

School of Mathematics

Interior Point Methods for Convex Quadratic and Convex Nonlinear Programming

Jacek Gondzio Email: J.Gondzio@ed.ac.uk URL: http://www.maths.ed.ac.uk/~gondzio

Outline

• Part 1: IPM for QP

- quadratic forms
- duality in QP
- first order optimality conditions
- primal-dual framework
- Part 2: IPM for NLP
 - NLP notation
 - Lagrangian
 - first order optimality conditions
 - primal-dual framework
- Algebraic Modelling Languages
- Self-concordant barrier

IPM for Convex QP

Convex Quadratic Programs

The quadratic function

$$f(x) = x^T Q \, x$$

is convex if and only if the matrix Q is positive definite. In such case the quadratic programming problem

$$\begin{array}{ll} \min & c^T x + \frac{1}{2} x^T Q \, x \\ \text{s.t.} & A x = b, \\ & x \ge 0, \end{array}$$

is well defined.

If there exists a *feasible* solution to it, then there exists an *optimal* solution.

QP Background:

Def. A matrix $Q \in \mathbb{R}^{n \times n}$ is positive semidefinite if $x^T Q x \ge 0$ for any $x \ne 0$. We write $Q \succeq 0$.

Def. A matrix $Q \in \mathbb{R}^{n \times n}$ is positive definite if $x^T Q x > 0$ for any $x \neq 0$. We write $Q \succ 0$.

Example:

Consider quadratic functions $f(x) = x^T Q x$ with the following matrices:

$$Q_1 = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, \quad Q_2 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad Q_3 = \begin{bmatrix} 5 & 4 \\ 4 & 3 \end{bmatrix}.$$

 Q_1 is positive definite (hence f_1 is convex). Q_2 and Q_3 are indefinite (f_2, f_3 are not convex). J. Gondzio

QP with IPMs

Consider the *convex* quadratic programming problem. The **primal** $T = \frac{1}{T} T = \frac{1}{T$

$$\begin{array}{ll} \min & c^T x + \frac{1}{2} x^T Q \, x \\ \text{s.t.} & A x = b, \\ & x \ge 0, \end{array}$$

and the **dual**

$$\begin{array}{ll} \max & b^T y - \frac{1}{2} x^T Q \, x \\ \text{s.t.} & A^T y + s - Q x = c, \\ & x, s \geq 0. \end{array}$$

Apply the *usual* procedure:

- replace inequalities with log barriers;
- form the Lagrangian;
- write the first order optimality conditions;
- apply Newton method to them.

QP with **IPMs:** Log Barriers

Replace the **primal** QP

$$\begin{array}{ll} \min & c^T x + \frac{1}{2} x^T Q \, x \\ \text{s.t.} & A x \, = \, b, \\ & x \geq 0, \end{array}$$

with the **primal barrier QP**

min
$$c^T x + \frac{1}{2}x^T Q x - \sum_{j=1}^n \ln x_j$$

s.t. $Ax = b.$

QP with **IPMs:** Log Barriers

Replace the $\mathbf{dual}\;\mathrm{QP}$

$$\begin{array}{ll} \max & b^T y - \frac{1}{2} x^T Q x \\ \text{s.t.} & A^T y + s - Q x = c, \\ y \text{ free,} & s \ge 0, \end{array}$$

with the $\mathbf{dual}\ \mathbf{barrier}\ \mathbf{QP}$

max
$$b^T y - \frac{1}{2}x^T Q x + \sum_{j=1}^n \ln s_j$$

s.t. $A^T y + s - Q x = c.$

First Order Optimality Conditions

Consider the **primal barrier quadratic program**

min
$$c^T x + \frac{1}{2}x^T Q x - \mu \sum_{j=1}^n \ln x_j$$

s.t. $Ax = b,$

where $\mu \ge 0$ is a barrier parameter.

Write out the **Lagrangian**

$$L(x, y, \mu) = c^T x + \frac{1}{2} x^T Q x - y^T (Ax - b) - \mu \sum_{j=1}^n \ln x_j,$$

First Order Optimality Conditions (cont'd)

The conditions for a stationary point of the Lagrangian:

$$L(x, y, \mu) = c^T x + \frac{1}{2} x^T Q x - y^T (Ax - b) - \mu \sum_{j=1}^n \ln x_j,$$

are

$$\nabla_{x}L(x, y, \mu) = c - A^{T}y - \mu X^{-1}e + Qx = 0
\nabla_{y}L(x, y, \mu) = Ax - b = 0,$$

where $X^{-1} = diag\{x_1^{-1}, x_2^{-1}, \cdots, x_n^{-1}\}$. Let us denote

 $s = \mu X^{-1}e$, i.e. $XSe = \mu e$.

