom Networks

- E-Mobility: E-cars need to recharge after traveling a certain distance
- Congestion charging mechanisms

• Goal: Fulfill the demands while minimizing the cost of road tolls and charging stations.

Application Areas: E-Mobility and Design of Telecom Networks

- E-Mobility: E-cars need to recharge after traveling a certain distance
- Congestion charging mechanisms

• Goal: Fulfill the demands while minimizing the cost of road tolls and charging stations.

Network Design: Signals can only be transmitted over limited distances (signal deterioration). Signal regenerators to be placed, or additional lines to be purchased.

(日) (周) (三) (三)

e4share Project

< 同 ト く ヨ ト く ヨ ト

Outline

Problem Definition

- 2 Our Contribution
- **3** Communication Graphs
- MIP Models

3

・ 同 ト ・ ヨ ト ・ ヨ ト

Problem Definition

- Undirected graph G = (V, E)
- \bullet Edge costs $w: E \to \mathbb{Q}_0^+$ and edge lengths $d: E \to \mathbb{Q}^+$
- Maximum distance $d_{\mathsf{max}} \in \mathbb{N}^+$
- Relay costs $c:V\to \mathbb{Q}^+$
- \bullet Set of $node \ pairs \ {\cal K}$ that need to communicate

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Problem Definition

• Undirected graph
$$G = (V, E)$$

- \bullet Edge costs $w: E \to \mathbb{Q}^+_0$ and edge lengths $d: E \to \mathbb{Q}^+$
- Maximum distance $d_{\mathsf{max}} \in \mathbb{N}^+$
- Relay costs $c:V\to \mathbb{Q}^+$
- \bullet Set of node pairs ${\cal K}$ that need to communicate
- An s-t path p is feasible iff its length d(p) ≤ d_{max}.
 Otherwise, relays {r₁,..., r_k} to be placed so that

$$p = (\mathbf{s}, p_1, r_1, p_2, r_2, \dots, r_k, p_{k+1}, \mathbf{t}),$$

and length of every subpath p_i is $d(p_i) \leq d_{\max}$.

Problem Definition

• Undirected graph
$$G = (V, E)$$

 \bullet Edge costs $w: E \to \mathbb{Q}^+_0$ and edge lengths $d: E \to \mathbb{Q}^+$

- Maximum distance $d_{\max} \in \mathbb{N}^+$
- Relay costs $c:V\to \mathbb{Q}^+$
- \bullet Set of node pairs ${\cal K}$ that need to communicate
- An s-t path p is feasible iff its length d(p) ≤ d_{max}.
 Otherwise, relays {r₁,..., r_k} to be placed so that

$$p = (\mathbf{s}, p_1, r_1, p_2, r_2, \dots, r_k, p_{k+1}, \mathbf{t}),$$

and length of every subpath p_i is $d(p_i) \leq d_{\max}$.

Goal:

Choose a subset of relays and edges with minimal total costs s.t. there exists a feasible path for every pair in ${\cal K}.$

Ivana Ljubić

Example

Graph G = (V, E), $d_{max} = 4$ $\mathcal{K} = \{(0, 3), (0, 4), (2, 5), (3, 4)\}$ Free (existing) edges E_0 : $E^0 = \{e|w(e) = 0\}$ Augmenting edges E^* : $E^* = \{e|w(e) > 0\}$ nodes index (relay cost) edges cost (distance)

Optimal solution:

1 + 3

Cycle Property

Property 1

In an optimal solution there exists for every pair $(u, v) \in \mathcal{K}$ a path from u to v visiting each relay at most once.

Property 2

In an optimal solution there exists for every pair $(u, v) \in \mathcal{K}$ a path from u to v visiting each non-relay node **at most twice**.

Ivana Ljubić

Optimal Design of Charging Station

Cycle Property

Property 1

In an optimal solution there exists for every pair $(u, v) \in \mathcal{K}$ a path from u to v visiting each relay at most once.

Property 2

In an optimal solution there exists for every pair $(u, v) \in \mathcal{K}$ a path from u to v visiting each non-relay node **at most twice**.

