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Convex Quadratic Programs

The quadratic function

f (x) = xTQx

is convex if and only if the matrix Q is positive definite.
In such case the quadratic programming problem

min cTx + 1
2x

TQx
s.t. Ax = b,

x ≥ 0,

is well defined.

If there exists a feasible solution to it,
then there exists an optimal solution.
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QP Background:

Def. A matrix Q ∈ Rn×n is positive semidefinite if xTQx ≥ 0 for
any x 6= 0. We write Q � 0.

Def. A matrix Q ∈ Rn×n is positive definite if xTQx > 0 for any
x 6= 0. We write Q ≻ 0.

Example:

Consider quadratic functions f (x) = xTQx with the following ma-
trices:

Q1=

[

1 0
0 2

]

, Q2=

[

1 0
0 −1

]

, Q3=

[

5 4
4 3

]

.

Q1 is positive definite (hence f1 is convex).
Q2 and Q3 are indefinite (f2, f3 are not convex).
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QP with IPMs
Consider the convex quadratic programming problem.
The primal

min cTx + 1
2x

TQx
s.t. Ax = b,

x ≥ 0,

and the dual
max bTy − 1

2x
TQx

s.t. ATy + s−Qx = c,
x, s ≥ 0.

Apply the usual procedure:

• replace inequalities with log barriers;
• form the Lagrangian;
• write the first order optimality conditions;
• apply Newton method to them.
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QP with IPMs: Log Barriers

Replace the primal QP

min cTx + 1
2x

TQx
s.t. Ax = b,

x ≥ 0,

with the primal barrier QP

min cTx + 1
2x

TQx−
n
∑

j=1
ln xj

s.t. Ax = b.
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QP with IPMs: Log Barriers

Replace the dual QP

max bTy − 1
2x

TQx

s.t. ATy + s − Qx = c,
y free, s ≥ 0,

with the dual barrier QP

max bTy − 1
2x

TQx +
n
∑

j=1
ln sj

s.t. ATy + s−Qx = c.
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First Order Optimality Conditions

Consider the primal barrier quadratic program

min cTx + 1
2x

TQx− µ
n
∑

j=1
ln xj

s.t. Ax = b,

where µ ≥ 0 is a barrier parameter.

Write out the Lagrangian

L(x, y, µ) = cTx +
1

2
xTQx− yT (Ax− b)− µ

n
∑

j=1

ln xj,
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First Order Optimality Conditions (cont’d)

The conditions for a stationary point of the Lagrangian:

L(x, y, µ) = cTx +
1

2
xTQx− yT (Ax− b)− µ

n
∑

j=1

ln xj,

are
∇xL(x, y, µ) = c− ATy − µX−1e +Qx = 0
∇yL(x, y, µ) = Ax− b = 0,

where X−1 = diag{x−1
1 , x−1

2 , · · · , x−1
n }.

Let us denote
s = µX−1e, i.e. XSe = µe.

The First Order Optimality Conditions are:

Ax = b,
ATy + s − Qx = c,

XSe = µe.
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Apply Newton Method to the FOC

The first order optimality conditions for the barrier problem form a
large system of nonlinear equations

F (x, y, s) = 0,

where F : R2n+m 7→ R2n+m is an application defined as follows:

F (x, y, s) =





Ax − b
ATy + s − Qx − c

XSe − µe



 .

Actually, the first two terms of it are linear; only the last one,
corresponding to the complementarity condition, is nonlinear.
Note that

∇F (x, y, s) =





A 0 0
−Q AT I
S 0 X



 .
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Newton Method for the FOC (cont’d)

Thus, for a given point (x, y, s)
we find the Newton direction (∆x,∆y,∆s)
by solving the system of linear equations:





A 0 0
−Q AT I
S 0 X



 ·

[

∆x
∆y
∆s

]

=





b− Ax
c− ATy − s +Qx
µe−XSe



 .
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Interior-Point QP Algorithm
Initialize

k = 0, (x0, y0, s0) ∈ F0, µ0 =
1
n · (x

0)Ts0, α0 = 0.9995

Repeat until optimality

k = k + 1
µk = σµk−1, where σ ∈ (0, 1)
∆ = Newton direction towards µ-center

Ratio test:
αP := max {α > 0 : x + α∆x ≥ 0},
αD := max {α > 0 : s + α∆s ≥ 0}.