The First Order Optimality Conditions are:

$$Ax = b,$$

$$A^Ty + s - Qx = c,$$

$$XSe = \mu e.$$

J. Gondzio

Apply Newton Method to the FOC

The first order optimality conditions for the barrier problem form a large system of nonlinear equations

$$F(x, y, s) = 0,$$

where $F : \mathcal{R}^{2n+m} \mapsto \mathcal{R}^{2n+m}$ is an application defined as follows:

$$F(x, y, s) = \begin{bmatrix} Ax & -b \\ A^T y + s - Qx - c \\ XSe & -\mu e \end{bmatrix}$$

Actually, the first two terms of it are *linear*; only the last one, corresponding to the complementarity condition, is *nonlinear*. Note that

$$\nabla F(x, y, s) = \begin{bmatrix} A & 0 & 0 \\ -Q & A^T & I \\ S & 0 & X \end{bmatrix}$$

Newton Method for the FOC (cont'd)

Thus, for a given point (x, y, s)we find the Newton direction $(\Delta x, \Delta y, \Delta s)$ by solving the system of linear equations:

$$\begin{bmatrix} A & 0 & 0 \\ -Q & A^T & I \\ S & 0 & X \end{bmatrix} \cdot \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta s \end{bmatrix} = \begin{bmatrix} b - Ax \\ c - A^Ty - s + Qx \\ \mu e - XSe \end{bmatrix}$$

Interior-Point QP Algorithm

Initialize

 $k = 0, \quad (x^0, y^0, s^0) \in \mathcal{F}^0, \quad \mu_0 = \frac{1}{n} \cdot (x^0)^T s^0, \quad \alpha_0 = 0.9995$

Repeat until optimality

$$k = k + 1$$

 $\mu_k = \sigma \mu_{k-1}$, where $\sigma \in (0, 1)$
 Δ = Newton direction towards μ -center

Ratio test:

$$\alpha_P := \max \{ \alpha > 0 : x + \alpha \Delta x \ge 0 \},\ \alpha_D := \max \{ \alpha > 0 : s + \alpha \Delta s \ge 0 \}.$$

Make step:

$$x^{k+1} = x^{k} + \alpha_0 \alpha_P \Delta x,$$

$$y^{k+1} = y^{k} + \alpha_0 \alpha_D \Delta y,$$

$$s^{k+1} = s^{k} + \alpha_0 \alpha_D \Delta s.$$

From LP to QP

QP problem

$$\begin{array}{ll} \min & c^T x + \frac{1}{2} x^T Q \, x \\ \text{s.t.} & A x = b, \\ & x \ge 0. \end{array}$$

First order conditions (for barrier problem)

$$Ax = b,$$

$$A^{T}y + s - Qx = c,$$

$$XSe = \mu e.$$

IPMs for Convex NLP

Convex Nonlinear Optimization

Consider the nonlinear optimization problem

min	f(x)	
s.t.	g(x)	$\leq 0,$

where $x \in \mathcal{R}^n$, and $f : \mathcal{R}^n \mapsto \mathcal{R}$ and $g : \mathcal{R}^n \mapsto \mathcal{R}^m$ are convex, twice differentiable.

Assumptions:

f and g are convex

 \Rightarrow If there exists a **local** minimum then it is a **global** one.

f and g are twice differentiable

 \Rightarrow We can use the second order Taylor approximations.

Some additional (technical) conditions

 \Rightarrow We need them to prove that the point which satisfies the first order optimality conditions is the optimum. We won't use them in this course.

Taylor Expansion of $f : \mathcal{R} \mapsto \mathcal{R}$

Let $f : \mathcal{R} \mapsto \mathcal{R}$. If all derivatives of f are continuously differentiable at x_0 , then

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k,$$

where $f^{(k)}(x_0)$ is the k-th derivative of f at x_0 .

The *first order approximation* of the function:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + r_2(x - x_0),$$

where the remainder satisfies:

$$\lim_{x \to x_0} \frac{r_2(x - x_0)}{x - x_0} = 0.$$

Taylor Expansion (cont'd)

