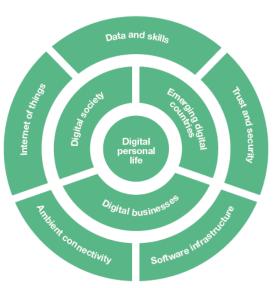

Stakes and overview of research in Artificial Intelligence and Operations Research at Orange

Henri Sanson IMT/OLR


November 2017

Research at Orange

9 research areas

There are 9 research areas which focus on:

- supporting the Essentials2020 strategy and beyond;
- piloting our research investments.

key figures

Close to **700** research employees (engineers,

technicians, designers, sociologists, developers and marketers), including 140 PhD students.

Contribution to over **80** collaborative projects (France and Europe).

150 research partnerships with public universities and laboratories in France and worldwide.

60 research partnerships with manufacturers.

Stakes for Orange

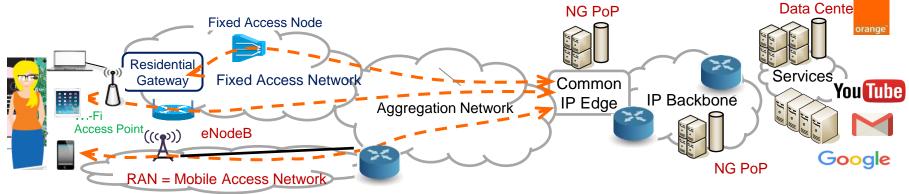
Enlighten group entities contribute to group strategy

Revenue optimisation Strategic decision making

Infrastructures performance & security

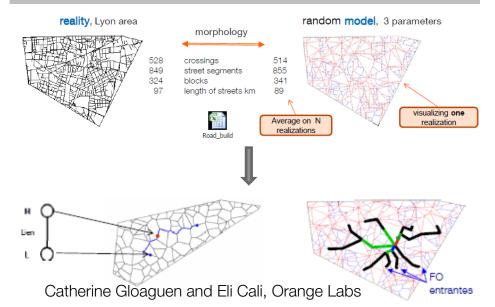
15 G€ investment in netwoks 2015-2018 20 M customers connectable to FTTH by 2022

Customer relationship improvement



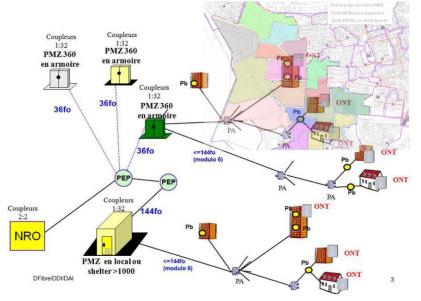
Part 1: Network optimization & management problems

Monitoring & diagnosis Network functions configuration					
Data Science Reinforcement learning - Game theory					
Network design and planning	Resource allocation & placement Routing				
Operations research Stochastic geometry	Operations research Stochastic geometry				

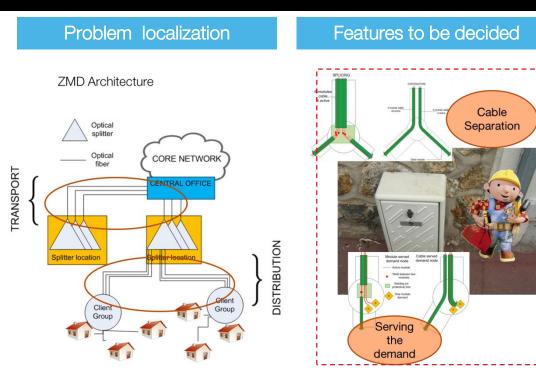

4 Orange

FTTH networks design optimisation: process overview

1) NRO placement optimisation


2) Decide among several architecture & deployement scenarios depending on geographic features

