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∃ prices ⇒ 
supply=demand 

equilibrium	
  



[Myerson’99]: “Nash's theory of non-cooperative games 
should now be recognized as one of the outstanding 
intellectual advances of the twentieth century. The 
formulation of Nash equilibrium has had a fundamental 
and pervasive impact in Economics and the Social 
Sciences which is comparable to that of the discovery of 
the DNA double helix in the biological sciences.”
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mics 

computation 



How long to equilibrium? 



[Irving Fisher 1891]: Hydraulic apparatus for calculating the 
equilibrium of a 3-person, 3-commodity exchange economy. 



How long to equilibrium? 
Universality requires tractability 
“If your laptop can’t find the equilibrium, how can 
they market?” [Kamal Jain] 
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Games and Equilibria 

1/2 

1/2 

1/2 
Equilibrium: A pair (𝑥,𝑦) of 
randomized strategies so that 
no player has incentive to 
deviate if the other does not.

[von Neumann ’28]: An equilibrium exists in every two-player 
           zero-sum game (𝑅+𝐶=0)

+[Dantzig’40s]:    …in fact, this follows from strong LP duality
+[Khachiyan’79]: …and is computable in polynomial-time.

     Kick 
Dive        Left  Right 

Left 1 , -1 -1 , 1 

Right -1 , 1  1, -1 

Penalty Shot Game 

1/2 

​𝑥↑𝑇 𝑅𝑦≥ ​𝑥↑′𝑇 𝑅𝑦,  ∀   ​𝑥↑′     
​𝑥↑𝑇 𝐶𝑦≥ ​𝑥↑𝑇 𝐶​𝑦↑′ ,  ∀   ​𝑦↑′   

∑𝑖,𝑗↑▒​𝐶↓𝑖𝑗 ⋅ ​𝑥↓𝑖 ⋅ ​𝑦↓𝑗   



Games and Equilibria 

1/2 

1/2 

2/5 
Equilibrium: A pair (𝑥,𝑦) of 
randomized strategies so that 
no player has incentive to 
deviate if the other does not.

[Nash ’50/’51]: An equilibrium exists in every finite game.
•  proof used Kakutani/Brouwer’s fixed point theorem, and no 

constructive proof has been found in 70+ years
•  same is true for economic equilibria

     Kick 
Dive        Left  Right 

Left 2 , -1 -1 , 1 

Right -1 , 1  1, -1 

Penalty Shot Game 

3/5 

​𝑥↑𝑇 𝑅𝑦≥ ​𝑥↑′𝑇 𝑅𝑦,  ∀   ​𝑥↑′     
​𝑥↑𝑇 𝐶𝑦≥ ​𝑥↑𝑇 𝐶​𝑦↑′ ,  ∀   ​𝑦↑′   

∑𝑖,𝑗↑▒​𝐶↓𝑖𝑗 ⋅ ​𝑥↓𝑖 ⋅ ​𝑦↓𝑗   
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von Neumann 



The	
  Minimax	
  Theorem	
  

•  [von Neumann’28]: Suppose 𝑋 and 𝑌 are compact convex sets, and  and 𝑌 are compact convex sets, and  are compact convex sets, and 
𝑓:𝑋×𝑌→ℝ is a continuous function that is convex-concave, i.e. 𝑓(⋅,𝑦) 
is convex for all fixed 𝑦, and 𝑓(𝑥,⋅) is concave for all fixed 𝑥. Then: , and 𝑓(𝑥,⋅) is concave for all fixed 𝑥. Then: 

​​min┬𝑥∈𝑋  ⁠​​max┬𝑦∈𝑌  ⁠𝑓(𝑥,𝑦)  = ​​max┬𝑦∈𝑌  ⁠​​
min┬𝑥∈𝑋  ⁠𝑓(𝑥,𝑦)   
 

•  In a zero-sum game, take 𝑓(𝑥,𝑦)≡ ​𝑥↑𝑇 𝐶𝑦    
–  how much row pays column 

•  Then ( ​𝑥↑∗ , ​𝑦↑∗ ) is an equilibrium, where 

	
   	
   ​𝑥↑∗ ∈ ​​argmin┬𝑥∈𝑋  ⁠​​max┬𝑦∈𝑌  ⁠𝑓(𝑥,𝑦)  	
  	
  	
  and	
  	
  	
  ​𝑦↑∗ ∈ ​​
argmax┬𝑦∈𝑌  ⁠​​min┬𝑥∈𝑋  ⁠𝑓(𝑥,𝑦)   
 



Presidential Elections 

Morality Tax Cuts 

Economy +3, -3 -1, +1 

Society -2, +2 1, -1 

Suppose Clinton announces strategy (1/2,1/2). 
What would Trump do? 