The second order approximation:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 + r_3(x - x_0),$$

where the remainder satisfies:

$$\lim_{x \to x_0} \frac{r_3(x - x_0)}{(x - x_0)^2} = 0.$$

J. Gondzio

Derivatives of $f : \mathcal{R}^n \mapsto \mathcal{R}$

The vector

$$(\nabla f(x))^T = \left(\frac{\partial f}{\partial x_1}(x), \frac{\partial f}{\partial x_2}(x), \dots, \frac{\partial f}{\partial x_n}(x)\right)$$

is called the **gradient** of f at x. The matrix

$$\nabla^2 f(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2}(x) & \frac{\partial^2 f}{\partial x_1 \partial x_2}(x) & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(x) \\ \frac{\partial^2 f}{\partial x_2 \partial x_1}(x) & \frac{\partial^2 f}{\partial x_2^2}(x) & \dots & \frac{\partial^2 f}{\partial x_2 \partial x_n}(x) \\ \dots & \dots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(x) & \frac{\partial^2 f}{\partial x_n \partial x_2}(x) & \dots & \frac{\partial^2 f}{\partial x_n^2}(x) \end{bmatrix}$$

is called the **Hessian** of f at x.

Paris, January 2018

Taylor Expansion of $f : \mathcal{R}^n \mapsto \mathcal{R}$

Let $f : \mathcal{R}^n \mapsto \mathcal{R}$. If all derivatives of f are continuously differentiable at x_0 , then

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k,$$

where $f^{(k)}(x_0)$ is the k-th derivative of f at x_0 .

The *first order approximation* of the function:

$$f(x) = f(x_0) + \nabla f(x_0)^T (x - x_0) + r_2(x - x_0),$$

where the remainder satisfies:

$$\lim_{x \to x_0} \frac{r_2(x - x_0)}{\|x - x_0\|} = 0.$$

Taylor Expansion (cont'd)

The second order approximation: of the function:

$$\begin{split} f(x) &= f(x_0) + \nabla f(x_0)^T (x - x_0) \\ &+ \frac{1}{2} (x - x_0)^T \nabla^2 f(x_0) (x - x_0) + r_3 (x - x_0), \end{split}$$

where the remainder satisfies:

$$\lim_{x \to x_0} \frac{r_3(x - x_0)}{\|x - x_0\|^2} = 0.$$

Convexity: Reminder

Property 1. For any collection $\{C_i \mid i \in I\}$ of convex sets, the intersection $\bigcap_{i \in I} C_i$ is convex.

Property 4. If C is a convex set and $f: C \mapsto \mathcal{R}$ is convex function, the level sets $\{x \in C \mid f(x) \leq \alpha\}$ and $\{x \in C \mid f(x) < \alpha\}$ are convex for all scalars α .

Lemma 1: If $g : \mathcal{R}^n \mapsto \mathcal{R}^m$ is a convex function, then the set $\{x \in \mathcal{R}^n \mid g(x) \leq 0\}$ is convex.

Proof: Since every function $g_i : \mathcal{R}^n \mapsto \mathcal{R}, i = 1, 2, ..., m$ is convex, from Property 4, we conclude that every set $X_i = \{x \in \mathcal{R}^n | g_i(x) \leq 0\}$ is convex. Next from Property 1, we deduce that the intersection m

$$X = \bigcap_{i=1} X_i = \{ x \in \mathcal{R}^n \, | \, g(x) \le 0 \}$$

is convex, which completes the proof.

Paris, January 2018

Differentiable Convex Functions

Property 8. Let $C \in \mathbb{R}^n$ be a convex set and $f : C \mapsto \mathbb{R}$ be twice continuously differentiable over C.

(a) If $\nabla^2 f(x)$ is positive semidefinite for all $x \in C$, then f is convex. (b) If $\nabla^2 f(x)$ is positive definite for all $x \in C$, then f is strictly convex.

(c) If f is convex, then $\nabla^2 f(x)$ is positive semidefinite for all $x \in C$. Let the second order approximation of the function be given:

$$f(x) \approx f(x_0) + c^T (x - x_0) + \frac{1}{2} (x - x_0)^T Q(x - x_0),$$

where $c = \nabla f(x_0)$ and $Q = \nabla^2 f(x_0)$. From Property 8, it follows that when f is convex and twice differentiable, then Q exists and is a positive semidefinite matrix. **Conclusion:**

If f is convex and twice differentiable, then optimization of f(x) can (locally) be replaced with the minimization of its quadratic model.

Nonlinear Optimization with IPMs

Nonlinear Optimization via QPs: Sequential Quadratic Programming (SQP). Repeat until optimality:

- approximate NLP (locally) with a QP;
- solve (approximately) the QP.

Nonlinear Optimization with IPMs:

works similarly to SQP scheme.

However, the (local) QP approximations are not solved to optimality. Instead, only one step in the Newton direction corresponding to a given QP approximation is made and the new QP approximation is computed.

Nonlinear Optimization with IPMs

Derive an IPM for NLP:

- replace inequalities with log barriers;
- form the Lagrangian;
- write the first order optimality conditions;
- apply Newton method to them.

