

# Local limits of random trees

Meltem Ünel, August 2022 Journées de Rentrée des Masters

イロト イボト イヨト イヨト 三日

### Overview

#### 1. Preliminaries

- Trees: roots, labels and planarity
- Metric space of planar rooted trees

#### 2. Limits

- Local vs Scalar: the idea
- (Weak) convergence of probability measures

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Generating functionology and transfers
- UIPT: what does it look like?

#### 3. Horizons?

## Trees



- Connected graphs without cycles,
- Fundamental objects in graph theory, combinatorics and probability,
- …also for data structures and algorithms in computer science,
- Physicists like them for multiple reasons!

## Construction: a basic classification



#### 1. Rooted / unrooted

- A vertex is marked,
- can be described by generations,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

possibility to construct them recursively.

#### 2. Planar / non-planar

- Trees are planar graphs BUT might have different embeddings!
- $\blacktriangleright$  Planar means count all embeddings  $\rightarrow$



Figure: Two different embeddings of a tree

**3.** Labelled / unlabelled There is much lattitude in choosing labels. Here is a simple example:



### Attention!

When we say **rooted planar tree**, we mean a rooted tree where the children of each vertex is ordered from left to right. This induces a **natural embedding** into the half-plane.

From now on, these are the trees we are concerned with.

Recall: We want to do probability!

Let's start by constructing the metric space of rooted planar trees...

- ロ ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4

### Metric space of rooted planar trees

$$\blacktriangleright \ \mathcal{T}_{\mathsf{fin}} = \bigcup_{N=1}^{\infty} \mathcal{T}_N \quad , \ \mathcal{T} = \mathcal{T}_{\mathsf{fin}} \cup \mathcal{T}_{\infty},$$

Denote the vertex set at graph distance s from the root by D<sub>s</sub>(T),

Subgraph B<sub>R</sub>(T) of T spanned by V(B<sub>R</sub>(T)) = \binom{R}{\cup U\_s(T)},
For T, T' \in T

$$\operatorname{dist}(T,T') = \inf\{\frac{1}{R} \mid R \in \mathbb{N}, B_R(T) = B_R(T')\},\$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

•  $(\mathcal{T}, dist)$  is separable and complete.

Metric space of rooted planar trees

The ball of radius  $\frac{1}{R}$  around  $T_0 \in \mathcal{T}$  $\mathcal{B}_{\frac{1}{R}}(T_0) = \{T \in \mathcal{T} \mid B_R(T) = B_R(T_0)\}.$ 



## Local vs Scaling

Given some probabilistic structure on  $\mathcal{T}_N$ , we are interested in the asymptotic behavior of a "typical element" of  $\mathcal{T}_N$  as  $N \to \infty$ . In other words: We pick a tree *uniformly at random* in  $\mathcal{T}_N$  and study its *scaling* or *local* limit.

## Scaling Limit

Choose an object T at random inside  $T_N$ . When suitably scaled, T approaches a continuous structure as  $N \to \infty$ .



Local vs Scaling

## Local Limit

Different in spirit!

- No scaling of distances,
- Study the convergence of arbitrarily large but finite neighborhoods of the root,
- The limiting object is still discrete!

This limit provides more **local** information: limiting behavior of the degrees of vertices, average volume of balls around the root...

This is the limit we will concentrate on in the rest of the talk!

### Convergence of probability measures

A sequence  $\mu_{\textit{N}}$  converges weakly to  $\mu$  on  $\mathcal T$ 

$$\int\limits_{\mathcal{T}} \mathit{fd} \mu_{\mathit{N}} o \int\limits_{\mathcal{T}} \mathit{fd} \mu$$

as  $N \to \infty$  for all bounded continuous functions f on  $\mathcal{T}$ .

#### Some facts:

- Any ball in  $\mathcal{T}$  is both open and closed,
- Two balls are either disjoint or one is contained in the other,

•  $\mathcal{T}_{fin}$  is a countable dense subset of  $\mathcal{T}$ .

### Our algoritm

### Lemma (See Theorems 2.1, 2.2 and 6.5 in [Billingsley] )

Suppose  $\mu_N$ ,  $N \in \mathbb{N}$  is a sequence of probability measures on a metric space M and U is a family of both open and closed subsets of M such that

- 1. any finite intersection of sets in U belongs to U,
- 2. any open subset of M may be written as a finite or countable union of sets from U,
- 3. the sequence  $\mu_N(A)$  is convergent for all  $A \in U$ .

Then the sequence  $\mu_N$ ,  $N \in \mathbb{N}$ , is weakly convergent provided it is tight.