-> Network Topology Synthesis tool based on Stochastic Geometry - principle


3) Customers partitioning + Splitters placement

4) Tree structure selection + cabling optimisation

Matthieu Chardy et Al., Orange Labs

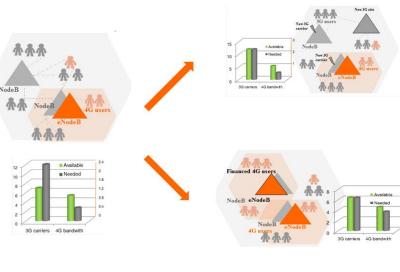
FTTH cabling optimization

Vincent Angelilla and Matthieu Chardy, Orange Labs

Main lines of the solution Integer linear programming

such that

$$\forall i \in V_N, \sum_{p \in \mathcal{P} \mid \omega(p) = i} (m_p^{born,sep} + m_p^{ctn,sep}) = \\ \sum_{p \in \mathcal{P} \mid \omega(p) = i} (m_p^{born,sep} + m_p^{ctn,sep}) + \sum_{p \in \mathcal{P} \mid \omega(p) = i, \omega(p) \in V_D} \sum_{l \in \mathcal{L}} D_{\omega(p)}^{mod} \cdot (K_{p,l}^{born,dem} + K_{p,l}^{ctn,dem}) \\ \forall i \in V_D, \sum_{p \in \mathcal{P} \mid \omega(p) = i} (m_p^{born,sep} + m_p^{ctn,sep}) + \sum_{p \in \mathcal{P} \mid \omega(p) = i} \sum_{l \in \mathcal{L}} D_l^{mod} \cdot (K_{p,l}^{born,dem} + K_{p,l}^{ctn,dem}) = \\ D_i^{mod} + \sum_{p \in \mathcal{P} \mid \alpha(p) = i} (m_p^{born,sep} + m_p^{ctn,sep}) + \sum_{p \in \mathcal{P} \mid \alpha(p) = i, \omega(p) \in V_D} \sum_{l \in \mathcal{L}} D_{\omega(p)}^{mod} \cdot (K_{p,l}^{born,dem} + K_{p,l}^{ctn,dem}) = \\ \forall p \in \mathcal{P}, \sum_{l \in \mathcal{L}} M_l \cdot K_{p,l}^{born,sep} = m_p^{born,sep} \\ \forall p \in \mathcal{P}, \sum_{l \in \mathcal{L}} (M_l - 1) \cdot K_{p,l}^{ctn,sep} \geq m_p^{born,sep} \\ \forall i \in V^*, \forall l \in \mathcal{L}, \sum_{p \in \mathcal{P} \mid \alpha(p) = i} K_{p,l}^{ctn,sep} + K_{p,l}^{ctn,sep} + K_{p,l}^{ctn,sep} \\ \forall i \in V^*, \forall l \in \mathcal{L}, \sum_{p \in \mathcal{P} \mid \alpha(p) = i} K_{p,l}^{ctn,sep} + K_{p,l}^{ctn,sep} \leq \sum_{p \in \mathcal{P} \mid \omega(p) = i} K_{p,l}^{born,sep} + K_{p,l}^{ctn,sep} \leq 1 \\ \forall i \in V^*, \forall l \in \mathcal{L}, \sum_{p \in \mathcal{P} \mid \alpha(p) = i} K_{p,l}^{born,sep} + \sum_{p \in \mathcal{P} \mid \omega(p) = i} \sum_{l \in \mathcal{L}} K_{p,l}^{born,sep} + K_{p,l}^{ctn,sep} \leq 1 \\ \forall i \in V^*, \sum_{m \in \mathcal{M}_L} m \cdot W_{i,m} = \sum_{p \in \mathcal{P} \mid i = \alpha(p)} m_p^{born,sep} + \sum_{p \in \mathcal{P} \mid \alpha(p) = i, \omega(p) \in V_D} \sum_{l \in \mathcal{L}} D_{\omega(p)}^{mod} \cdot K_{p,l}^{born,dem} \leq 1 \\ \forall i \in V^*, \sum_{m \in \mathcal{M}_L} M_i, m \in 1 \}$$

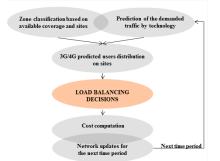

Evaluated impact: 10% saving of cabling cost

3G/4G load-balancing optimization for mobile network planning

Problem statement

Optimize progressive migration from 3G to 4G in order to best meet te demand in traffic and connectivity while respecting budget constraints:

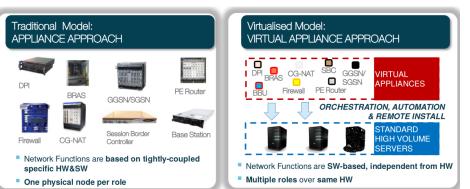
- Allocate new radio resources
- Intensification of 3G and 4G sites (increased capacity)
- 4G network expansion (more cells)
- number of 4G subscriber's packages to subsidize



Main lines of the solution

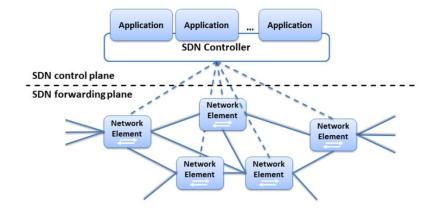
Integer linear programming for mono-périod problem

integrated in a sequential resolution schema for multi-periods


7 Orange

Mariem Ben Yahia, Yu Bao, Matthieu Chardy, Orange Labs

Virtualization : a major new step in telecom networks transformation


NFV = **Network Function Virtualization**

Decoupling of hardware and software Generic and affordable hardware Multiple Network functions can be deployed on the same hardware

SDN : Software Defined Network

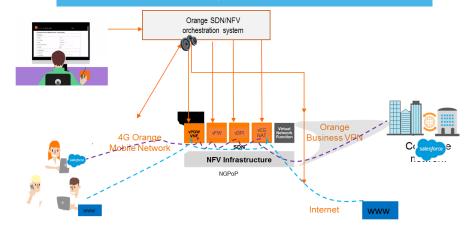
Programmable network -> Flexible configuration

Virtualized networks overview

Overall virtualized network management architectural framework

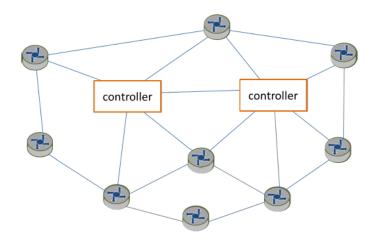
NFV Orchestrator VNF instanciation & chaining end-to-end network service management

Management Plane -> VNF Manager VNF (incl. SDN controler) setting


Control Plane -> SDN controler Routing & packet processing policy

Data Plane -> switch Packet swithing / forwarding

Geographical view

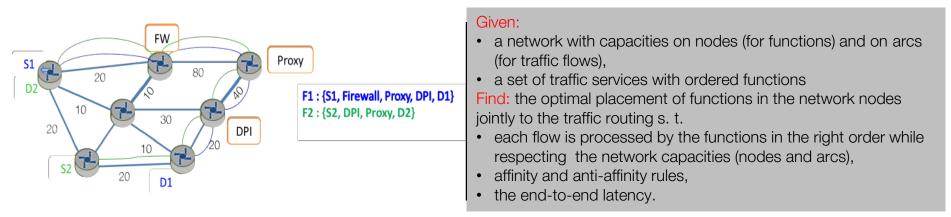


Example use case

Optimal Controler placement

Problem statement

Objectives:


- Minimize the number of controllers:
- Optimal placement of controllers
- Node assignment to controllers Constraints:
- each router j must be covered by at least one controller within the latency bound lmax ,
- each router j must be assigned to the nearest active controller,
- all pairs of controllers must respect the allowed inter-controllers latency lcc ,
- the difference of load between all pairs of controllers must be at most
- δ (load balancing constraints).

=> Main lines of the solution: Integer linear programming problem

Nancy Perrot, Orange Labs

Service (Virtual) function chaining

Problem statement

Main lines of the solution

Relaxed problem : optimal allocation of VNF on pre-computed routes.

- 1. Compute LP optimal solution.
- 2. Rounding sub-routine : selection of an admissible path (deterministic or random walk over the fractional paths).
- 3. VNF opt : Use the VNF deployment model to optimally deploy VNFs on the selected routes. Update the network capacities.