NLP Notation

Consider the nonlinear optimization problem

min f(x) s.t. $g(x) \leq 0$, where $x \in \mathcal{R}^n$, and $f : \mathcal{R}^n \mapsto \mathcal{R}$ and $g : \mathcal{R}^n \mapsto \mathcal{R}^m$ are convex, twice differentiable.

The vector-valued function $g: \mathcal{R}^n \mapsto \mathcal{R}^m$ has a derivative

$$A(x) = \nabla g(x) = \left[\frac{\partial g_i}{\partial x_j}\right]_{i=1..m, j=1..n} \in \mathcal{R}^{m \times n}$$

which is called the **Jacobian** of g.

NLP Notation (cont'd)

The Lagrangian associated with the NLP is:

$$\mathcal{L}(x,y) = f(x) + y^T g(x),$$

where $y \in \mathcal{R}^m, y \ge 0$ are Lagrange multipliers (dual variables).

The first derivatives of the Lagrangian:

$$\nabla_x \mathcal{L}(x, y) = \nabla f(x) + \nabla g(x)^T y$$

$$\nabla_y \mathcal{L}(x, y) = g(x).$$

The **Hessian** of the Lagrangian, $Q(x, y) \in \mathcal{R}^{n \times n}$: $Q(x, y) = \nabla_{xx}^2 \mathcal{L}(x, y) = \nabla^2 f(x) + \sum_{i=1}^m y_i \nabla^2 g_i(x).$

Paris, January 2018

Convexity in NLP

Lemma 2: If $f : \mathcal{R}^n \mapsto \mathcal{R}$ and $g : \mathcal{R}^n \mapsto \mathcal{R}^m$ are convex, twice differentiable, then the **Hessian** of the Lagrangian

$$Q(x,y) = \nabla^2 f(x) + \sum_{i=1}^m y_i \nabla^2 g_i(x)$$

is positive semidefinite for any x and any $y \ge 0$. If f is strictly convex, then Q(x, y) is positive definite for any x and any $y \ge 0$.

Proof: Using Property 8, the convexity of f implies that $\nabla^2 f(x)$ is positive semidefinite for any x. Similarly, the convexity of g implies that for all i = 1, 2, ..., m, $\nabla^2 g_i(x)$ is positive semidefinite for any x. Since $y_i \ge 0$ for all i = 1, 2, ..., m and Q(x, y) is the sum of positive semidefinite matrices, we conclude that Q(x, y) is positive semidefinite.

If f is strictly convex, then $\nabla^2 f(x)$ is positive definite and so is Q(x, y).

J. Gondzio

m

IPM for NLP

Add slack variables to nonlinear inequalities:

$$\begin{array}{ll} \min & f(x) \\ \text{s.t.} & g(x) + z = 0 \\ & z & \geq 0, \end{array}$$

where $z \in \mathcal{R}^m$. Replace inequality $z \ge 0$ with the logarithmic barrier:

min
$$f(x) - \mu \sum_{i=1}^{m} \ln z_i$$

s.t. $g(x) + z = 0.$

Write out the **Lagrangian**

$$L(x, y, z, \mu) = f(x) + y^T(g(x) + z) - \mu \sum_{i=1}^{m} \ln z_i,$$

Paris, January 2018

m

IPM for NLP

For the Lagrangian

$$L(x, y, z, \mu) = f(x) + y^T(g(x) + z) - \mu \sum_{i=1}^m \ln z_i,$$

write the conditions for a stationary point

$$\begin{aligned} \nabla_x L(x, y, z, \mu) &= \nabla f(x) + \nabla g(x)^T y = 0 \\ \nabla_y L(x, y, z, \mu) &= g(x) + z = 0 \\ \nabla_z L(x, y, z, \mu) &= y - \mu Z^{-1} e = 0, \end{aligned} \\ \text{where } Z^{-1} = diag\{z_1^{-1}, z_2^{-1}, \cdots, z_m^{-1}\}. \end{aligned}$$

The First Order Optimality Conditions are: $\nabla f(x) + \nabla g(x)^T y = 0,$ g(x) + z = 0, $YZe = \mu e.$ J. Gondzio

Newton Method for the FOC

The first order optimality conditions for the barrier problem form a large system of nonlinear equations

$$F(x, y, z) = 0,$$

where $F : \mathcal{R}^{n+2m} \mapsto \mathcal{R}^{n+2m}$ is an application defined as follows:

$$F(x, y, z) = \begin{bmatrix} \nabla f(x) + \nabla g(x)^T y \\ g(x) + z \\ YZe - \mu e \end{bmatrix}$$

Note that all three terms of it are *nonlinear*. (In LP and QP the first two terms were *linear*.)