  A:  focus on Tax Cuts with probability 1. 
indeed against (1/2, 1/2) strategy “Morality” gives expected 
expected payoff -1/2 while “Tax Cuts”  gives 0 



Presidential Elections 
Morality Tax Cuts 

Economy +3, -3 -1, +1 

Society -2, +2 1, -1 

More generally, suppose Clinton commits to strategy (x1, x2). 
N.B.: Committing to a strategy in advance may not be optimal 
for Clinton since Trump may, in principle, exploit it.  
How? 

 E[“Morality”]= - 3x1+2 x2 
 E[“Tax Cuts”]= x1- x2 

So Trump’s payoff after best responding to (x1, x2) would be  
 max(- 3x1+2 x2, x1- x2), 

resulting in the following payoff for Clinton:  
 -max(- 3x1+2 x2, x1- x2) = min(3x1-2 x2, -x1+ x2). 

So the best strategy for Clinton to commit to is:   
(x1, x2) ∈ argmax min(3x1-2 x2, -x1+x2) 



Presidential Elections 
Morality Tax Cuts 

Economy +3, -3 -1, +1 

Society -2, +2 1, -1 

(x1, x2) ∈ argmax min(3x1-2 x2, -x1+x2) 

So the best strategy for Clinton to commit to is: 

To compute it Clinton writes the following Linear Program: 
max z

s.t. 3x1 � 2x2 � z

�x1 + x2 � z

x1 + x2 = 1

x1, x2 � 0.

solution: 
 

z = 1/7,  
 

(x1, x2)=(3/7,4/7) 

No matter what Trump does 
Clinton can guarantee 1/7 to 
himself by playing (3/7,4/7) 



Presidential Elections 
Morality Tax Cuts 

Economy +3, -3 -1, +1 

Society -2, +2 1, -1 

Conversely if Trump were forced to commit to a strategy (y1,y2) 
he would solve: 

solution: 
 

w = -1/7,  
 

(y1, y2)=(2/7,5/7) 

maxw

s.t. � 3y1 + y2 � w

2y1 � y2 � w

y1 + y2 = 1

y1, y2 � 0

No matter what Clinton does 
Trump can guarantee -1/7 to 
himself by playing (2/7,5/7) 



Presidential Elections “Miracle” 
No matter what Trump does Clinton can guarantee 1/7 to himself by 
playing (3/7,4/7). 

No matter what Clinton does Trump can guarantee -1/7 to himself by 
playing (2/7,5/7). 

è If Clinton plays (3/7,4/7) and Trump plays (2/7,5/7) then none of them can 
improve their payoff by changing their strategy (because their sum of irrevocable 
payoffs is 0 and the game is zero-sum).  

è I.e. (3/7,4/7)  is best response to (2/7,5/7)  and vice versa. 

è Hence they jointly comprise a Nash equilibrium! 

Why is it a “Miracle”? 
Because  (3/7,4/7) was computed a priori for Clinton and (2/7,5/7) was 
computed a priori for Trump. 
  

Nevertheless these strategies magically comprise a Nash equilibrium! 



De-mystifying the “Miracle” 

max z

s.t. 3x1 � 2x2 � z

�x1 + x2 � z

x1 + x2 = 1

x1, x2 � 0.

maxw

s.t. � 3y1 + y2 � w

2y1 � y2 � w

y1 + y2 = 1

y1, y2 � 0

Clinton’s LP Trump’s LP 

Why is it that the value of the left LP is equal to minus the value of the right LP? 



max�t

s.t. � 3y1 + y2 � �t

2y1 � y2 � �t

y1 + y2 = 1

y1, y2 � 0

De-mystifying the “Miracle” 

max z

s.t. 3x1 � 2x2 � z

�x1 + x2 � z

x1 + x2 = 1

x1, x2 � 0.