4. Allocate remaining service chains : unfeasible service chains are allocated in serial with the ILP.

On going work

Optimized routing strategies for Orange IP Global Network

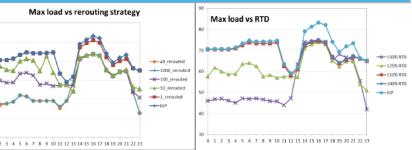
Problem statement

Main lines of the solution

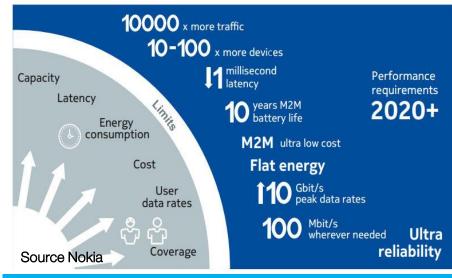
a UNIQUE routing for each O-D pair, over all the time slots not to deteriorate (too much) the IGP delay network congestion = load of the most loaded link

- 1) Perform reference (IGP) routing -> link load stats
- 2) Select a subset of O-D pairs to be rerouted
- 3) Solve successively the Maximum Concurrent Flow problem by
- focusing on the most remaining loaded links at each step.

Amal Benhamiche & Eric Gourdin, Orange Labs

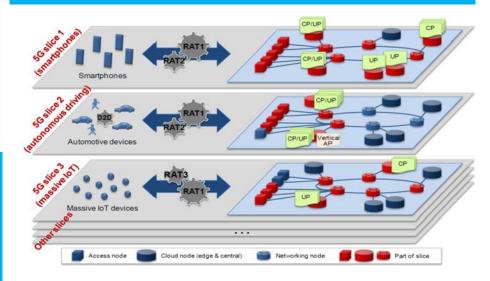

$$(i, j) = \frac{\sum_{k \in K} Flow^k(i, j)}{capacity(i, j)}$$

Reference routing (IGP):


- Compute the shortest paths for all (O,D) pairs
- Split Flow(O,D) at each router according to shortest paths
- Resulting link load

Propose alternative (optimized) approaches to **minimize the network congestion** AND **reduce the load of most loaded links**

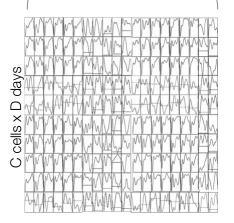
Result



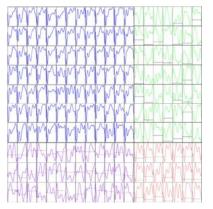
5G: the future unified telecom infrastructure for a genuine ambiant connectivity

Several radio interfaces Fixed – mobile convergence, Globally virtualized, from day 1, Network-Cloud convergence Device-to-Devices communication functionalities

Slices for vertical usages : smart cities, transport, health, TV, ..

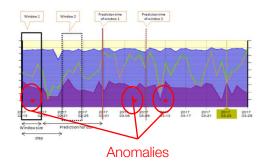

Some research problems addressed for 5G networks

- Slices-related optimization problems:
 - Service Function Chaining Problem and Multi-layer Network Design (to design a slice = a virtual network),
 - Virtual Network Embedding (to embed several slices/VN in the physical infrastructure),
- D2D-related modeling & optimization problems:
 - Global connectivity feasibility (stochastic geometric continuous percolation theory)
 - Radio resource allocation and demand routing (OR optimisation)
- Spectrum management
 - Leveraging unlicenced spectrum or licensed spectrul allocated to non-telco services in complement to primary licensed spectrum for offloading part of the traffic -> Licenced Assisted Access & Licenced Shared Access mechanisms
 - Offloading strategy and/or price negociation strategy analysis based on games theory.