Newton Method for the FOC

Observe that

$$\nabla F(x, y, z) = \begin{bmatrix} Q(x, y) & A(x)^T & 0 \\ A(x) & 0 & I \\ 0 & Z & Y \end{bmatrix},$$

where A(x) is the **Jacobian** of gand Q(x, y) is the **Hessian** of \mathcal{L} .

They are defined as follows:

$$\begin{aligned} A(x) &= \nabla g(x) &\in \mathcal{R}^{m \times n} \\ Q(x,y) &= \nabla^2 f(x) + \sum_{i=1}^m y_i \nabla^2 g_i(x) \in \mathcal{R}^{n \times n} \end{aligned}$$

Newton Method (cont'd)

For a given point (x, y, z) we find the Newton direction $(\Delta x, \Delta y, \Delta z)$ by solving the system of linear equations:

$$\begin{bmatrix} Q(x,y) & A(x)^T & 0 \\ A(x) & 0 & I \\ 0 & Z & Y \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \end{bmatrix} = \begin{bmatrix} -\nabla f(x) - A(x)^T y \\ -g(x) - z \\ \mu e - YZe \end{bmatrix}$$

Using the third equation we eliminate

$$\Delta z = \mu Y^{-1}e - Ze - ZY^{-1}\Delta y,$$

from the second equation and get

$$\begin{bmatrix} Q(x,y) & A(x)^T \\ A(x) & -ZY^{-1} \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} -\nabla f(x) - A(x)^T y \\ -g(x) - \mu Y^{-1} e \end{bmatrix}$$

Interior-Point NLP Algorithm

Initialize

k = 0 (x^0, y^0, z^0) such that $y^0 > 0$ and $z^0 > 0$, $\mu_0 = \frac{1}{m} \cdot (y^0)^T z^0$ Repeat until optimality k = k + 1 $\mu_k = \sigma \mu_{k-1}$, where $\sigma \in (0, 1)$ Compute A(x) and Q(x, y) $\Delta =$ Newton direction towards μ -center Ratio test: $\alpha_1 := \max \{ \alpha > 0 : y + \alpha \Delta y \ge 0 \},$ $\alpha_2 := \max \{ \alpha > 0 : z + \alpha \Delta z \ge 0 \}.$ Choose the step: (use trust region or line search) $\alpha \leq \min \{\alpha_1, \alpha_2\}$. Make step: $x^{k+1} = x^k + \alpha \Delta x,$ $y^{k+1} = y^k + \alpha \Delta y,$ $z^{k+1} = z^k + \alpha \Lambda z$

From QP to NLP

Newton direction for $\mathbf{Q}\mathbf{P}$

$$\begin{bmatrix} -Q & A^T & I \\ A & 0 & 0 \\ S & 0 & X \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta s \end{bmatrix} = \begin{bmatrix} \xi_d \\ \xi_p \\ \xi_\mu \end{bmatrix}.$$

Augmented system for QP

$$\begin{bmatrix} -Q - SX^{-1} & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} \xi_d - X^{-1}\xi_\mu \\ \xi_p \end{bmatrix}$$

From QP to NLP

Newton direction for \mathbf{NLP}

$$\begin{bmatrix} Q(x,y) & A(x)^T & 0 \\ A(x) & 0 & I \\ 0 & Z & Y \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \end{bmatrix} = \begin{bmatrix} -\nabla f(x) - A(x)^T y \\ -g(x) - z \\ \mu e - YZe \end{bmatrix}$$

Augmented system for NLP

$$\begin{bmatrix} Q(x,y) & A(x)^T \\ A(x) & -ZY^{-1} \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} -\nabla f(x) - A(x)^T y \\ -g(x) - \mu Y^{-1} e \end{bmatrix}$$

Conclusion:

NLP is a natural extension of QP.

٠

Linear Algebra in IPM for NLP

Newton direction for NLP

$$\begin{bmatrix} Q(x,y) & A(x)^T & 0 \\ A(x) & 0 & I \\ 0 & Z & Y \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \end{bmatrix} = \begin{bmatrix} -\nabla f(x) - A(x)^T y \\ -g(x) - z \\ \mu e - YZe \end{bmatrix}$$