Ivana Ljubić

Optimal Design of Charging Station

Outline

Problem Definition

2 Our Contribution

3 Communication Graphs

4 MIP Models

3

・ 同 ト ・ ヨ ト ・ ヨ ト

Previous Work

- E. A. Cabral, E. Erkut, G. Laporte, and R. A. Patterson. The network design problem with relays. *European Journal of Operational Research*, 180(2):834–844, 2007.
- A. Konak. Network design problem with relays: A genetic algorithm with a path-based crossover and a set covering formulation. *European Journal of Operational Research*, 218(3):829–837, 2012.
- S. Lin, X. Li, K. Wei, and C. Yue. A tabu search based metaheuristic for the network design problem with relays. In *Service Systems and Service Management (ICSSSM), 2014 11*th *International Conference on*, pages 1–6, 2014.

Our Contribution

- **Our contribution:** We introduce 3 MIP models derived on the communication graph.
- Derive two Branch-and-Price and a Branch-Price-and-Cut algorithm.
- Outperform heuristics on smaller instances from the literature and solve them to optimality.
- Provide best known UBs for unsolved instances.

11 / 41

Outline

< 一型

Communication Graph: Idea

Used by Chen et al. for solving the Regenerator Location Problem. Main idea:

- Graph $\mathbf{G}_{\mathrm{C}} = (\mathbf{V}, \mathbf{C}^{\mathbf{0}} \cup \mathbf{C}^{*})$
- Contains edges between all vertex pairs that can be connected **without** the use of **relays**
- Each edge $b \in C^0 \cup C^*$ corresponds to a set of paths P_b in G

Communication Graph: Example

$$d_{\max} = 4$$

September 17, 2015

Communication Graph: Example

(b) Adding all feasible connections using edges in $E_O \cup E^*$ (dash-dotted lines)

$$d_{\rm max} = 4$$

September 17, 2015

Communication Graph: Example

 $d_{\max} = 4$ $G_C = (V, C)$ where $C = C^0 \cup C^*$

∃ →

Communication Graph: Properties

Consider a pair $(u, v) \in \mathcal{K}$.

- Either u and v are directly connected in G_C , or
- Relays need to be placed, so that there is a *u-v* path in **G**_C with relay placed at all intermediate nodes

Identify cost-optimal connections among the exponentially many possibilities \Rightarrow Column Generation

Communication Graph: Properties

Consider a pair (u, v) = (4, 5).

- Place relay at node 1 and use path (4, 1, 5)
- Edge $(1,5) \in C$, so we should choose an appropriate 1-5 path in **G**.
- Since $(1,5) \in C^*$, edge costs are involved
- Optimal path chosen by Column Generation

Outline

Problem Definition

- 2 Our Contribution
- 3 Communication Graphs
- 4 MIP Models

3

< 一型

Communication Graph Models

Theorem

In an optimal solution mapped on a communication graph there exists for every $u \in \mathcal{K}_S$ an arborescence rooted at u reaching all targets $v \in \mathcal{K}(u)$.

Communication Graph Models

Theorem

In an optimal solution mapped on a communication graph there exists for every $u \in \mathcal{K}_S$ an arborescence rooted at u reaching all targets $v \in \mathcal{K}(u)$.

Three MIP Fo	ormulations		
Model Name	Graphs	Connectivity	Туре
MCF	comm.graph	multi-commodity flow	B&P
SCF	comm.graph	single-commodity flow	B&P
CUT	directed comm. graph	cutset inequalities	B&P&C

Communication Graph Models

Theorem

In an optimal solution mapped on a communication graph there exists for every $u \in \mathcal{K}_S$ an arborescence rooted at u reaching all targets $v \in \mathcal{K}(u)$.

Three MIP Formulations									
Model Name	Graphs	Connectivity	Туре						
MCF	comm.graph	multi-commodity flow	B&P						
SCF	comm.graph	single-commodity flow	B&P						
CUT	directed comm. graph	cutset inequalities	B&P&C						

Major Difficulty

Connect the arborescences in the communication graph with the edges of the original graph.

