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Real-time Ride-sharing with Intermediate Locations

Kamel AISSAT · Ammar Oulamara

Abstract Ride-sharing is a travel mode that provides several benefits and solutions, such as reducing
travel costs, traffic congestion and the provision of travel options.
In the classical ride-sharing approach, the driver makes a detour to the rider’s origin in order to pick-up
the rider, then drives him to his destination and finally goes to his own destination. This implies that
the driver is incharge of the whole detour and may refuse such matchings if the detour is long. However,
the matching could be accepted if the rider meets the driver at an intermediate location.
In this paper, we present a general ride-sharing approach in which a driver and a rider accept to meet
each other in an intermediate starting location and to separate in another intermediate ending location.
We propose exact and heuristic methods to compute meeting locations that minimize the total travel
cost of the driver and the rider and, finally, we perform a numerical study using a real road network and
real dataset. Our experimental analysis shows that our heuristics provide efficient performances within
short CPU times and improves participants cost-savings and matching rate compared to the classical
ride-sharing.
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1 Introduction

A ride-sharing service brings together users with similar itineraries and time schedules. More precisely,
a driver and a rider share a part of their common itinerary using the driver’s vehicle as well as a part
of the vehicle-related expenses. The ride-sharing service is growing with the development of ICT (In-
formation and Communications Technology), the extension of the smartphone usage and the embedded
geolocation device (Global Positioning System - GPS). A new and innovative solution in ride-sharing
service has emerged. It consists in automatic and instant matching of riders through a network service
by using smartphone as geolocation and communication device. This service is called real-time ride-
sharing. The ability of a real-time ride-sharing to successfully provide an instant matching depends (i)
on the characteristics of the environment in terms of geographic density of users, traffic patterns, the
available roadway and transit infrastructure (ii) on the efficiency of implemented algorithms to tackle
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the underlying decision problems, such as optimal instant matching of drivers.
Several research has been reported recently in the fields of ride-sharing, see [5] for overview. In the ride-
sharing problem, we distinguish four variants, namely, single-driver and single-rider [6], single-driver and
multiple-riders [1], multiple-drivers and single-rider [4], and finally multiple-drivers and multiple-riders
[7]. In each variant, the matching between riders and drivers depends on one or more objective func-
tions, such as the maximization of the number of matchings, the maximization of the cost saving, the
maximization of distance saving, etc. Most studies in the literature focuses on the classical ride-sharing
problem in which the driver makes a detour to the rider’s origin in order to pick-up the rider, then drives
him to his destination and finally goes to his own destination. This approach is the most implemented
in ride-sharing services. However, in order to get more opportunities of ride-sharing, a rider can accept
two different intermediate locations one for pick-up and another for the drop-off. More precisely, the
rider travels by his own to the first intermediate meeting location, where he will be picked up by the
driver, travel together till a second intermediate location, in which the rider is propped off, then he will
continue to his ending location.
To the best of our knowledge, the only work considering the intermediate locations is addressed in [2].
The authors propose optimal and heuristic methods to find the pick-up and drop-off locations in a mul-
timodal transportation network, in which the objective is to minimize the total travel time for both the
driver and the rider. However the time complexity of this heursitic O(m · n2), where n is the number of
nodes and m is the number of edges in the graph, prevents its use in real-time ride-sharing, and their
model does not take into account the detour time constraint, i.e., the total time of detour should be less
than given value fixed by the driver (rider) and detour cost constraint i.e., the incurred cost of the driver
(rider) is more attractive than the incurred cost when they travel alone.
Our Contribution. In our model, we minimize the total travel cost in scenarios involving transporta-
tion modes with time-independent arc costs, while ensuring that their detour costs and times remain
reasonable.

Fig. 1 The left-graph represents the shortest path of driver (green arrows) and the rider (blue arrows) before matching,
while the graph on the right represents the new path of the driver and the rider after the matching with two new intermediate
locations (two red arrows).