Make step:

xk+1 = xk + α0αP∆x,
yk+1 = yk + α0αD∆y,
sk+1 = sk + α0αD∆s.
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From LP to QP

QP problem

min cTx + 1
2x

TQx
s.t. Ax = b,

x ≥ 0.

First order conditions (for barrier problem)

Ax = b,

ATy + s−Qx = c,
XSe = µe.
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IPMs for Convex NLP
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Convex Nonlinear Optimization
Consider the nonlinear optimization problem

min f (x)
s.t. g(x) ≤ 0,

where x ∈ Rn, and f : Rn 7→ R and g : Rn 7→ Rm are convex,
twice differentiable.

Assumptions:
f and g are convex
⇒ If there exists a local minimum then it is a global one.
f and g are twice differentiable
⇒ We can use the second order Taylor approximations.

Some additional (technical) conditions
⇒ We need them to prove that the point which satisfies the first
order optimality conditions is the optimum. We won’t use them in
this course.
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Taylor Expansion of f : R 7→ R

Let f : R 7→ R.
If all derivatives of f are continuously differentiable at x0, then

f (x) =
∞
∑

k=0

f (k)(x0)

k!
(x− x0)

k,

where f (k)(x0) is the k-th derivative of f at x0.

The first order approximation of the function:

f (x) = f (x0) + f
′
(x0)(x− x0) + r2(x− x0),

where the remainder satisfies:

lim
x→x0

r2(x− x0)

x− x0
= 0.
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Taylor Expansion (cont’d)

The second order approximation:

f (x) = f (x0) + f
′
(x0)(x− x0)

+
1

2
f
′′
(x0)(x− x0)

2 + r3(x− x0),

where the remainder satisfies:

lim
x→x0

r3(x− x0)

(x− x0)2
= 0.
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Derivatives of f : Rn 7→ R
The vector

(∇f (x))T =

(

∂f

∂x1
(x),

∂f

∂x2
(x), . . . ,

∂f

∂xn
(x)

)

is called the gradient of f at x.
The matrix

∇2f (x)=





















∂2f
∂x21

(x) ∂2f
∂x1∂x2

(x) . . . ∂2f
∂x1∂xn

(x)

∂2f
∂x2∂x1

(x) ∂2f
∂x22

(x) . . . ∂2f
∂x2∂xn

(x)

. . . . . . . . . ...

∂2f
∂xn∂x1

(x) ∂2f
∂xn∂x2

(x) . . . ∂2f
∂x2n

(x)





















is called the Hessian of f at x.
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Taylor Expansion of f : Rn 7→R

Let f : Rn 7→ R.
If all derivatives of f are continuously differentiable at x0, then

f (x) =
∞
∑

k=0

f (k)(x0)

k!
(x− x0)

k,

where f (k)(x0) is the k-th derivative of f at x0.

The first order approximation of the function:

f (x) = f (x0) +∇f (x0)
T (x− x0) + r2(x− x0),

where the remainder satisfies:

lim
x→x0

r2(x− x0)

‖x− x0‖
= 0.
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Taylor Expansion (cont’d)

The second order approximation: of the function:

f (x) = f (x0)+∇f (x0)
T (x−x0)

+
1

2
(x−x0)

T∇2f (x0)(x−x0)+r3(x−x0),

where the remainder satisfies:

lim
x→x0

r3(x− x0)

‖x− x0‖2
= 0.
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Convexity: Reminder

Property 1. For any collection {Ci | i ∈ I} of convex sets, the
intersection

⋂

i∈I Ci is convex.

Property 4. If C is a convex set and f : C 7→ R is convex function,
the level sets {x ∈ C | f (x) ≤ α} and {x ∈ C | f (x) < α} are
convex for all scalars α.

Lemma 1: If g : Rn 7→ Rm is a convex function, then the set
{x ∈ Rn | g(x) ≤ 0} is convex.