MCF Variables

$$\begin{aligned} x_e &= \begin{cases} 1, & e \text{ is in solution,} \\ 0, & \text{otherwise} \end{cases} \quad \forall e \in E \\ y_i &= \begin{cases} 1, & \text{relay is placed at } i, \\ 0, & \text{otherwise} \end{cases} \quad \forall i \in V \\ f_a^{uv} &= \begin{cases} 1, & a \text{ is used to connect } (u, v) \text{ in } G_{\mathrm{C}}, \\ 0, & \text{otherwise} \end{cases} \quad \forall (u, v) \in \mathcal{K}, \forall a \in A_{\mathrm{C}} \end{aligned}$$

2

21 / 41

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Path Variables

Consider a vertex pair b = (u, v). Let

$$P_b = \{p \mid p \text{ is a } u \text{-} v \text{ path in } G, \text{ s.t. } d(p) \leq d_{max}\}$$

Basic idea:

represent each feasible path $p \in P_b$ for a given commodity pair $b = (u, v) \in \mathcal{K}$ as a simple path from u to v in $G_{\rm C}$.

Path Variables

Mapping between edges in $G_{\rm C}$ and paths in G:

$$\lambda^{p}_{b} = egin{cases} 1, & p ext{ is used to connect node pair } b, \ orall b \in C^{*}, \ orall p \in P_{b} \ 0, & ext{otherwise} \end{cases}$$

Exponential number of λ variables \Rightarrow column generation.

3

22 / 41

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

MCF Model

$$\min\sum_{i\in V}c_iy_i+\sum_{e\in E^*}w_ex_e$$

$$\sum_{a \in \delta^{-}(i)} f_{a}^{uv} - \sum_{a \in \delta^{+}(i)} f_{a}^{uv} = \begin{cases} -1 & i = u \\ 0 & i \neq u, i \neq v \\ 1 & i = v \end{cases} \qquad \begin{array}{l} \forall (u, v) \in \mathcal{K}, \\ \forall i \in V_{\mathcal{C}}^{u} \\ \forall (u, v) \in \mathcal{K}, \\ \forall i \in V, \\ \forall i \in V, \\ i \neq u, i \neq v \end{array} \qquad (1)$$

(日) (四) (三) (三) (三)

23 / 41

MCF Model

$$\min\sum_{i\in V}c_iy_i+\sum_{e\in E^*}w_ex_e$$

$$\sum_{a\in\delta^{-}(i)}f_{a}^{uv}-\sum_{a\in\delta^{+}(i)}f_{a}^{uv}=\begin{cases}-1 & i=u\\ 0 & i\neq u, i\neq v\\ 1 & i=v\end{cases} \qquad \qquad \forall (u,v)\in\mathcal{K}, \\ \forall i\in V_{\mathrm{C}}^{u} \end{cases}$$
(1)

$$\sum_{a \in \delta^+(i)} f_a^{uv} \le y_i \qquad \qquad \forall (u, v) \in \mathcal{K}, \\ \forall i \in V, \qquad (2) \\ i \ne u, i \ne v$$

$$f_{ij}^{uv} + f_{ji}^{uv} \le \sum_{p \in P_b} \lambda_b^p$$
$$\sum_{p \in P_b: e \in p} \lambda_b^p \le x_e$$

 $a \in \delta^+(i)$

$$\forall (u, v) \in \mathcal{K}, \\ \forall b = \{i, j\} \in C^* \quad (\mu_b^{uv})$$
 (3)

 $\forall e \in E^*, \forall b \in C^* \quad (\alpha_b^e)$ (4)

MCF: Pricing Subproblem

Given current LP solution, let $\tilde{\mu}_{b}^{uv}$ and $\tilde{\alpha}_{b}^{e}$ be values of dual variables.

Pricing Subproblem for each $b = \{i, j\} \in C^*$

Find a feasible path $p \in P_b$ with minimum reduced costs:

$$\arg\min_{p\in P_b} \left(\sum_{e\in E^*\cap p} \tilde{\alpha}_b^e - \sum_{(u,v)\in \mathcal{K}} \tilde{\mu}_b^{uv} \right)$$

For a fixed b, $\sum_{(u,v)\in\mathcal{K}} \tilde{\mu}_b^{uv}$ is a constant, the problem boils down to:

$$ilde{p}_b = \operatorname*{arg\,min}_{p \in P_b} \sum_{e \in E^* \cap p} ilde{\alpha}^e_b \qquad \forall b \in C^*$$

Weight Constrained Shortest Path Problem. Pseudo-polynomial time. Dynamic programming procedure proposed by Gouveia et al (2008).

MCF: Pros and Cons

Cons:

Huge number of design variables $(|V| + |E| + |\mathcal{K}||V|^2)$ (in addition to λ !)