2 Description of our model

The road network is represented by a weighted graph G = (V,E), where V is the set of nodes, E the
set of edges. Nodes model intersections and edges depict street segments. Edge (i, j) ∈ E associated two
weights. In our model w(i, j) represents the traveling cost and τ(i, j) the traveling time. A path or a
route in a graph is defined as a vector µ = (x, · · · , v) with an order list of nodes, for which holds that
each pair of consecutive nodes is connected by an edge of E. The length of a path w(P ) is the sum
its edge weights. A path with minimum cost between a source node x and a target node y is called a
shortest path and denoted by 〈x → y〉 with cost w(〈x → y〉). We consider an offer and a demand of
ride-sharing represented by o = (s, t, [tmin

o , tmax
o ], ∆o) and d = (s′, t′, [tmin

d , tmax
d ], ∆d), respectively, where

s and s′ (t and t′) are the starting (ending) locations of the driver and the rider, respectively, [tmin
o , tmax

o ]
([tmin

d , tmax
d ]) is the departure time window of the driver (rider), ∆o (∆d) is the time detour for the driver

(rider). An edge (i, j) has a nonnegative traveling cost wk(i, j) depending on the fact that the edge is
used by driver (k = o) or by rider (k = d). In our model the rider can travel on his own to intermediate
location r1 with a cost wd(〈s′ → r1〉), where he will be picked up by the driver and dropped off at another
intermediate location r2, the rider will continue his travel from r2 to t′ on his own. Thus, the driver and
the rider will share wo(〈r1 → r2〉). Therefore, the cost of rider is wd(〈s′ → r1〉) + ε · wo(〈r1 → r2〉) +
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wd(〈r2 → t′〉), where ε is the cost sharing factor.
Let ε > 0, we say that an offer o and a demand d form a reasonable fit if and only if there exist two in-
termediate locations r1 and r2 (r2 6= r1) such that: o and d form a time synchronization at location r1 and

wo(〈s→ r1〉) + wo(〈r1 → r2〉) + wo(〈r2 → t〉)− wo(〈s→ t〉) ≤ ε · wo(〈r1 → r2〉) (1)

wd(〈s′ → r1〉) + wo(〈r1 → r2〉) + wd(〈r2 → t′〉)− wd(〈s′ → t′〉) ≤ (1− ε) · wo(〈r1 → r2〉) (2)

τo(〈s→ r1〉) + τo(〈r1 → r2〉) + τo(〈r2 → t〉) ≤ (τo(〈s→ t〉) +∆o) (3)

τd(〈s′ → r1〉) + τo(〈r1 → r2〉) + τd(〈r2 → t′〉) ≤ (τd(〈s′ → t′〉) +∆d) (4)

Applying the ε on the shared path gives both the driver and the rider an incentive to meet in r1
and to separate in r2. The constraint (1) ensures that the driver’s detour cost is less important than
the reward that rider provides to driver (ε · wo(〈r1 → r2〉)). However constaint (2) ensures that the
saving cost by the rider in the shared path ((1 − ε) · wo(〈r1 → r2〉)) is greater than the detour cost
(wd(〈s′ → r1〉) + wo(〈r1 → r2〉) + wd(〈r2 → t′〉) − wd(〈s′ → t′〉)). The term (τo(〈s → t〉) + ∆o) in (3)
(resp. τd(〈s′ → t′〉) +∆d in (4)) allows to limit the amount of time that the driver (resp. rider) pass in
traveling. In the following we use the term global-path 〈s, s′, r1, r2, t, t′〉 to describe the concatenation of
paths 〈s → r1〉, 〈s′ → r1〉, 〈r1 → r2〉, 〈r2 → t〉 and 〈r2 → t′〉. i.e. 〈s, s′, r1, r2, t, t′〉 = 〈〈s → r1〉 ⊕ 〈s′ →
r1〉⊕〈r1 → r2〉⊕〈r2 → t〉⊕〈r2 → t′〉〉. A shortest global-path between source nodes s, s′ and target nodes
t, t′ is the global-path with minimal weight w(〈s, s′, r1, r2, t, t′〉) of any global-path from s, s′ to t, t′, where
w(〈s, s′, r1, r2, t, t′〉) = wo(〈s→ r1〉) + wd(〈s′ → r1〉) + wo(〈r1 → r2〉) + wo(〈r2 → t〉) + wd(〈r2 → t′〉)(5)