Clinton’s LP Trump’s LP 

Why is it that the value of the left LP is equal to minus the value of the right LP? 



min t

s.t. � 3y1 + y2 � �t

2y1 � y2 � �t

y1 + y2 = 1

y1, y2 � 0

De-mystifying the “Miracle” 

max z

s.t. 3x1 � 2x2 � z

�x1 + x2 � z

x1 + x2 = 1

x1, x2 � 0.

Clinton’s LP Trump’s LP 

Why is it that the value of the left LP is equal to the value of the right LP? 



min t

s.t. 3y1 � y2  t

�2y1 + y2  t

y1 + y2 = 1

y1, y2 � 0

De-mystifying the “Miracle” 

max z

s.t. 3x1 � 2x2 � z

�x1 + x2 � z

x1 + x2 = 1

x1, x2 � 0.

Clinton’s LP Trump’s LP 

Why is it that the value of the left LP is equal to the value of the right LP? 

Linear Programming Duality   
  è  Left LP is DUAL to Right LP, hence they have equal values! 

​𝐦𝐢𝐧┬𝒙    ​
𝐦𝐚𝐱┬𝐲    ​𝒙↑𝐓 
𝑪  𝒚  
 

​𝐦𝐚𝐱┬𝒚    ​
𝐦𝐢𝐧┬𝐱    ​𝒙↑𝐓 
𝑪  𝒚  
 

= 



Moral of the Story 

Existence of a Nash equilibrium in the Presidential Election game follows 
from Strong Linear Programming duality. 
 
This proof technique generalizes to any 2-player zero-sum game. 
 
Allows us to efficiently (i.e. in polynomial-time) compute Nash equilibria in 
these games. 
 
Moreover, a wide-class of distributed, online learning dynamics (namely no-
regret learning) converge to equilibrium payoffs 

Morality Tax Cuts 

Economy +3, -3 -1, +1 

Society -2, +2 1, -1 
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Brouwer 



Brouwer’s Fixed Point Theorem 

f 

[Brouwer 1910]:  Let f : D       D  be a continuous function from 
a convex and compact subset D of the Euclidean space to itself.  

�⇥

Then there exists an  x          s.t.  x = f (x) . � D

N.B. All conditions in the statement of the theorem are necessary. 

closed and bounded 

D D 

Below we show a few examples, when D is the 2-dimensional disk. 



fixed point 

Brouwer’s Fixed Point Theorem 



fixed point 

Brouwer’s Fixed Point Theorem 



fixed point 

Brouwer’s Fixed Point Theorem 



Brouwer ⇒ Nash 



 ƒ: [0,1]2 →[0,1]2, continuous 
such that 

fixed points ≡ Nash eq. 

     Kick 
Dive        Left  Right 

Left 1 , -1 -1 , 1 

Right -1 , 1  1, -1 

Visualizing Nash’s Proof 

Penalty Shot Game 



     Kick 
Dive        Left  Right 

Left 1 , -1 -1 , 1 

Right -1 , 1  1, -1 

Penalty Shot Game 

0 1 
0 

1 

Pr[Right] 

Pr
[R

ig
ht

] 

Visualizing Nash’s Proof 



     Kick 
Dive        Left  Right 

Left 1 , -1 -1 , 1 

Right -1 , 1  1, -1 

Penalty Shot Game 

0 1 
0 

1 

Pr[Right] 

Pr
[R

ig
ht

] 

Visualizing Nash’s Proof 



     Kick 
Dive        Left  Right 

Left 1 , -1 -1 , 1 

Right -1 , 1  1, -1 

Penalty Shot Game 

0 1 
0 

1 

Pr[Right] 

Pr
[R

ig
ht

] 

Visualizing Nash’s Proof 



 ƒ: [0,1]2 →[0,1]2, cont. 
such that 

fixed point ≡ Nash eq. 

     Kick 
Dive        Left  Right 

Left 1 , -1 -1 , 1 

Right -1 , 1  1, -1 

Penalty Shot Game 

0 1 
0 

1 

Pr[Right] 

Pr
[R

ig
ht

] 
fixed point 

½ ½ 

½ 

½ 

Visualizing Nash’s Proof 

Real proof: on the board 
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Sperner 



Sperner’s Lemma (2-d) 



Sperner’s Lemma (2-d) 

no red 

no blue 

no yellow 

[Sperner 1928]: Color the boundary using three colors in a legal way.  

legal 
boundary 
coloring 



Sperner’s Lemma (2-d) 

[Sperner 1928]: Color the boundary using three colors in a legal way. No matter how the 
internal nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those. 

no red 

no blue 

no yellow 



Sperner’s Lemma (2-d) 

[Sperner 1928]: Color the boundary using three colors in a legal way. No matter how the 
internal nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those. 