The corresponding augmented system

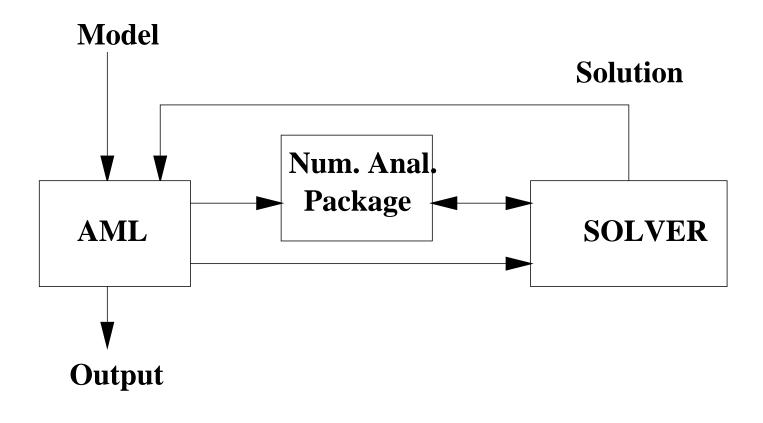
$$\begin{bmatrix} Q(x,y) & A(x)^T \\ A(x) & -ZY^{-1} \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} -\nabla f(x) - A(x)^T y \\ -g(x) - \mu Y^{-1} e \end{bmatrix}$$

where $A(x) \in \mathbb{R}^{m \times n}$ is the **Jacobian** of gand $Q(x, y) \in \mathbb{R}^{n \times n}$ is the **Hessian** of \mathcal{L}

$$\begin{aligned} A(x) &= \nabla g(x) \\ Q(x,y) &= \nabla^2 f(x) + \sum_{i=1}^m y_i \nabla^2 g_i(x) \end{aligned}$$

Linear Algebra in IPM for NLP (cont'd)

Automatic differentiation is very useful ... get Q(x, y) and A(x) from Algebraic Modeling Language.



Automatic Differentiation

AD in the Internet:

- ADIFOR (FORTRAN code for AD): http://www-unix.mcs.anl.gov/autodiff/ADIFOR/
- ADOL-C (C/C++ code for AD): http://www-unix.mcs.anl.gov/autodiff/ AD_Tools/adolc.anl/adolc.html
- AD page at Cornell: http://www.tc.cornell.edu/~averma/AD/

IPMs: Remarks

- Interior Point Methods provide the unified framework for convex optimization.
- IPMs provide polynomial algorithms for LP, QP and NLP.
- The linear algebra in LP, QP and NLP is very similar.
- Use IPMs to solve very large problems.

Further Extensions:

• Nonconvex optimization.

IPMs in the Internet:

- LP FAQ (Frequently Asked Questions): http://www-unix.mcs.anl.gov/otc/Guide/faq/
- Interior Point Methods On-Line: http://www-unix.mcs.anl.gov/otc/InteriorPoint/
- NEOS (Network Enabled Optimization Services): http://www-neos.mcs.anl.gov/

Newton Method and Self-concordant Barriers

Another View of Newton M. for Optimization

Newton Method for Optimization

Let $f : \mathcal{R}^n \mapsto \mathcal{R}$ be a twice continuously differentiable function. Suppose we build a quadratic model \tilde{f} of f around a given point x^k , i.e., we define $\Delta x = x - x^k$ and write:

$$\tilde{f}(x) = f(x^k) + \nabla f(x^k)^T \Delta x + \frac{1}{2} \Delta x^T \nabla^2 f(x^k) \Delta x$$

Now we **optimize the model** \tilde{f} instead of **optimizing** f. A minimum (or, more generally, a stationary point) of the quadratic model satisfies:

$$\nabla \tilde{f}(x) = \nabla f(x^k) + \nabla^2 f(x^k) \Delta x = 0,$$

i.e.

$$\Delta x = x - x^k = -(\nabla^2 f(x^k))^{-1} \nabla f(x^k),$$

which reduces to the usual equation:

$$x^{k+1} = x^k - (\nabla^2 f(x^k))^{-1} \nabla f(x^k).$$

Paris, January 2018

J. Gondzio

$-\log x$ Barrier Function

Consider the **primal barrier linear program**

$$\min c^T x - \mu \sum_{j=1}^n \ln x_j \quad \text{s.t.} \quad Ax = b,$$

where $\mu \ge 0$ is a barrier parameter. Write out the **Lagrangian**

$$L(x, y, \mu) = c^T x - y^T (Ax - b) - \mu \sum_{j=1}^n \ln x_j,$$

and the conditions for a stationary point

$$\nabla_{x} L(x, y, \mu) = c - A^{T} y - \mu X^{-1} e = 0
\nabla_{y} L(x, y, \mu) = Ax - b = 0,$$

where $X^{-1} = diag\{x_1^{-1}, x_2^{-1}, \cdots, x_n^{-1}\}.$

$-\log x$ Barrier Function (cont'd)

Let us denote

$$s = \mu X^{-1}e$$
, i.e. $XSe = \mu e$.