Proof: Since every function gi : Rn 7→ R, i = 1, 2, ...,m is
convex, from Property 4, we conclude that every set Xi = {x ∈
Rn | gi(x) ≤ 0} is convex. Next from Property 1, we deduce that
the intersection

X =

m
⋂

i=1

Xi = {x ∈ Rn | g(x) ≤ 0}

is convex, which completes the proof.
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Differentiable Convex Functions
Property 8. Let C ∈ Rn be a convex set and f : C 7→ R be twice
continuously differentiable over C.
(a) If∇2f (x) is positive semidefinite for all x ∈ C, then f is convex.
(b) If ∇2f (x) is positive definite for all x ∈ C, then f is strictly
convex.
(c) If f is convex, then∇2f (x) is positive semidefinite for all x ∈ C.
Let the second order approximation of the function be given:

f (x) ≈ f (x0) + cT (x−x0) +
1

2
(x−x0)

TQ(x−x0),

where c = ∇f (x0) and Q = ∇2f (x0).
From Property 8, it follows that when f is convex and twice differ-
entiable, then Q exists and is a positive semidefinite matrix.
Conclusion:
If f is convex and twice differentiable, then optimization of f (x) can
(locally) be replaced with the minimization of its quadratic model.
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Nonlinear Optimization with IPMs

Nonlinear Optimization via QPs:
Sequential Quadratic Programming (SQP).
Repeat until optimality:

• approximate NLP (locally) with a QP;

• solve (approximately) the QP.

Nonlinear Optimization with IPMs:
works similarly to SQP scheme.

However, the (local) QP approximations are not solved to optimal-
ity. Instead, only one step in the Newton direction corresponding to
a given QP approximation is made and the new QP approximation
is computed.
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Nonlinear Optimization with IPMs

Derive an IPM for NLP:

• replace inequalities with log barriers;

• form the Lagrangian;

• write the first order optimality conditions;

• apply Newton method to them.
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NLP Notation

Consider the nonlinear optimization problem

min f (x) s.t. g(x) ≤ 0,

where x ∈ Rn, and f : Rn 7→ R and g : Rn 7→ Rm are convex,
twice differentiable.

The vector-valued function g : Rn 7→ Rm has a derivative

A(x) = ∇g(x) =

[

∂gi
∂xj

]

i=1..m, j=1..n

∈ Rm×n

which is called the Jacobian of g.
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NLP Notation (cont’d)

The Lagrangian associated with the NLP is:

L(x, y) = f (x) + yTg(x),

where y ∈ Rm, y ≥ 0 are Lagrange multipliers (dual variables).

The first derivatives of the Lagrangian:

∇xL(x, y) = ∇f (x) +∇g(x)Ty
∇yL(x, y) = g(x).

The Hessian of the Lagrangian, Q(x, y) ∈ Rn×n:

Q(x, y) = ∇2
xxL(x, y) = ∇2f (x) +

m
∑

i=1

yi∇
2gi(x).
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Convexity in NLP
Lemma 2: If f : Rn 7→ R and g : Rn 7→ Rm are convex, twice
differentiable, then the Hessian of the Lagrangian

Q(x, y) = ∇2f (x) +
m
∑

i=1

yi∇
2gi(x)

is positive semidefinite for any x and any y ≥ 0. If f is strictly
convex, then Q(x, y) is positive definite for any x and any y ≥ 0.

Proof: Using Property 8, the convexity of f implies that∇2f (x) is
positive semidefinite for any x. Similarly, the convexity of g implies
that for all i = 1, 2, ...,m, ∇2gi(x) is positive semidefinite for any
x. Since yi ≥ 0 for all i = 1, 2, ...,m and Q(x, y) is the sum of
positive semidefinite matrices, we conclude that Q(x, y) is positive
semidefinite.
If f is strictly convex, then ∇2f (x) is positive definite and so is
Q(x, y).
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IPM for NLP

Add slack variables to nonlinear inequalities:

min f (x)
s.t. g(x) + z = 0

z ≥ 0,

where z ∈ Rm. Replace inequality z ≥ 0 with the logarithmic
barrier:

min f (x)− µ
m
∑

i=1
ln zi

s.t. g(x) + z = 0.

Write out the Lagrangian

L(x, y, z, µ) = f (x) + yT (g(x) + z)− µ
m
∑

i=1

ln zi,
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IPM for NLP

For the Lagrangian

L(x, y, z, µ) = f (x) + yT (g(x) + z)− µ
m
∑

i=1

ln zi,

write the conditions for a stationary point

∇xL(x, y, z, µ) = ∇f (x) +∇g(x)Ty = 0
∇yL(x, y, z, µ) = g(x) + z = 0
∇zL(x, y, z, µ) = y − µZ−1e = 0,

where Z−1 = diag{z−1
1 , z−1

2 , · · · , z−1
m }.