Sperner ⇒ Brouwer 



Given f : [0,1]2 → [0,1]2 
1. For all ε, existence of approximate fixed point |f(x)-x| < ε, can 
be shown via Sperner’s lemma.  
2. Then use compactness.  

For 1: Triangulate [0,1]2;  

Sperner ⇒ Brouwer (High-Level)  



Sperner ⇒ Brouwer (High-Level)  
Given f : [0,1]2 → [0,1]2 
1. For all ε, existence of approximate fixed point |f(x)-x| < ε, can 
be shown via Sperner’s lemma.  
2. Then use compactness.  

For 1: Triangulate [0,1]2;  
then color points according  
to the direction of f (x)-x; 
 



Given f : [0,1]2 → [0,1]2 
1. For all ε, existence of approximate fixed point |f(x)-x| < ε, can 
be shown via Sperner’s lemma.  
2. Then use compactness.  

For 1: Triangulate [0,1]2;  
then color points according  
to the direction of f (x)-x; 
 

Sperner ⇒ Brouwer (High-Level)  



Given f : [0,1]2 → [0,1]2 
1. For all ε, existence of approximate fixed point |f(x)-x| < ε, can 
be shown via Sperner’s lemma.  
2. Then use compactness.  

For 1: Triangulate [0,1]2;  
then color points according  
to the direction of f (x)-x; 
then apply Sperner. 
 

Sperner ⇒ Brouwer (High-Level)  



2D-Brouwer on the Square 
Suppose ƒ: [0,1]2 →[0,1]2, continuous 

must be uniformly continuous (by the Heine-Cantor theorem) 

say d is the �� norm

1 

0 1 

0 �⇥

�⇥

x

y

8✏ > 0, 9�(✏) > 0, s.t.

d(z, w) < �(✏) =) d(f(z), f(w)) < ✏



2D-Brouwer on the Square 
Suppose ƒ: [0,1]2 →[0,1]2, continuous 

must be uniformly continuous (by the Heine-Cantor theorem) 

choose some       and  
triangulate so that the 
diameter of cells is 

�

say d is the �� norm

1 

0 1 

0 �⇥

�⇥

x

y

8✏ > 0, 9�(✏) > 0, s.t.

d(z, w) < �(✏) =) d(f(z), f(w)) < ✏

� < �(✏)



2D-Brouwer on the Square 
Suppose ƒ: [0,1]2 →[0,1]2, continuous 

must be uniformly continuous (by the Heine-Cantor theorem) 

say d is the �� norm

1 

0 1 

0 �⇥

�⇥

x

ycolor the nodes of the 
triangulation according 
to the direction of  

f(x)� x

8✏ > 0, 9�(✏) > 0, s.t.

d(z, w) < �(✏) =) d(f(z), f(w)) < ✏

choose some       and  
triangulate so that the 
diameter of cells is 

�

� < �(✏)



1 

0 1 

0 �⇥

�⇥

x

y

2D-Brouwer on the Square 
Suppose ƒ: [0,1]2 →[0,1]2, continuous 

must be uniformly continuous (by the Heine-Cantor theorem) 

color the nodes of the 
triangulation according 
to the direction of  

f(x)� x

say d is the �� norm

(tie-break at the 
boundary angles, so that 
the resulting coloring 
respects the boundary 
conditions required by 
Sperner’s lemma) 

find a trichromatic 
triangle, guaranteed by 
Sperner 

choose some       and  
triangulate so that the 
diameter of cells is 

�

� < �(✏)

8✏ > 0, 9�(✏) > 0, s.t.

d(z, w) < �(✏) =) d(f(z), f(w)) < ✏



2D-Brouwer on the Square 
Suppose ƒ: [0,1]2 →[0,1]2, continuous 

must be uniformly continuous (by the Heine-Cantor theorem) 

Claim: If zY is the yellow corner of a 
trichromatic triangle, then 

say d is the �� norm

|f(zY)� zY|� < ⇥ + �.