The tightness means that for each  $\epsilon > 0$  there exists a compact subset C such that

 $\mu_N(M \setminus C) < \epsilon$  for all N.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

### Our algorithm

The set  $U = \{\mathcal{B}_{\frac{1}{R}}(T) \mid R \in \mathbb{N}, T \in \mathcal{T}_{fin}\}$  satisfies (1) and (2) above.

So, we have an algorithm:

- 1. Show tighness,
- 2. Show convergence on balls.

**Recall**: we want to start with the **uniform** distribution on  $T_N$ :

$$\mu_N(T)=\frac{1}{C_N}, \quad T\in \mathcal{T}_N.$$

To be able to calculate the mass of balls  $\mu_N(\mathcal{B}_{\frac{1}{R}}(T))$ , we need to understand the asymptotic behavior of  $C_N$ , for N large.

### Generating functionology

Recall: we want asymptotics of  $C_N$ . Let's encode it!

$$Z(g)=\sum_{N=1}^\infty C_N g^N \ , \ g\in \mathbb{C} \,.$$

Hence we map a *combinatorial* problem onto an *analytic* one!

• A tree is a root with a sequence of trees grafted on it.



- 本間 ト オ ヨ ト オ ヨ ト 二 ヨ

### Generating functionology

$$Z(g) = g(1 + Z(g) + Z(g)^2 + \dots) = \frac{g}{1 - Z(g)}$$

Solution is simple

$$Z(g)=\frac{1-\sqrt{1-4g}}{2}$$

Notation:  $C_N = [g^N]Z(g) = A^N\theta(N)$ .

Principles of Coefficient Asymptotics:

- The location of a function's singularities dictates the exponential growth of its coefficients A<sup>N</sup>,
- The *nature* of a function's singularities determines the associated **sub**exponential factor  $\theta(N)$ .

### A simple transfer

Theorem (Standard function scale, Theorem VI.1 in [AC]) Let  $\alpha$  be an arbitrary complex number in  $\mathbb{C} \setminus \mathbb{Z}_{\leq 0}$ . The coefficient of  $x^N$  in

$$Z(x) = (1-x)^{-\alpha}$$

admits for large N a complete asymptotic expansion in descending powers of N

$$[x^N]Z(x) \sim \frac{N^{\alpha-1}}{\Gamma(\alpha)} \left(1 + \mathcal{O}(\frac{1}{N})\right).$$

Our case:  $\alpha = \frac{1}{2}, \ x = 4g$  :  $[g^N]Z(g) \sim 4^N N^{-\frac{3}{2}} (1 + \mathcal{O}(\frac{1}{N})).$ 

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

### Back to the algorithm

Tightness: once a suitable compact subset is found, relatively easy.

Convergence on balls: finer estimations needed.

$$\mu_N(\mathcal{B}_{\frac{1}{R}}(T_0)) = C_N^{-1} \sum_{N_1 + \dots + N_K = N + K - N_0} \prod_{i=1}^K C_{N_i}.$$



### Limiting measure $\mu$

After a couple of pages of calculation, we get

$$\mu_{N}(\mathcal{B}_{\frac{1}{R}}(T_{0})) \xrightarrow{N \to \infty} 2K \cdot 2^{K} \cdot 4^{-N_{0}}$$

Hence, we have proven the existence of a limiting measure  $\mu$  and we also know the mass of balls  $\mu(\mathcal{B}_{\frac{1}{R}}(T_0))!$ 

This measure is supported on  $\mathcal{T}_{\infty}$  and is called **Uniform Infinite Planar Tree** (UIPT).

Let's take a look at its properties...

UIPT



- µ is supported on single-spine trees,
- The subbranches are all finite and independently distributed (they are in fact critical BGW trees, if you are familiar with them).

A D > A P > A B > A B >

э

### Horizons

What is we start with a sequence of probability measures  $\nu_N$  that are not uniform?



See: [arXiv:2112.06570]  $\nu_{N}^{(\lambda)}(T) = \frac{e^{-\lambda h(T)}}{W_{N}}, \ \lambda \in \mathbb{R},$   $W_{N} := \sum_{T \in \mathcal{T}_{N}} e^{-\lambda h(T)}.$   $\nu_{N}^{(\lambda)} \to \nu^{(\lambda)}, \ N \to \infty,$ 

 $\lambda > 0 \Rightarrow a \text{ new limit!}$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

# Merci et bon courage!

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

## Bibliography I



#### P. Billingsley.

Convergence of probability measures. John Wiley & Sons, 2013.



#### B. Durhuus.

Probabilistic aspects of infinite trees and surfaces.

Acta Physica Polonica Series B, 34(10):4795-4812, 2003.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- P. Flajolet and R. Sedgewick.
   Analytic combinatorics.
   Cambridge University press, 2009.
- J. F. Le Gall.

Random trees and applications.

Probability surveys, 2:245–311, 2005.