The First Order Optimality Conditions are:

$$Ax = b,$$

$$A^Ty + s = c,$$

$$XSe = \mu e.$$

J. Gondzio

- $\log x$ bf: Newton Method

The first order optimality conditions for the barrier problem form a large system of nonlinear equations

$$F(x, y, s) = 0,$$

where $F : \mathcal{R}^{2n+m} \mapsto \mathcal{R}^{2n+m}$ is an application defined as follows:

$$F(x, y, s) = \begin{bmatrix} Ax - b \\ A^T y + s - c \\ XSe - \mu e \end{bmatrix}$$

Actually, the first two terms of it are *linear*; only the last one, corresponding to the complementarity condition, is *nonlinear*.

Note that

$$\nabla F(x, y, s) = \begin{bmatrix} A & 0 & 0 \\ 0 & A^T & I \\ S & 0 & X \end{bmatrix}$$

- $\log x$ bf: Newton Method (cont'd)

Thus, for a given point (x, y, s) we find the Newton direction $(\Delta x, \Delta y, \Delta s)$ by solving the system of linear equations:

$$\begin{bmatrix} A & 0 & 0 \\ 0 & A^T & I \\ S & 0 & X \end{bmatrix} \cdot \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta s \end{bmatrix} = \begin{bmatrix} b - Ax \\ c - A^Ty - s \\ \mu e - XSe \end{bmatrix}.$$

$1/x^{\alpha}, \ \alpha > 0$ Barrier Function

Consider the **primal barrier linear program**

$$\min c^T x - \mu \sum_{j=1}^n \frac{1}{x_j^{\alpha}} \quad \text{s.t.} \quad Ax = b,$$

where $\mu \ge 0$ is a barrier parameter and $\alpha > 0$. Write out the **Lagrangian**

$$L(x, y, \mu) = c^T x - y^T (Ax - b) + \mu \sum_{j=1}^n \frac{1}{x_j^{\alpha}},$$

and the conditions for a stationary point

$$\nabla_x L(x, y, \mu) = c - A^T y - \mu \alpha X^{-\alpha - 1} e = 0$$

$$\nabla_y L(x, y, \mu) = Ax - b = 0,$$

where $X^{-\alpha-1} = diag\{x_1^{-\alpha-1}, x_2^{-\alpha-1}, \cdots, x_n^{-\alpha-1}\}.$

Paris, January 2018

$1/x^{\alpha}$, $\alpha > 0$ Barrier Function (cont'd)

Let us denote

$$s = \mu \alpha X^{-\alpha - 1} e$$
, i.e. $X^{\alpha + 1} S e = \mu \alpha e$.

The First Order Optimality Conditions are:

$$Ax = b,$$

$$A^Ty + s = c,$$

$$X^{\alpha+1}Se = \mu\alpha e.$$

$1/x^{\alpha}$, $\alpha > 0$ bf: Newton Method

The first order optimality conditions for the barrier problem are

$$F(x, y, s) = 0,$$

where $F : \mathcal{R}^{2n+m} \mapsto \mathcal{R}^{2n+m}$ is an application defined as follows:

$$F(x, y, s) = \begin{bmatrix} Ax - b \\ A^T y + s - c \\ X^{\alpha + 1} Se - \mu \alpha e \end{bmatrix}$$

As before, only the last term, corresponding to the complementarity condition, is *nonlinear*.

Note that

$$\nabla F(x, y, s) = \begin{bmatrix} A & 0 & 0\\ 0 & A^T & I\\ (\alpha + 1)X^{\alpha}S & 0 & X^{\alpha + 1} \end{bmatrix}$$

$1/x^{\alpha}, \alpha > 0$ bf: Newton Method (cont'd)

Thus, for a given point (x, y, s) we find the Newton direction $(\Delta x, \Delta y, \Delta s)$ by solving the system of linear equations:

$$\begin{bmatrix} A & 0 & 0\\ 0 & A^T & I\\ (\alpha+1)X^{\alpha}S & 0 & X^{\alpha+1} \end{bmatrix} \cdot \begin{bmatrix} \Delta x\\ \Delta y\\ \Delta s \end{bmatrix} = \begin{bmatrix} b - Ax\\ c - A^Ty - s\\ \mu\alpha e - X^{\alpha+1}Se \end{bmatrix}$$