1 

0 1 

0 �⇥

�⇥

x

y

8✏ > 0, 9�(✏) > 0, s.t.

d(z, w) < �(✏) =) d(f(z), f(w)) < ✏



1 

0 1 

0 �⇥

�⇥

x

y

Proof of Claim 

Claim: If zY is the yellow corner of a trichromatic triangle, then |f(zY)� zY|� < ⇥ + �.

Proof: Let zY, zR , zB be the yellow/red/blue corners of a trichromatic triangle. 
By the definition of the coloring, observe that the product of   

(f(zY )� zY )x and (f(zB)� zB)x is ⇥ 0.

Hence: 

|(f(zY )� zY )x|
⇥ |(f(zY )� zY )x � (f(zB)� zB)x|
⇥ |(f(zY )� f(zB))x| + |(zY � zB)x|
⇥ d(f(zY ), f(zB)) + d(zY , zB)
⇥ ⇥ + �.

Similarly, we can show: 

|(f(zY )� zY )y|  ✏+ �.



2D-Brouwer on the Square 
Suppose ƒ: [0,1]2 →[0,1]2, continuous 

must be uniformly continuous (by the Heine-Cantor theorem) 

Claim: If zY is the yellow corner of a 
trichromatic triangle, then 

say d is the �� norm

|f(zY)� zY|� < ⇥ + �.

|f(zY )� zY |� < 2�.

1 

0 1 

0 �⇥

�⇥

x

y

8✏ > 0, 9�(✏) > 0, s.t.

d(z, w) < �(✏) =) d(f(z), f(w)) < ✏

Choosing � = min(�(✏), ✏)



2D-Brouwer on the Square 

- pick a sequence of epsilons: �i = 2�i, i = 1, 2, . . .

- define a sequence of triangulations of diameter: 

- pick a trichromatic triangle in each triangulation, and call its yellow corner 
zY
i , i = 1, 2, . . .

Claim: 

Finishing the proof  of Brouwer’s Theorem (Compactness): 

�i = min(�(⇥i), ⇥i), i = 1, 2, . . .

- by compactness, this sequence has a converging subsequence wi, i = 1, 2, . . .

with limit point  w�
f(w�) = w�.

Proof: Define the function                                 . Clearly,    is continuous since              
is continuous and so is    . It follows from continuity that 

g(x) = d(f(x), x) g d(·, ·)
f

g(wi) �⇥ g(w�), as i⇥ +⇤.

But                                   . Hence,                       . It follows that                     . 0 � g(wi) � 2�i+1 g(wi) �⇥ 0 g(w�) = 0

Therefore,  d(f(w�), w�) = 0 =� f(w�) = w�.



Summary 

Sperner ⇒ Brouwer ⇒ Nash 

Easier Harder 



SPERNER 

y 

2n 

2n 

x 
C 

(i) n: specifies the size of a grid 

(ii) Suppose boundary has standard coloring, and colors of 
internal vertices are given by a circuit: 

input: the 
coordinates 
of a point 
(n bits each) 

INPUT: 

OUTPUT: A tri-chromatic triangle. 



BROUWER	
  
INPUT: a. an algorithm A that evaluates a function  f : [0,1]n →	
  [0,1] n: 

A …
	
  

x1
x2
x3

xn

f(x)

b. an approximation requirement     ; �

BROUWER:	
  

OR a point that is mapped outside of  [0,1]n. 

OR a pair of points x, y violating the Lipschitz constraint, i.e. 
|f(x)� f(y)| > c|x� y|

c. a Lipschitz constant  c  that the function is claimed to satisfy. 

Find x such that   |f(x)� x| < �



NASH	
  
INPUT: (i) A Game defined by  

- the number of players n;	
  
- an enumeration of the strategy set Sp of every player p = 1,…, n;	
  

- the utility function                         of every player.	
  up : S �⇥ R

OUTPUT:	
  

(ii) An approximation requirement ε	
  

An  ε-Nash equilibrium of the game.   
i.e. the expected payoff of every player is within additive ε     
from the optimal expected payoff given the others’ strategies	
  

Intense effort for equilibrium algorithms following Nash’s work: 
e.g. Kuhn ’61, Mangasarian ’64, Lemke-Howson ’64, Rosenmüller ’71, 
Wilson ’71, Scarf ’67, Eaves ’72, Laan-Talman ’79, and others… 

Lemke-Howson: simplex-like, works with LCP formulation.  
All these algorithm require worst-case exponential time 
No efficient algorithm is known after 60+ years of research. 
	