The First Order Optimality Conditions are:

∇f (x) +∇g(x)Ty = 0,
g(x) + z = 0,

Y Ze = µe.
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Newton Method for the FOC

The first order optimality conditions for the barrier problem form a
large system of nonlinear equations

F (x, y, z) = 0,

where F : Rn+2m 7→ Rn+2m is an application defined as follows:

F (x, y, z) =





∇f (x) + ∇g(x)Ty
g(x) + z
Y Ze − µe



 .

Note that all three terms of it are nonlinear.
(In LP and QP the first two terms were linear.)
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Newton Method for the FOC

Observe that

∇F (x, y, z) =





Q(x, y) A(x)T 0
A(x) 0 I
0 Z Y



 ,

where A(x) is the Jacobian of g
and Q(x, y) is the Hessian of L.

They are defined as follows:

A(x) = ∇g(x) ∈ Rm×n

Q(x, y) = ∇2f (x) +
m
∑

i=1
yi∇

2gi(x) ∈ Rn×n

Paris, January 2018 32



J. Gondzio L5&6: IPMs for QP and NLP

Newton Method (cont’d)

For a given point (x, y, z) we find the Newton direction (∆x,∆y,∆z)
by solving the system of linear equations:





Q(x, y) A(x)T 0
A(x) 0 I
0 Z Y





[

∆x
∆y
∆z

]

=





−∇f (x)− A(x)Ty
−g(x)− z
µe− Y Ze



 .

Using the third equation we eliminate

∆z = µY −1e− Ze− ZY −1∆y,

from the second equation and get
[

Q(x, y) A(x)T

A(x) −ZY −1

] [

∆x
∆y

]

=

[

−∇f (x)− A(x)Ty
−g(x)− µY −1e

]

.

Paris, January 2018 33



J. Gondzio L5&6: IPMs for QP and NLP

Interior-Point NLP Algorithm
Initialize

k = 0
(x0, y0, z0) such that y0 > 0 and z0 > 0, µ0 =

1
m · (y0)Tz0

Repeat until optimality
k = k + 1
µk = σµk−1, where σ ∈ (0, 1)
Compute A(x) and Q(x, y)
∆ = Newton direction towards µ-center
Ratio test:
α1 := max {α > 0 : y + α∆y ≥ 0},
α2 := max {α > 0 : z + α∆z ≥ 0}.

Choose the step: (use trust region or line search) α≤ min{α1, α2}.
Make step:

xk+1 = xk + α∆x,
yk+1 = yk + α∆y,
zk+1 = zk + α∆z.
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From QP to NLP

Newton direction for QP




−Q AT I
A 0 0
S 0 X





[

∆x
∆y
∆s

]

=

[

ξd
ξp
ξµ

]

.

Augmented system for QP
[

−Q− SX−1 AT

A 0

] [

∆x
∆y

]

=

[

ξd −X−1ξµ
ξp

]

.
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From QP to NLP

Newton direction for NLP




Q(x, y) A(x)T 0
A(x) 0 I
0 Z Y





[

∆x
∆y
∆z

]

=





−∇f (x)− A(x)Ty
−g(x)− z
µe− Y Ze



 .

Augmented system for NLP
[

Q(x, y) A(x)T

A(x) −ZY −1

] [

∆x
∆y

]

=

[

−∇f (x)−A(x)Ty
−g(x)−µY −1e

]

.

Conclusion:
NLP is a natural extension of QP.
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Linear Algebra in IPM for NLP

Newton direction for NLP




Q(x, y) A(x)T 0
A(x) 0 I
0 Z Y





[

∆x
∆y
∆z

]

=





−∇f (x)− A(x)Ty
−g(x)− z
µe− Y Ze



 .

The corresponding augmented system
[

Q(x, y) A(x)T

A(x) −ZY −1

][

∆x
∆y

]

=

[

−∇f (x)− A(x)Ty
−g(x)− µY −1e

]

.

where A(x) ∈ Rm×n is the Jacobian of g
and Q(x, y) ∈ Rn×n is the Hessian of L

A(x) = ∇g(x)

Q(x, y) = ∇2f (x) +
m
∑

i=1
yi∇

2gi(x)
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Linear Algebra in IPM for NLP (cont’d)

Automatic differentiation is very useful ...
get Q(x, y) and A(x) from Algebraic Modeling Language.

