1 Back

Integrated Optimal pricing, sizing and location of electric vehicle charging stations

Clémence Alasseur ³ Miguel F. Anjos ² **Ikram Bouras** ¹ Luce Brotcorne ¹ Alemseged G. Weldeyesus ² Riadh Zorgati ³

INRIA Lille - Nord Europe, France¹
University of Edinburgh, UK²
EDF R&D, France³

PGMO days 2020 - December 1, 2020

Problem description

Goal:

Determine the optimal pricing, sizing and locations of EVCS in order to maximize the revenue and smooth demand over time.

Context:

- Strategic planning.
- Each EV user has a preference list (Limited size) of charging stations based on: Expected price and/or Distance

- Hierarchical decision making process.
- Energy prices are associated to time slots.
- Threshold price and distance for each users.
- Limited budget.

Bi-level optimization model

Solution methods and numerical results

- Solution methods:

- Single level reformulation of the bilevel model:
 Using KKT optimality conditions

 Solve with ILP solver
- Cutting plane algorithm:
 Cut infeasible solutions iteratively with valid inequalities.
- Preliminary numerical results on randomly generated instances:

Example: 10 users, 5 stations, 3 time slots

Solution when the preference list is defined based on minimum distance

All users got their first choice except user 5, because its first choice CS-1 was not acitvated and the price of its second choice was $p_4_3 = 7$ higher than its price threshold 3.

Example: 10 users, 5 stations, 3 time slots

Solution when the preference list is defined based on minimum cost

* Notice the longer arrows (distance).

^{*} User 6 got its third choice, because its first choice CS-5 and third choice CS-4 were fully occupied.

^{*} The other users can be explained in a similar way.

Example: 10 users, 5 stations, 3 time slots

Solution when the preference list is defined based on combination of minimum cost and distances

Thanks for your attention!