  



The Pavlovian reaction 
►  Is it NP-complete to find a Nash equilibrium? 

§  and why should you care? 
►  NP-completeness is a standard complexity theoretic approach to prove that 

a problem is computationally intractable [Cook’71, Karp’72]. 
§  established by showing that problem is computationally equivalent to the 

Boolean function satisfiability problem:  
► Given Boolean formula with AND, OR and NOT operations, can you set 

the variables to satisfy it, i.e. get 1 in the output? 

► e.g.((¬ ​𝑥↓1 )∨​𝑥↓2 )∧(¬ ​𝑥↓2 )∧(¬ ​𝑥↓1 ) can be satisfied by setting ​
𝑥↓1 = ​𝑥↓2 =0 

► but ((¬ ​𝑥↓1 )∨​𝑥↓2 )∧(¬ ​𝑥↓2 )∧​𝑥↓1  cannot be satisfied 
►  If Nash is NP-complete, then we cannot compute Nash equilibria 

efficiently, so we’re unable to predict player behavior in all games. 
►  Worse still, universality breaks down. 

§  If the best algorithmic machinery is unable to find Nash equilibria, how 
could players possibly discover them? 



So: “Is it NP-complete to find a Nash equilibrium?” 

the Pavlovian reaction (cont.) 

1. probably not, since a solution is guaranteed to exist… 

2. it is NP-complete to find a “tiny” bit more info than “just” 
a Nash equilibrium; e.g., the following are NP-complete: 

- find a Nash equilibrium whose third bit is one, if any 
- find two Nash equilibria, if more than one exist 

[Gilboa, Zemel ’89; Conitzer, Sandholm ’03] 

two answers: 

But let us look into NP-completeness more formally  



Menu	
  

•  Equilibria	
  
•  Existence	
  proofs	
  
– Minimax	
  
– Nash	
  
–  Brouwer,	
  Brouwer	
  ⇒	
  Nash	
  
–  Sperner,	
  Sperner	
  ⇒	
  Brouwer	
  

•  Complexity	
  of	
  Equilibria	
  
–  Total	
  Search	
  Problems	
  in	
  NP	
  
–  PPAD	
  

•  The	
  World	
  Beyond	
  



Function NP (FNP)	
  

A search problem L is defined by a relation RL ⊆	
  {0,1}* × {0,1}* 
such that (x, y)	
  ∈	
   RL      iff     y is a solution to x 

A search problem L ∈ FNP iff there exists a poly-time algorithm AL(⋅, ⋅) 
and a polynomial function pL( ⋅	
  ) such that 

(ii) ∀ x:  ∃	
  y  s.t. (x, y)	
  ∈	
   RL  ⇒	
   ∃	
  z with |z| ≤ pL(|x|) s.t.  (x, z)	
  ∈	
   RL	
  
 

(i) ∀ x, y:             AL(x, y)=1  ⇔	
  	
  (x, y)	
  ∈	
   RL	
  

A search problem is called total iff   ∀ x. ∃  y such that (x, y) ∈	
  RL. 

TFNP = {L ∈ FNP | L is total} 

SPERNER, NASH, BROUWER  ∈	
   FNP.	
  



FNP-completeness	
  

A search problem L ∈	
  FNP, associated with AL and pL , is poly-time 
(Karp) reducible to another problem L’ ∈	
  FNP, associated with AL’ 
and pL’, iff there exist efficiently computable functions f, g such that 

(i) f : {0,1}* →  {0,1}* maps inputs x to L into inputs  f(x) to L’ 

∀ x,y: AL’ (f(x), y)=1     ⇒    AL(x, g(y))=1 
∀ x: AL’ (f(x), y)=0, ∀	
  y ⇒ AL(x, y)=0, ∀ y 

(ii) 	
  

A search problem L is FNP-complete iff 

L’	
   is poly-time reducible to L, for all L’	
  ∈	
  FNP 
L ∈	
  FNP 

e.g. SAT 

can’t Karp reduce 
SAT to SPERNER, 

NASH or 
BROUWER 



A Complexity Theory of Total Search 
Problems ?	
   ??	
  



100-feet overview of our methodology: 

1. identify the combinatorial argument of existence, responsible for 
making these problems total; 

2. define a complexity class inspired by the argument of existence; 

3. Litmus test: was complexity of underlying problem captured tightly? 
•  prove completeness results 

A Complexity Theory of Total Search 
Problems ?	
  