Pros:

Strong LBs!

Trade the size of the model and the strength of the bounds: single-commodity flow model *SCF* (not shown in this talk)

25 / 41

CUT Formulation: Directed Communication Graph

Basic idea:

A feasible path p for a given commodity pair $b = (u, v) \in \mathcal{K}$ is a directed path from u to v in G'_{C} .

$$x_e = egin{cases} 1, & e ext{ is in solution}, \ \forall e \in E \ 0, & ext{otherwise} \end{cases}$$

$$X_{m{a}} = egin{cases} 1, & m{a} ext{ is used in a feasible path},\ orall m{a} \in \mathcal{A}_{\mathrm{C}}' \ 0, & ext{otherwise} \end{cases}$$

One-to-one correspondence between the arcs in $A_{\rm C}^r$ and the relays.

Example: a path between 0 and 3 in communication using a relay at 1

$$\min\sum_{i\in V} c_i X_{(i_1,i_2)} + \sum_{e\in E^*} w_e x_e$$

$$\min\sum_{i\in V} c_i X_{(i_1,i_2)} + \sum_{e\in E^*} w_e x_e$$

 $\forall (u, v) \in \mathcal{K}, \forall W \subset V'_{\mathrm{C}}$ $v_1 \in W, u_2 \notin W$

$$\min\sum_{i\in V}c_iX_{(i_1,i_2)}+\sum_{e\in E^*}w_ex_e$$

$$\sum_{a\in\delta^{-}(W)}X_{a}\geq 1$$

 $\forall (u, v) \in \mathcal{K}, \forall W \subset V'_{\mathrm{C}}$ $v_1 \in W, u_2 \notin W$

$$X_{uv} \leq \sum_{p \in P_b} \lambda_b^p$$

 $X_{vu} \leq \sum_{p \in P_b} \lambda_b^p$

$$\forall b = \{u, v\} \in C^* \quad (\mu_b^1)$$

$$\forall b = \{u, v\} \in C^* \quad (\mu_b^2)$$

<ロ> (日) (日) (日) (日) (日)

$$\min\sum_{i\in V}c_iX_{(i_1,i_2)}+\sum_{e\in E^*}w_ex_e$$

$$\sum_{a\in\delta^{-}(W)}X_{a}\geq 1$$

 $\forall (u, v) \in \mathcal{K}, \forall W \subset V'_{\mathrm{C}} \\ v_1 \in W, u_2 \notin W$

$$\begin{split} X_{uv} &\leq \sum_{p \in P_b} \lambda_b^p \\ X_{vu} &\leq \sum_{p \in P_b} \lambda_b^p \end{split}$$

 $\forall b = \{u, v\} \in C^* \quad (\mu_b^1)$

$$\forall b = \{u, v\} \in C^* \quad (\mu_b^2)$$

 $\sum_{\substack{p \in P_b: e \in p}} \lambda_b^p \le x_e \qquad \qquad \forall e \in E^*, \forall b \in C^* \quad (\alpha_b^e)$

$$\begin{aligned} & X_a, x_e \in \{0, 1\} \\ & \lambda_b^p \geq 0 \end{aligned} \qquad \qquad \forall e \in E^*, \forall a \in A_{\rm C}' \\ & \forall b \in C^*, p \in P_b \end{aligned}$$

CUTS: Pricing Subproblem

Pricing Subproblem for each $b \in C^*$

Find a feasible path $p \in P_b$ with minimum reduced costs:

$$\arg\min_{p\in P_b} \left(\sum_{e\in E^*\cap p} \tilde{\alpha}_b^e - \tilde{\mu}_b^1 - \tilde{\mu}_b^2 \right)$$

For a fixed b, $\tilde{\mu}_b^1 + \tilde{\mu}_b^2$ is a constant, the problem boils down to:

$$\tilde{p}_b = \operatorname*{arg\,min}_{p \in P_b} \sum_{e \in E^* \cap p} \tilde{\alpha}_b^e \qquad \forall b \in C^*$$

Weight Constrained Shortest Path Problem. **Advantage:** connectivity cuts do not influence the pricing subproblem. Row- and column-generation can be performed independently!!