Applications to RAN monitoring & diagnosis

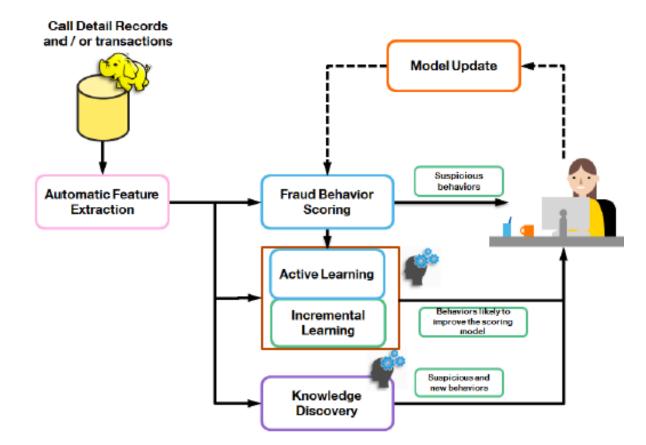
Discover different characteristic working patterns

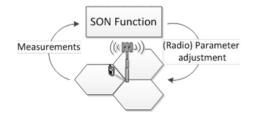
p (170) RAN KPIs, all day long (accessibility, retainability, integrity)


15 Orange

Principle: SEM after functional PCA Applications: simplified monitoring for troubleshooting, RAN planning,,

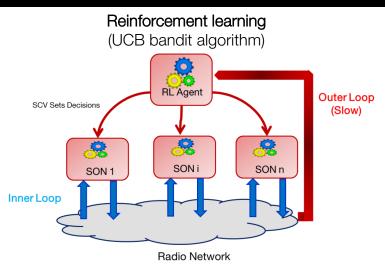
Predict (forecast) anomalies


Predict future anomalies of different types: accessibility, retainability, integrity Through superised learning



(from Yosra Ben Slimen & Sylvain Allio, OLN/GDM)

Toward a global approach to fraud detection


Applications to RAN SON functions setting

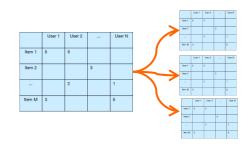
A SON function is a control loop that adjusts the network parameters based on the measurements feedback

SON functionalities are thesmselves becoming very diverse, targeting several aspects and parameters of the network

Their **individual objectives may be conflicting** as well -> need orchestration

Combinatorial issue:

SON functions x # configurations x # cells Solution: group cells with similar characeristics

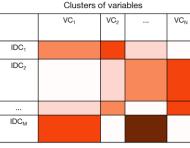

(Sana Ben Jemaa & Tony Daher, Orange Labs)

Part 2: General Data Science tools

Toward increased Data Mining automation with a generic toolbox ?



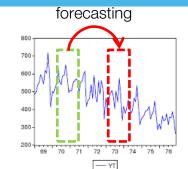
Automatic feature extraction aiming at parcimony



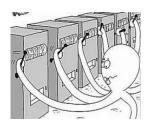
Variable construction from multi-tables

Bayesian + information theory framework

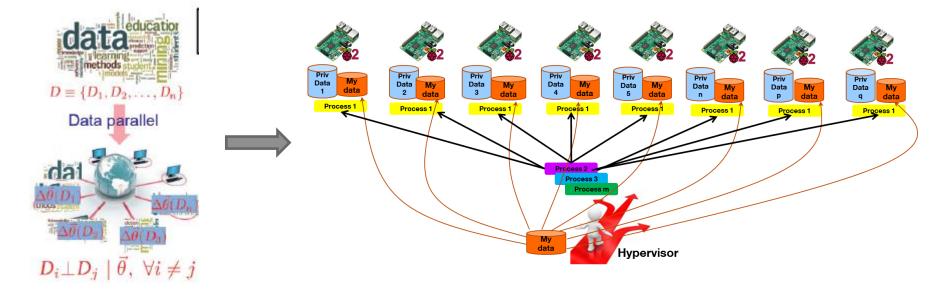



Co-clustering

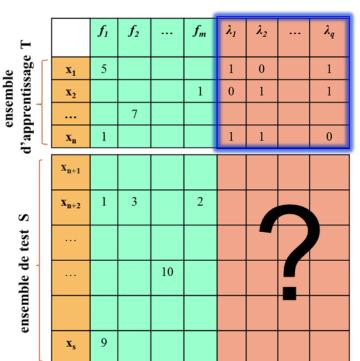
Increasing density of co-occurrence (id,v)