Output

AML SOLVER

Num. Anal.
Package

Model
Solution
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Automatic Differentiation

AD in the Internet:

• ADIFOR (FORTRAN code for AD):
http://www-unix.mcs.anl.gov/autodiff/ADIFOR/

• ADOL-C (C/C++ code for AD):
http://www-unix.mcs.anl.gov/autodiff/
AD Tools/adolc.anl/adolc.html

• AD page at Cornell:
http://www.tc.cornell.edu/~averma/AD/
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IPMs: Remarks

• Interior Point Methods provide the unified
framework for convex optimization.

• IPMs provide polynomial algorithms for LP, QP and NLP.
• The linear algebra in LP, QP and NLP is very similar.
• Use IPMs to solve very large problems.

Further Extensions:
• Nonconvex optimization.

IPMs in the Internet:
• LP FAQ (Frequently Asked Questions):
http://www-unix.mcs.anl.gov/otc/Guide/faq/

• Interior Point Methods On-Line:
http://www-unix.mcs.anl.gov/otc/InteriorPoint/

• NEOS (Network Enabled Optimization Services):
http://www-neos.mcs.anl.gov/
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Newton Method

and Self-concordant Barriers
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Another View of Newton M. for Optimization

Newton Method for Optimization
Let f : Rn 7→ R be a twice continuously differentiable function.
Suppose we build a quadratic model f̃ of f around a given point
xk, i.e., we define ∆x = x− xk and write:

f̃ (x) = f (xk) +∇f (xk)T∆x +
1

2
∆xT∇2f (xk)∆x

Now we optimize the model f̃ instead of optimizing f .
A minimum (or, more generally, a stationary point) of the quadratic
model satisfies:

∇f̃ (x) = ∇f (xk) +∇2f (xk)∆x = 0,

i.e.
∆x = x− xk = −(∇2f (xk))−1∇f (xk),

which reduces to the usual equation:

xk+1 = xk − (∇2f (xk))−1∇f (xk).
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− log x Barrier Function

Consider the primal barrier linear program

min cTx− µ
n
∑

j=1

ln xj s.t. Ax = b,

where µ ≥ 0 is a barrier parameter.
Write out the Lagrangian

L(x, y, µ) = cTx− yT (Ax− b)− µ

n
∑

j=1

ln xj,

and the conditions for a stationary point

∇xL(x, y, µ) = c− ATy − µX−1e = 0
∇yL(x, y, µ) = Ax− b = 0,

where X−1 = diag{x−1
1 , x−1

2 , · · · , x−1
n }.
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− log x Barrier Function (cont’d)

Let us denote

s = µX−1e, i.e. XSe = µe.

The First Order Optimality Conditions are:

Ax = b,
ATy + s = c,

XSe = µe.
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- log x bf: Newton Method

The first order optimality conditions for the barrier problem form a
large system of nonlinear equations

F (x, y, s) = 0,

where F : R2n+m 7→ R2n+m is an application defined as follows:

F (x, y, s) =





Ax − b
ATy + s − c

XSe − µe



 .

Actually, the first two terms of it are linear; only the last one,
corresponding to the complementarity condition, is nonlinear.

Note that

∇F (x, y, s) =





A 0 0
0 AT I
S 0 X



 .
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- log x bf: Newton Method (cont’d)

Thus, for a given point (x, y, s) we find the Newton direction
(∆x,∆y,∆s) by solving the system of linear equations:





A 0 0
0 AT I
S 0 X



 ·

[

∆x
∆y
∆s

]

=





b− Ax
c− ATy − s
µe−XSe



 .
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1/xα, α > 0 Barrier Function

Consider the primal barrier linear program

min cTx− µ
n
∑

j=1

1

xαj
s.t. Ax = b,

where µ ≥ 0 is a barrier parameter and α > 0.

Write out the Lagrangian

L(x, y, µ) = cTx− yT (Ax− b) + µ

n
∑

j=1

1

xαj
,

and the conditions for a stationary point

∇xL(x, y, µ) = c− ATy − µαX−α−1e = 0
∇yL(x, y, µ) = Ax− b = 0,

where X−α−1 = diag{x−α−1
1 , x−α−1

2 , · · · , x−α−1
n }.
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1/xα, α > 0 Barrier Function (cont’d)

Let us denote

s = µαX−α−1e, i.e. Xα+1Se = µαe.