28 / 41

Outline

Problem Definition

- 2 Our Contribution
- 3 Communication Graphs
- 4 MIP Models

3

< 一型

Cabral - Instances

- Originally introduced in Cabral et al. [2007]
- 4-grid graphs
- Only augmenting edges
- Cost and edge length values are selected uniformly at random from [10, 30]
- Communication pairs have a common origin node

Instance	V	<i>E</i> *	$ E^{0} $	$ \mathcal{K} $	d _{max}	
4A5B70L5K	20	31	0	5	70	
4A5B70L10K	20	31	0	10	70	
5A5B70L5K	25	40	0	5	70	
5A5B70L10K	25	40	0	10	70	
6A5B70L5K	30	49	0	5	70	
6A5B70L10K	30	49	0	10	70	
7A5B70L5K	35	58	0	5	70	
7A5B70L10K	35	58	0	10	10	
8A5B70L5K	40	67	0	5	70	
8A5B70L10K	40	67	0	10		
9A5B70L5K	45	76	0	5	70	
9A5B70L10K	45	76	0	10	70	
10A5B70L5K	50	85	0	5	70	
10A5B70L10K	50	85	0	10	70	
11A5B70L5K	55	94	0	5	70	
11A5B70L10K	55	94	0	10	70	
12A5B70L5K	60	103	0	5	70	
12A5B70L10K	60	103	U	10	70	

Results: Cabral - Instances¹

la stan as	L	P Gap [%		LP - t [s]			Optimality Gap [%]			t [s]			DMDI
Instance	MCFM	SCFM	CUTS	MCFM	SCFM	CUTS	MCFM	SCFM	CUTS	MCFM	SCFM	CUTS	RIVIPT
4A5B70L5K	18.8	69.0	23.7	0	0	0	0.0	0.0	0.0	1	1	1	1
4A5B70L10K	36.6	79.5	42.2	0	0	0	0.0	0.0	0.0	5	17	7	4
5A5B70L5K	28.6	67.9	33.8	0	0	0	0.0	0.0	0.0	2	9	5	2
5A5B70L10K	39.3	81.2	46.8	1	0	0	0.0	0.0	0.0	18	196	25	30
6A5B70L5K	27.9	67.0	32.9	0	0	0	0.0	0.0	0.0	6	30	10	8
6A5B70L10K	40.3	78.6	46.3	2	0	1	0.0	0.0	0.0	42	433	40	88
7A5B70L5K	32.8	66.4	38.7	0	0	0	0.0	0.0	0.0	8	21	11	7
7A5B70L10K	39.7	78.5	45.1	4	0	1	0.0	0.0	0.0	102	1312	89	184
8A5B70L5K	31.8	69.2	36.0	1	0	0	0.0	0.0	0.0	21	238	32	34
8A5B70L10K	38.5	79.9	43.1	5	0	1	0.0	1.9	0.0	130	3772	157	523
9A5B70L5K	31.8	67.7	38.5	1	0	0	0.0	0.0	0.0	24	257	36	21
9A5B70L10K	39.0	81.7	42.5	8	0	2	0.0	10.8	0.0	282	5303	271	339
10A5B70L5K	31.2	65.9	34.8	2	0	0	0.0	1.3	0.0	59	1068	81	46
10A5B70L10K	38.1	77.4	42.7	13	0	1	0.0	12.4	0.0	844	5674	547	1419
11A5B70L5K	34.0	67.0	39.1	2	0	0	0.0	0.0	0.0	40	458	50	34
11A5B70L10K	38.0	76.7	42.4	22	0	2	0.0	18.3	0.0	1073	7056	588	3496
12A5B70L5K	34.9	68.0	39.1	3	0	1	0.0	2.3	0.0	459	1085	660	549
12A5B70L10K	38.0	78.3	42.2	27	0	2	4.1	25.0	1.3	2661	6587	2196	4656

¹Each row corresponds to the mean over 10 instances.

RMPI: Cabral et al. (2007) report gaps between 3% and 21%.