Time series analysis

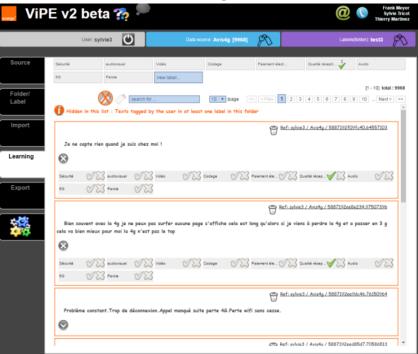


Reinforcement learning (bandits)



Federated (ubiquitous) learning for knowledge extraction in siloted data sets

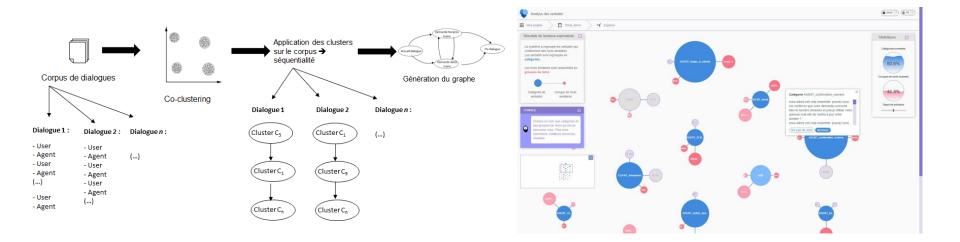
 $\vec{\theta}^{t+1} = \vec{\theta}^t + \Delta_f \vec{\theta}(D)$



Text Mining: interactive labeling of short texts

iInteractive multi-labels classification (scoring)

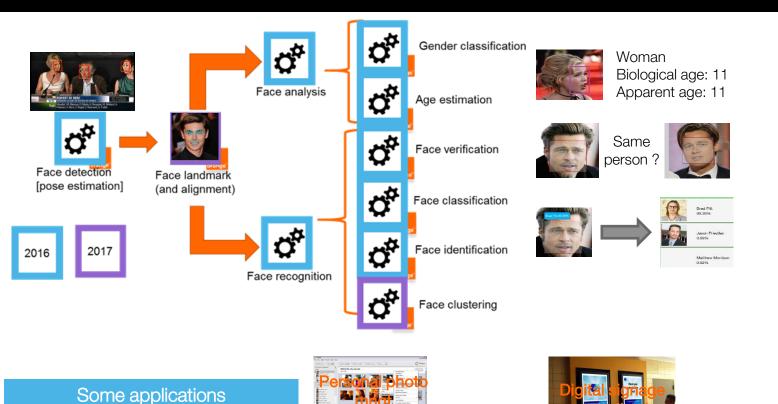
http://egc2017.imag.fr/demonstrations/vipe-un-outil-interactif-declassification-multilabel-de-messages-courts/



Current focus: extreme multi-label classification: ~ 1M variables & ~ 1M labels

(Frank Meyer et Wissam Siblini., Orange Labs)

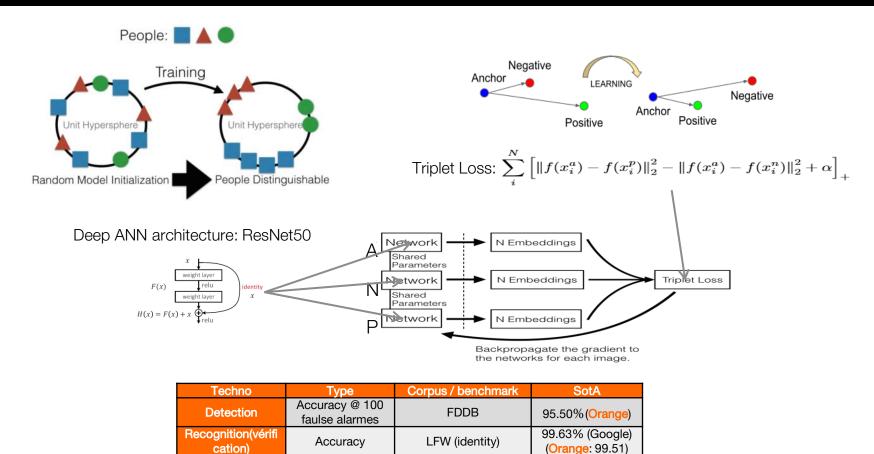
Text Mining for dialog graphs (chatbots) bootstrapping