$e^{1/x}$ Barrier Function

Consider the primal barrier linear program

min
$$c^T x - \mu \sum_{j=1}^{n} e^{1/x_j}$$
 s.t. $Ax = b$,

where $\mu \ge 0$ is a barrier parameter. Write out the **Lagrangian**

$$L(x, y, \mu) = c^T x - y^T (Ax - b) + \mu \sum_{j=1}^n e^{1/x_j},$$

and the conditions for a stationary point

$$\nabla_x L(x, y, \mu) = c - A^T y - \mu X^{-2} \exp(X^{-1})e = 0
\nabla_y L(x, y, \mu) = Ax - b = 0,$$

where $\exp(X^{-1}) = diag\{e^{1/x_1}, e^{1/x_2}, \cdots, e^{1/x_n}\}.$

Paris, January 2018

$e^{1/x}$ Barrier Function

Let us denote

$$s = \mu X^{-2} \exp(X^{-1})e$$
, i.e. $X^2 \exp(-X^{-1})Se = \mu e$.

The First Order Optimality Conditions are:

$$Ax = b,$$

$$A^{T}y + s = c,$$

$$X^{2}\exp(-X^{-1})Se = \mu e.$$

$e^{1/x}$ bf: Newton Method

The first order optimality conditions are

$$F(x, y, s) = 0,$$

where $F : \mathcal{R}^{2n+m} \mapsto \mathcal{R}^{2n+m}$ is defined as follows:

$$F(x, y, s) = \begin{bmatrix} Ax - b \\ A^T y + s - c \\ X^2 \exp(-X^{-1})Se - \mu e \end{bmatrix}$$

As before, only the last term, corresponding to the complementarity condition, is *nonlinear*.

Note that

$$\nabla F(x, y, s) = \begin{bmatrix} A & 0 & 0 \\ 0 & A^T & I \\ (2X + I) \exp(-X^{-1}) & 0 & X^2 \exp(-X^{-1}) \end{bmatrix}$$

$e^{1/x}$ bf: Newton Method (cont'd)

Newton direction $(\Delta x, \Delta y, \Delta s)$ solves the following system of linear equations:

$$\begin{bmatrix} A & 0 & 0\\ 0 & A^T & I\\ (2X+I)\exp(-X^{-1})S & 0 & X^2\exp(-X^{-1}) \end{bmatrix} \cdot \begin{bmatrix} \Delta x\\ \Delta y\\ \Delta s \end{bmatrix}$$
$$= \begin{bmatrix} b - Ax\\ c - A^Ty - s\\ \mu e - X^2\exp(-X^{-1})Se \end{bmatrix}$$

٠

Why Log Barrier is the Best?

The First Order Optimality Conditions:

$$-\log x : XSe = \mu e,$$

$$1/x^{\alpha} : X^{\alpha+1}Se = \mu \alpha e,$$

$$e^{1/x} : X^{2}\exp(-X^{-1})Se = \mu e.$$

Log Barrier ensures

the **symmetry** between the primal and the dual. 3rd row in the Newton Equation System:

$$-\log x : \nabla F_3 = [S, 0, X],$$

$$1/x^{\alpha} : \nabla F_3 = [(\alpha + 1)X^{\alpha}S, 0, X^{\alpha + 1}]$$

$$e^{1/x} : \nabla F_3 = [(2X + I)\exp(-X^{-1})S, 0, X^2\exp(-X^{-1})]$$

Log Barrier produces 'the weakest nonlinearity'.

Self-concordant Functions

There is a nice property of the function that is responsible for a good behaviour of the Newton method.

Def Let $C \in \mathbb{R}^n$ be an open nonempty convex set.

Let $f: C \mapsto \mathcal{R}$ be a three times continuously differentiable convex function.

A function f is called **self-concordant** if there exists a constant p > 0 such that

$$|\nabla^3 f(x)[h,h,h]| \le 2p^{-1/2} (\nabla^2 f(x)[h,h])^{3/2},$$

 $\forall x \in C, \forall h : x + h \in C.$ (We then say that f is p-self-concordant).

Note that a self-concordant function is always well approximated by the quadratic model because the error of such an approximation can be bounded by the 3/2 power of $\nabla^2 f(x)[h,h]$.

Self-concordant Barriers

Lemma

The barrier function $-\log x$ is self-concordant on \mathcal{R}_+ .

Proof Consider $f(x) = -\log x$. Compute $f'(x) = -x^{-1}$, $f''(x) = x^{-2}$ and $f'''(x) = -2x^{-3}$ and check that the self-concordance condition is satisfied for p = 1.

Lemma

The barrier function $1/x^{\alpha}$, with $\alpha \in (0, \infty)$ is not self-concordant on \mathcal{R}_+ .

Lemma

The barrier function $e^{1/x}$ is not self-concordant on \mathcal{R}_+ .

Use self-concordant barriers in optimization