Ivana Ljubić

Optimal Design of Charging Stations

3 N 3

NDPR - Instances

- Modified version of the instances provided in Konak [2012]
- Euclidean distances have been rounded up to obtain integral edge weights and lengths
- Only augmenting edges
- Type I: $w_e = d_e$
- Type II: $w_e = d_{max} d_e$

Instance	V	<i>E</i> *	$ E^{0} $	$ \mathcal{K} $	d _{max}
40N5K30L		198		5	30
40N5K35L	10	272		5	35
40N10K30L	40	198	0	10	30
40N10K35L	50	272		10	35
50N5K30L		279		5	30
50N5K35L	50	372		5	35
50N10K30L	50	279	0	10	30
50N10K35L		372		10	35
60N5K30L		305		5	30
60N5K35L	60	412	0	5	35
60N10K30L	00	305	0	10	30
60N10K35L		412		10	35
80N5K30L		641		5	30
80N5K35L	00	853		5	35
80N10K30L	00	641	0	10	30
80N10K35L		853		10	35
160N5K30L		2773		5	30
160N5K35L	160	3624	0	5	35
160N10K30L	100	2773		10	30
160N10K35L		3624		10	35

Results: NDPR - Instances (Type I)

Instance	LI	P Gap [%]		LP - t [s]		Optin	nality Gap	o [%]		t [s]	
Instance	MCFM	SCFM	CUTS	MCFM	SCFM	CUTS	MCFM	SCFM	CUTS	MCFM	SCFM	CUTS
40N_5K_30L	21.5	21.5	24.9	0	0	0	0.0	0.0	0.0	76	72	98
40N_5K_35L	38.5	38.5	43.4	3	3	1	11.6	11.4	11.8	7200	7200	7200
40N_10K_30L	26.2	26.9	28.9	4	3	0	0.0	0.0	0.0	2850	3109	1163
40N_10K_35L	40.1	40.3	44.6	6	5	2	17.5	17.5	20.8	7200	7200	7200
50N_5K_30L	8.5	13.5	15.5	1	1	1	0.0	0.0	0.0	6	8	20
50N_5K_35L	22.5	25.4	27.6	2	2	2	0.0	0.0	0.0	39	46	83
50N_10K_30L	24.6	25.2	31.1	9	7	2	0.0	0.0	0.0	737	828	1841
50N_10K_35L	27.6	28.1	37.4	22	18	6	0.0	0.0	0.0	2098	1890	3209
60N_5K_30L	28.1	28.1	35.8	2	2	2	0.0	0.0	0.0	63	67	236
60N_5K_35L	24.3	24.3	34.1	4	5	4	0.0	0.0	0.0	141	121	429
60N_10K_30L	32.3	32.3	40.3	11	11	2	0.0	0.0	5.0	2534	2908	7200
60N_10K_35L	33.1	33.1	43.7	17	36	6	0.0	3.6	12.8	7155	7200	7200
80N_5K_30L	44.6	51.0	52.2	24	16	14	28.6	34.4	33.9	7200	7200	7200
80N_5K_35L	53.7	59.2	61.6	83	49	33	41.8	47.9	45.0	7200	7200	7200
80N_10K_30L	53.1	56.5	59.9	195	139	26	44.0	46.4	47.4	7200	7200	7200
80N_10K_35L	66.3	68.3	73.1	1046	602	63	63.7	65.1	64.2	7200	7200	7200
160N_5K_30L	55.8	55.8	64.5	4183	3625	1414	55.8	54.9	62.9	7200	7200	7200
160N_5K_35L	-	-	73.4	7200	7200	6402	-	-	73.2	7200	7200	7200
160N_10K_30L	-	-	74.5	7200	7200	7200	-	-	74.5	7200	7200	7200
160N_10K_35L	-	-	85.8	7200	7200	7200	-	-	85.8	7200	7200	7200

イロト イポト イヨト イヨト

Results: NDPR - Instances (Type II)