Joint clustering of dialog acts and related words in customers – agents conversations histories

(Jean-Léon Bouraoui & Vincent Lemaire, Orange Labs)

Part 3: anthropomorhic Artificial Intelligence

Face recognition



24 Orange

(Adria Arrufat, Grigory Antipov, Moez Baccouche, Stéphane Pateux, Orange Labs)

Face verification through embeddings computation

Cross-age face verification

Combine all with

embeddings-based

face verification

FV Score

(Protocol 1)*

89.0%

94.5%

97.6%

(max = 100%)

FV Score

(Protocol 2)*

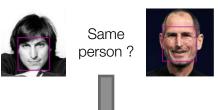
78.1%

78,5%

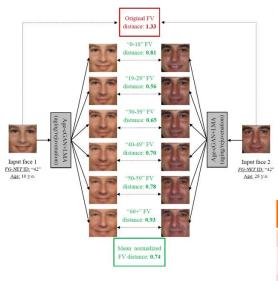
82.0%

(max = 89.4%)

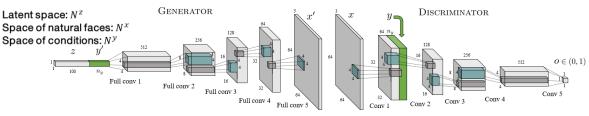
Reconstruction


Approach

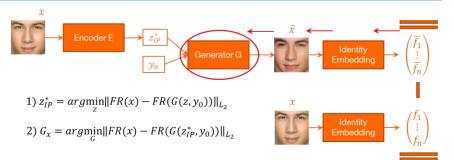
Only encoder E: $\dot{x_0}$


Pixelwise

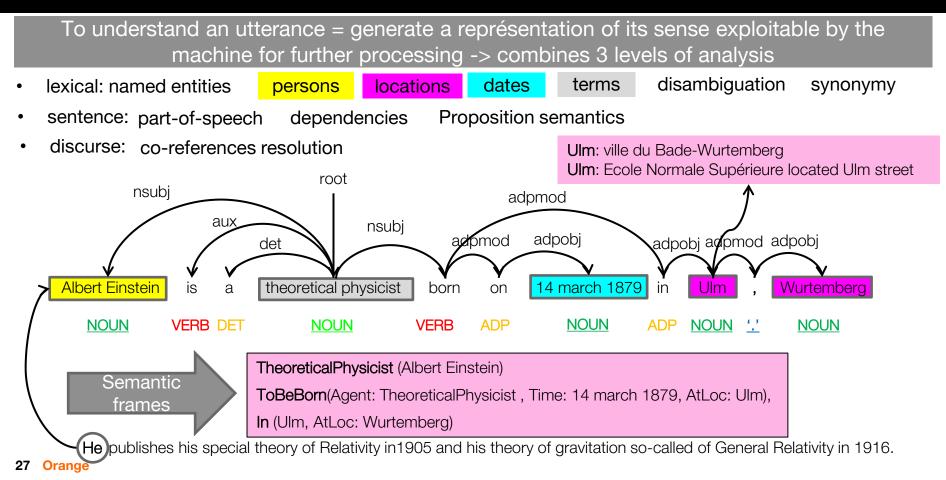
optimization: *x*_{pixel} Identity-preserving