The First Order Optimality Conditions are:

Ax = b,
ATy + s = c,
Xα+1Se = µαe.
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1/xα, α>0 bf: Newton Method

The first order optimality conditions for the barrier problem are

F (x, y, s) = 0,

where F : R2n+m 7→ R2n+m is an application defined as follows:

F (x, y, s) =





Ax − b
ATy + s − c
Xα+1Se − µαe



 .

As before, only the last term, corresponding to the complementarity
condition, is nonlinear.

Note that

∇F (x, y, s) =





A 0 0
0 AT I

(α + 1)XαS 0 Xα+1



 .
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1/xα, α>0 bf: Newton Method (cont’d)

Thus, for a given point (x, y, s) we find the Newton direction
(∆x,∆y,∆s) by solving the system of linear equations:




A 0 0
0 AT I

(α + 1)XαS 0 Xα+1



 ·

[

∆x
∆y
∆s

]

=





b− Ax
c− ATy − s
µαe−Xα+1Se



 .
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e1/x Barrier Function

Consider the primal barrier linear program

min cTx− µ
n
∑

j=1

e1/xj s.t. Ax = b,

where µ ≥ 0 is a barrier parameter.

Write out the Lagrangian

L(x, y, µ) = cTx− yT (Ax− b) + µ
n
∑

j=1

e1/xj,

and the conditions for a stationary point

∇xL(x, y, µ) = c− ATy − µX−2exp(X−1)e = 0
∇yL(x, y, µ) = Ax− b = 0,

where exp(X−1) = diag{e1/x1, e1/x2, · · · , e1/xn}.
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e1/x Barrier Function

Let us denote

s = µX−2exp(X−1)e, i.e. X2exp(−X−1)Se = µe.

The First Order Optimality Conditions are:

Ax = b,
ATy + s = c,

X2exp(−X−1)Se = µe.
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e1/x bf: Newton Method

The first order optimality conditions are

F (x, y, s) = 0,

where F : R2n+m 7→ R2n+m is defined as follows:

F (x, y, s) =





Ax − b
ATy + s − c

X2exp(−X−1)Se − µe



 .

As before, only the last term, corresponding to the complementarity
condition, is nonlinear.

Note that

∇F (x, y, s) =





A 0 0
0 AT I

(2X + I)exp(−X−1) 0 X2exp(−X−1)



 .
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e1/x bf: Newton Method (cont’d)

Newton direction (∆x,∆y,∆s) solves the following system of linear
equations:





A 0 0
0 AT I

(2X + I)exp(−X−1)S 0 X2exp(−X−1)



 ·

[

∆x
∆y
∆s

]

=





b− Ax
c− ATy − s
µe−X2exp(−X−1)Se



 .
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Why Log Barrier is the Best?

The First Order Optimality Conditions:

− log x : XSe = µe,

1/xα : Xα+1Se = µαe,

e1/x : X2exp(−X−1)Se = µe.

Log Barrier ensures
the symmetry between the primal and the dual.
3rd row in the Newton Equation System:

− log x : ∇F3 = [S, 0, X ],

1/xα : ∇F3 = [(α + 1)XαS, 0, Xα+1]

e1/x : ∇F3 = [(2X+I)exp(−X−1)S, 0, X2exp(−X−1)]

Log Barrier produces
’the weakest nonlinearity’.
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Self-concordant Functions

There is a nice property of the function that is responsible for a
good behaviour of the Newton method.

Def Let C ∈ Rn be an open nonempty convex set.
Let f : C 7→ R be a three times continuously differentiable convex
function.
A function f is called self-concordant if there exists a constant
p > 0 such that

|∇3f (x)[h, h, h]| ≤ 2p−1/2(∇2f (x)[h, h])3/2,

∀x ∈ C, ∀h : x + h ∈ C.
(We then say that f is p-self-concordant).

Note that a self-concordant function is always well approximated by
the quadratic model because the error of such an approximation can
be bounded by the 3/2 power of ∇2f (x)[h, h].
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Self-concordant Barriers

Lemma
The barrier function − log x is self-concordant on R+.

Proof Consider f (x) = − log x.
Compute

f
′
(x) = −x−1, f

′′
(x) = x−2 and f

′′′
(x) = −2x−3

and check that the self-concordance condition is satisfied for p = 1.

Lemma
The barrier function 1/xα, with α ∈ (0,∞) is not self-concordant
on R+.

Lemma
The barrier function e1/x is not self-concordant on R+.

Use self-concordant barriers in optimization
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