luster and	LI	P Gap [%	1		LP - t [s]		Optin	nality Gap	[%]		t [s]	
Instance	MCFM	SCFM	CUTS	MCFM	SCFM	CUTS	MCFM	SCFM	CUTS	MCFM	SCFM	CUTS
40N_5K_30L_p3	0.3	0.3	1.6	0	0	0	0.0	0.0	0.0	0	0	0
40N_5K_35L_p3	7.8	7.8	12.9	2	1	1	0.0	0.0	0.0	6	4	6
40N_10K_30L_p3	6.6	8.0	9.7	2	2	0	0.0	0.0	0.0	11	10	9
40N_10K_35L_p3	10.1	10.9	16.1	7	7	1	0.0	0.0	0.0	61	55	29
50N_5K_30L_p3	0.0	6.5	0.0	0	0	0	0.0	0.0	0.0	0	1	0
50N_5K_35L_p3	1.9	9.8	7.4	1	1	2	0.0	0.0	0.0	2	4	22
50N_10K_30L_p3	2.5	5.7	7.6	1	1	2	0.0	0.0	0.0	3	2	21
50N_10K_35L_p3	3.0	4.0	11.4	7	8	7	0.0	0.0	0.0	56	39	64
60N_5K_30L_p3	14.9	14.9	23.0	1	2	1	0.0	0.0	0.0	8	8	27
60N_5K_35L_p3	0.0	0.0	0.0	0	0	2	0.0	0.0	0.0	0	0	2
60N_10K_30L_p3	13.7	13.7	19.6	4	5	2	0.0	0.0	0.0	58	53	44
60N_10K_35L_p3	6.9	6.9	10.2	6	7	4	0.0	0.0	0.0	39	30	39
80N_5K_30L_p3	7.8	15.9	13.3	8	6	11	0.0	0.0	0.0	54	85	117
80N_5K_35L_p3	6.2	16.1	12.0	13	14	36	0.0	0.0	0.0	59	208	229
80N_10K_30L_p3	12.1	16.1	18.4	86	55	22	0.0	0.0	0.0	1227	1105	526
80N_10K_35L_p3	18.9	23.4	25.6	348	244	118	14.5	15.0	8.6	7200	7200	7200
160N_5K_30L_p3	7.3	7.3	11.6	715	658	882	0.0	0.0	0.0	1896	1954	6641
160N_5K_35L_p3	10.9	10.9	14.1	1301	1348	2119	5.1	5.7	9.5	7200	7200	7200
160N_10K_30L_p3	14.1	14.1	19.4	2553	2843	2584	13.8	13.8	17.8	7200	7200	7200
160N_10K_35L_p3	-	-	33.2	7200	7200	7200	-	-	33.2	7200	7200	7200

September 17, 2015

イロト イヨト イヨト

ARLP - Instances

- New Instances with a high amount of commodities
- Edge lengths based on rounded up euclidean distances
- Edge costs normally distributed around edge lengths (μ = d_e, σ = 5)
- Also free edges

Instance	V	<i>E</i> *	$ E^{0} $	$ \mathcal{K} $	d _{max}	
40N50L20F_A		124	26	724		
40N50L20F_B		123	35	688		
40N50L50F_A	10	78	89	513	50	
40N50L50F_B	40	72	71	586	50	
40N50L80F_A		32	146	443		
40N50L80F_B		35	154	423		
50N50L20F_A		212	44	1111		
50N50L20F_B		235	59	1022		
50N50L50F_A	50	157	132	719	E0	
50N50L50F_B	50	132	117	873	50	
50N50L80F_A		51	175	788		
50N50L80F_B		58	212	682		
60N50L20F_A		269	72	1549		
60N50L20F_B		268	63	1588		
60N50L50F_A	60	204	216	1036	E0	
60N50L50F_B	00	200	197	1103	50	
60N50L80F_A		85	311	854		
60N50L80F_B		74	283	1041		
80N50L20F_A		557	145	2599		
80N50L20F_B		545	124	2659		
80N50L50F_A	00	345	313	1922	E0	
80N50L50F_B		375	366	1902	50	
80N50L80F_A		148	548	1834		
80N50L80F_B		121	536	1709		