optimization: \dot{x}_{nixel}

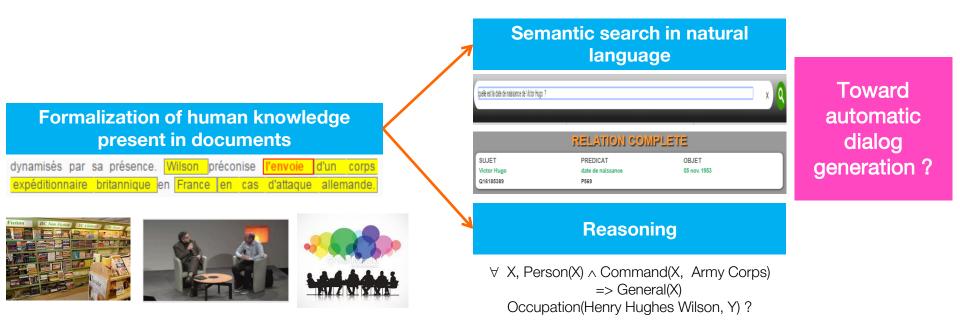
Age Normalization Prior to Identity Verification



The core: compute the conditional generator G using adversarial learning (GAN)



 $\min_{G} \max_{D} V(D,G) = \mathbb{E}_{x,y \sim p_{data}}[\log D(x,y)] + \mathbb{E}_{z \sim p_{z}(z), \tilde{y} \sim p_{y}}[1 - \log D(G(z,\tilde{y}),\tilde{y})]$


Compute the encoder E inverse of generator G

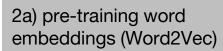
Natral language understanding: the ultimate goal

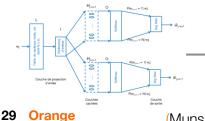
Natural language understanding and knowledge management

To capitalize all academic and business human knowledge present in textual and multimedia documents (« 80% of circulating information is unstructured»)

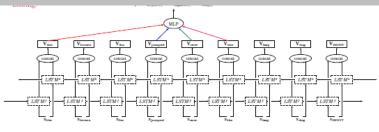
28 Orange

Dependency parsing: Orange Labs solution (work in progress)

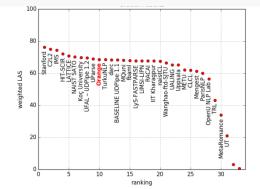

Dependency labels


Label	Description	Label	Description Label		Description	
acomp	adjectival complement	compmod	compound modifier	nmod	noun modifier	
adp	adposition	conj	onj conjunct nsubj		nominal subject	
adpcomp	complement of adposition	cop	cop copula nsubjpass		passive nominal subject	
adpmod	adpositional modifier	csubj	clausal subject	num	numeric modifier	
adpobj	object of adposition	csubjpass	passive clausal subject	р	punctuation	
advcl	adverbial clause modifier	dep	generic	parataxis	parataxis	
advmod	adverbial modifier	det	determiner	partmod	participial modifier	
amod	adjectival modifier	dobj	direct object	poss	possessive	
appos	appositive	expl	expletive	prt	prt verb particle	
attr	attribute	infmod	infinitival modifier	rcmod	rcmod relative clause modifier	
aux	auxiliary	iobj	indirect object	rel	rel relative	
auxpass	passive auxiliary	mark	marker	xcomp	xcomp open clausal complemen	
сс	conjunction	mwe	multi-word expression			
ccomp	clausal complement	neg	negation			

Transition-based parsing


Configuration:	(S, B, A) $[S = Stack, B = Buffer, A = Arcs]$				
Initial:	$([], [0, 1, \ldots, n], \{\})$				
Terminal:	([0], [], A)				
Shift:	(S, i B, A)	\Rightarrow	(S i, B, A)		
Right-Arc(k):	(S i j, B, A)	\Rightarrow	$(S i,B,A\cup\{(i,j,k)\})$		
Left-Arc(k):	(S i j, B, A)	\Rightarrow	$(S j,B,A\cup\{(j,i,k)\})$	<i>i ≠</i> 0	

1) POS tagging (UPOS)


2b) Transition-based parsing learning using B-LSTM

(Munshi Asadullah, Johannes Heinecke, Ghislain Putois, Orange Labs)

CoNLL

The SIGNLL Conference on Computational Natural Language Learning

Merci