Menu	
  
•  Equilibria	
  
•  Existence	
  proofs	
  
– Minimax	
  
– Nash	
  
–  Brouwer,	
  Brouwer	
  ⇒	
  Nash	
  
–  Sperner,	
  Sperner	
  ⇒	
  Brouwer	
  

•  Complexity	
  of	
  Equilibria	
  
–  Total	
  Search	
  Problems	
  in	
  NP	
  
–  Proof	
  of	
  Sperner’s	
  Lemma	
  
–  PPAD	
  

•  The	
  World	
  Beyond	
  



Proof of Sperner’s Lemma 

[Sperner 1928]: Color the boundary using three colors in a legal way. No matter how the 
internal nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those. 

no red 

no blue 

no yellow 



Proof of Sperner’s Lemma 

[Sperner 1928]: Color the boundary using three colors in a legal way. No matter how the 
internal nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those. 

For convenience we 
introduce an outer 
boundary, that does 
not create new tri-
chromatic triangles. 

Next we define a 
directed walk 
starting from the 
artificial tri-
chromatic triangle. 

We also introduce 
an artificial tri-
chromatic triangle. 



Transition Rule:  If  ∃  red - yellow door cross it 
with red on your left hand. 

? 

Space of Triangles 

1 
2 

Proof of Sperner’s Lemma 

[Sperner 1928]: Color the boundary using three colors in a legal way. No matter how the 
internal nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those. 



Proof of Sperner’s Lemma 

! 

[Sperner 1928]: Color the boundary using three colors in a legal way. No matter how the 
internal nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those. 

Starting from other 
triangles we do the 
same going forward 
or backward. 

Claim: The walk 
cannot exit the 
square, nor can it 
loop into itself. 
 
Hence, it must stop 
somewhere inside. 
This can only happen 
at tri-chromatic 
triangle… 

For convenience we 
introduce an outer 
boundary, that does 
not create new tri-
chromatic triangles. 

Next we define a 
directed walk 
starting from the 
artificial tri-
chromatic triangle. 

We also introduce 
an artificial tri-
chromatic triangle. 



Structure of Proof:  
A directed parity argument 

Vertices of Graph ≡ Triangles 
all vertices have in-degree, out-degree ≤ 1 

 

Proof:  ∃ at least one trichromatic (artificial one) 

degree 1 vertices: trichromatic triangles 
degree 2 vertices: no blue, non-trichromatic 
degree 0 vertices: all other triangles 
 

! ∃ another trichromatic 

... 
Artificial 

Trichromatic 



The Non-Constructive Step

A directed graph with an unbalanced node (a node with indegree ≠ 
outdegree) must have another. 

An easy parity lemma: 

But, wait, why is this non-constructive? 

Given a directed graph and an unbalanced node, isn’t it trivial 
to find another unbalanced node? 

The graph can be exponentially large, but has succinct description… 



The PPAD Class [Papadimitriou ’94]

Suppose that an exponentially large graph with vertex set {0,1}n is defined by 
two circuits: 

P 

N 

node id 

node id 

node id 

node id 

END OF THE LINE: Given  P  and  N: If  0n  is an unbalanced node, find 
another unbalanced node. Otherwise output 0n. 

PPAD =  { Search problems in FNP reducible to END OF THE LINE }   

possible previous 

possible next 



{0,1}n 

... 
0n 

= solution 

END OF THE LINE 

⇔ 
 



Problems in PPAD 

BROUWER is PPAD-Complete     [Papadimitriou ’94] 

SPERNER  ∈   PPAD 

BROUWER ∈  PPAD 

SPERNER is PPAD-Complete       [Papadimitriou ’94; Chen-Deng ’05  for 2d] 

   [Previous Slides]  

   [By Reduction to SPERNER-Scarf ’67]  

i.e. these problems are solvable via the directed parity argument and 
are at least as hard as any other problem in PPAD  

Litmus Test: Completeness 

NASH ∈  PPAD    [By Nash’s Proof, reducing to BROUWER]  



P 

NP 

NP-complete 

PPAD 
SPERNER, BROUWER 
are both PPAD-complete 
(i.e. as hard as any 
problem in PPAD) 

NASH 

Problems in PPAD 