3. 3

Results: ARLP - Instances

Instance	LF	• Gap [%]		_P - t [s]		Optin	nality Gap	[%]		t [s]	
instance	MCFM	SCFM	CUTS	MCFM	SCFM	CUTS	MCFM	SCFM	CUTS	MCFM	SCFM	CUTS
40N50L20F_A	-	31.5	20.7	7200	177	4	-	0.0	0.0	7200	1517	189
40N50L20F_B	-	30.8	24.3	7200	113	2	-	0.0	0.0	7200	816	86
40N50L50F_A	15.6	19.6	17.1	157	4	0	0.0	0.0	0.0	1733	57	4
40N50L50F_B	6.6	13.2	9.0	471	5	0	0.0	0.0	0.0	3532	31	4
40N50L80F_A	0.0	0.0	0.0	7	0	2	0.0	0.0	0.0	7	0	2
40N50L80F_B	6.6	8.7	10.3	23	1	0	0.0	0.0	0.0	83	10	2
50N50L20F_A	ML	26.3	13.7	ML	746	8	ML	14.6	0.0	ML	7200	1268
50N50L20F_B	ML	26.1	9.5	ML	570	7	ML	9.1	0.0	ML	7200	110
50N50L50F_A	ML	14.7	16.3	ML	17	1	ML	0.0	0.0	ML	68	6
50N50L50F_B	ML	9.8	7.4	ML	21	1	ML	0.0	0.0	ML	192	22
50N50L80F_A	ML	14.1	17.1	ML	2	0	ML	0.0	0.0	ML	10	5
50N50L80F_B	ML	0.3	0.0	ML	1	4	ML	0.0	0.0	ML	2	4
60N50L20F_A	ML	25.8	13.6	ML	1193	15	ML	16.4	0.0	ML	7200	862
60N50L20F_B	ML	37.4	25.3	ML	1401	20	ML	33.1	0.0	ML	7200	4158
60N50L50F_A	ML	14.3	15.0	ML	49	1	ML	0.0	0.0	ML	436	21
60N50L50F_B	ML	20.4	10.4	ML	60	1	ML	0.0	0.0	ML	787	25
60N50L80F_A	ML	2.2	2.2	ML	12	1	ML	0.0	0.0	ML	27	9
60N50L80F_B	ML	12.1	12.7	ML	7	1	ML	0.0	0.0	ML	27	10
80N50L20F_A	ML	-	26.0	ML	7200	89	ML	-	20.5	ML	7200	7200
80N50L20F_B	ML	-	31.9	ML	7200	94	ML	-	30.9	ML	7200	7200
80N50L50F_A	ML	21.2	18.2	ML	438	3	ML	0.0	0.0	ML	6054	104
80N50L50F_B	ML	11.7	16.2	ML	497	3	ML	0.0	0.0	ML	3807	56
80N50L80F_A	ML	2.6	3.2	ML	49	4	ML	0.0	0.0	ML	107	29
80N50L80F_B	ML	4.2	5.8	ML	57	2	ML	0.0	0.0	ML	223	31

イロト イポト イヨト イヨト

Example 1

(a) 40N30C50L20F_A (original)

(b) 40N30C50L20F_A (\mathcal{K}')

Solid lines: free edges, dashed lines: augmenting edges. Selected relays: triangles. Single source: square. 724 commodities (left).

Example 2

(a) 40N30C50L80F_A (original)

(b) 40N30C50L80F_A (*K*′)

80% of free edges. Solid lines: free edges, dashed lines: augmenting edges. Selected relays: triangles. Single source: square. 443 commodities (left).

38 / 41

Summary:

- First study on exact algorithms for NDPR
- MIP models based on communication graph(s)
- Flow-based models (B&P) work well if very few commodities involved
- Cut-based model (B&P&C) better for a large number of commodities
- The new algorithms find optimal solutions for instances of:
 - 160 nodes and more than 3500 edges
 - 80 nodes and more than 1900 commodity pairs

39 / 41

Future Challenges:

- Not included in our model:
 - maximal number of charging stations along a single trip
 - maximal detouring length
 - maximal duration of the trip
 - different charging technologies

Future Challenges:

- Not included in our model:
 - maximal number of charging stations along a single trip
 - maximal detouring length
 - maximal duration of the trip
 - different charging technologies
- Still, the obtained solutions:
 - can be used within some decomposition schemes (Lagrangian, Benders)
 - in a step-by-step planning approach
 - as a starting heuristic solution that needs small repairs

40 / 41

Future Challenges:

- Not included in our model:
 - maximal number of charging stations along a single trip
 - maximal detouring length
 - maximal duration of the trip
 - different charging technologies
- Still, the obtained solutions:
 - can be used within some decomposition schemes (Lagrangian, Benders)
 - in a step-by-step planning approach
 - as a starting heuristic solution that needs small repairs
- More powerful exact algorithms, matheuristics, ...
- Models on layered graphs

Thank you for your Attention! Questions? ELECTRIC VEHICLE HARGING STATION

ヘロト 人間 とくほ とくほ とう