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Overview

1. Preliminaries

▶ Trees: roots, labels and planarity

▶ Metric space of planar rooted trees

2. Limits

▶ Local vs Scalar: the idea

▶ (Weak) convergence of probability measures

▶ Generating functionology and transfers

▶ UIPT: what does it look like?

3. Horizons?



Trees

▶ Connected graphs without cycles,

▶ Fundamental objects in graph
theory, combinatorics and
probability,

▶ ...also for data structures and
algorithms in computer science,

▶ Physicists like them for multiple
reasons!



Construction: a basic classification

1. Rooted / unrooted

▶ A vertex is marked,

▶ can be described by generations,

▶ possibility to construct them
recursively.

2. Planar / non-planar

▶ Trees are planar graphs BUT might have different
embeddings!

▶ Planar means count all embeddings →



Figure: Two different embeddings of a tree

3. Labelled / unlabelled There is much lattitude in choosing
labels. Here is a simple example:



Attention!

When we say rooted planar tree, we mean a rooted tree where
the children of each vertex is ordered from left to right. This
induces a natural embedding into the half-plane.

From now on, these are the trees we are concerned with.

Recall: We want to do probability!

Let’s start by constructing the metric space of
rooted planar trees...



Metric space of rooted planar trees

▶ Tfin =
∞
⋃

N=1

TN , T = Tfin ∪ T∞,

▶ Denote the vertex set at graph distance s from the root by
Ds(T ),

▶ Subgraph BR(T ) of T spanned by V (BR(T )) =
R
⋃

s=0
Ds(T ) ,

▶ For T ,T ′ ∈ T

dist(T ,T ′) = inf{ 1
R

| R ∈ N, BR(T ) = BR(T
′)} ,

▶ (T , dist) is separable and complete.



Metric space of rooted planar trees

The ball of radius 1
R

around T0 ∈ T

B 1
R

(T0) = {T ∈ T | BR(T ) = BR(T0)} .
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Local vs Scaling

Given some probabilistic structure on TN , we are interested in the
asymptotic behavior of a “typical element” of TN as N → ∞.

In other words: We pick a tree uniformly at random in TN and
study its scaling or local limit.

Scaling Limit

Choose an object T at random inside TN . When suitably scaled, T
approaches a continuous structure as N → ∞.

▶ In other words

TN

2
√
N

(d)−−−−→
N→∞

TCRT ,

▶ Check [arXiv:math/0511515] by
Le Gall to learn more about it!



Local vs Scaling

Local Limit

Different in spirit!

▶ No scaling of distances,

▶ Study the convergence of arbitrarily large but finite
neighborhoods of the root,

▶ The limiting object is still discrete!

This limit provides more local information: limiting behavior of the
degrees of vertices, average volume of balls around the root...

This is the limit we will concentrate on in the rest of the talk!



Convergence of probability measures

A sequence µN converges weakly to µ on T
∫

T

fdµN →
∫

T

fdµ

as N → ∞ for all bounded continuous functions f on T .

Some facts:

▶ Any ball in T is both open and closed,

▶ Two balls are either disjoint or one is contained in the
other,

▶ Tfin is a countable dense subset of T .



Our algoritm

Lemma (See Theorems 2.1, 2.2 and 6.5 in [Billingsley] )
Suppose µN , N ∈ N is a sequence of probability measures on a metric

space M and U is a family of both open and closed subsets of M such

that

1. any finite intersection of sets in U belongs to U,

2. any open subset of M may be written as a finite or countable union

of sets from U,

3. the sequence µN(A) is convergent for all A ∈ U.

Then the sequence µN , N ∈ N, is weakly convergent provided it is tight.

The tightness means that for each ϵ > 0 there exists a compact subset C
such that

µN(M \ C ) < ϵ for all N.



Our algorithm

The set U = {B 1
R

(T ) | R ∈ N,T ∈ Tfin} satisfies (1) and (2)

above.
So, we have an algorithm:

1. Show tighness,

2. Show convergence on balls.

Recall: we want to start with the uniform distribution on TN :

µN(T ) =
1

CN

, T ∈ TN .

To be able to calculate the mass of balls µN(B 1
R

(T )), we need to

understand the asymptotic behavior of CN , for N large.



Generating functionology

Recall: we want asymptotics of CN . Let’s encode it!

Z (g) =

∞
∑

N=1

CNg
N , g ∈ C .

Hence we map a combinatorial problem onto an analytic one!

• A tree is a root with a sequence of trees grafted on it.



Generating functionology

Z (g) = g(1 + Z (g) + Z (g)2 + . . . ) =
g

1− Z (g)

Solution is simple

Z (g) =
1−√

1− 4g

2
.

Notation: CN = [gN ]Z (g) = ANθ(N).

Principles of Coefficient Asymptotics:

▶ The location of a function’s singularities dictates the
exponential growth of its coefficients AN ,

▶ The nature of a function’s singularities determines the
associated subexponential factor θ(N).



A simple transfer

Theorem (Standard function scale, Theorem VI.1 in [AC])

Let α be an arbitrary complex number in C \ Z≤0. The coefficient

of xN in

Z (x) = (1− x)−α

admits for large N a complete asymptotic expansion in descending

powers of N

[xN ]Z (x) ∼ Nα−1

Γ(α)

(

1 +O(
1

N
)
)

.

Our case: α = 1
2 , x = 4g :

[gN ]Z (g) ∼ 4NN− 3
2 (1 +O(

1

N
)) .



Back to the algorithm

▶ Tightness: once a suitable compact subset is found, relatively easy.

▶ Convergence on balls: finer estimations needed.

µN(B 1
R

(T0)) = C−1
N

∑

N1+···+NK=N+K−N0

K
∏

i=1

CNi
.



Limiting measure µ

After a couple of pages of calculation, we get

µN(B 1
R

(T0))
N→∞−−−−→ 2K · 2K · 4−N0 .

Hence, we have proven the existence of a limiting measure µ and
we also know the mass of balls µ(B 1

R

(T0))!

This measure is supported on T∞ and is called
Uniform Infinite Planar Tree (UIPT).

Let’s take a look at its properties...



UIPT

▶ µ is supported on
single-spine trees,

▶ The subbranches are all
finite and independently
distributed (they are in fact
critical BGW trees, if you
are familiar with them).



Horizons

What is we start with a sequence of probability measures νN that
are not uniform?

i0

See: [arXiv:2112.06570]

ν
(λ)
N

(T ) = e
−λh(T )

WN

, λ ∈ R,

WN :=
∑

T∈TN

e−λh(T ) .

ν
(λ)
N

→ ν(λ), N → ∞,

λ > 0 ⇒ a new limit!



Merci et bon courage!
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