The objective is to determine the best intermediate locations r1 and r2 that minimize the shortest global-
path such that constraints (1), (2), (3) and (4) are satisfied.

3 Solving approaches

To solve the problem of ride-sharing with intermediate locations, we proposed two approaches. The first
approach is an enumerative method, the second approach is a heuristic one.
The enumerative method lists all pairs of possible intermediate locations (r1, r2) and select the pair
of intermediate locations (r∗1 , r

∗
2) with minimal global-path cost and satisfying constraints (1), (2), (3)

and (4). Using Dijkstra Algorithm [3] to calculate minimal path, this enumerative method runs in
O(n(n log n+m)). The complexity of enumerative method prevents its using in the context of real-time
ride-sharing. Thus, we develop heuristic methods with complexity in the range of O(n log n).
The idea of heuristics consist firstly in determining a set C of potential meeting locations using lower
bounds on detour constraints. Secondly, using metrics based on travel cost, the set of potential meeting
locations is separated into two disjoint subsets of nodes C1 and C2, where C1 contains the potential of
initial intermediate locations and C2 contains the set of potential ending intermediate location. Then, for
all nodes in C2, we compute the optimal global path having such node as intermediate ending location.
Finally, once global paths have been enumerated, we select the global-path with minimal cost that satisfies
constraints (1), (2), (3) and (4). These approaches were validated by experiments based on real data of
ride-sharing provided by Covivo company. These data concern employees of Lorraine region traveling
between their homes and their work places. The main advantages of this approach are increasing the
opportunity of matching between riders and drivers and then a significant reduction of the total travel
cost compared to the classical ride-sharing approach.
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Complexity of policy iteration for stochastic zero-sum games

Marianne Akian · Stéphane Gaubert

Abstract Recent results of Ye and Hansen, Miltersen and Zwick show that policy iteration for one or
two player (perfect information) zero-sum stochastic games, restricted to instances with a fixed discount
rate, is strongly polynomial. We show that policy iteration for mean-payoff zero-sum stochastic games
is also strongly polynomial when restricted to instances with bounded first mean return time to a given
state. The proof is based on methods of nonlinear Perron-Frobenius theory, allowing us to reduce the
mean-payoff problem to a discounted problem with state dependent discount rate. Our analysis also
shows that policy iteration remains strongly polynomial for discounted problems in which the discount
rate can be state dependent (and even negative) at certain states, provided that the spectral radii of the
nonnegative matrices associated to all strategies are bounded from above by a fixed constant strictly
less than 1.

Keywords Stochastic games, policy iteration, mean return time, Doeblin state, cone spectral radius
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1 Motivation and earlier works

Policy iteration algorithm is a classical algorithm to solve discounted Markov decision problems (one
player games) with finite state and actions spaces. A policy is a map from the set of states to the set
of actions, representing a Markovian decision rule. The algorithm constructs a sequence of policies such
that the associated sequence of values is strictly decreasing (assuming that the player minimizes her cost
function). Hence, its number of iteration is bounded by the number of policies. The method carries over
to discounted zero-sum games with perfect information, still with finite state and action spaces. It now
makes external iterations in the space of policies of the first player, and at each step, solves an auxiliary
Markov decision problem, making then internal iterations in the space of policies of the second player.
Again, the first player never selects twice the same policy, which entails that the algorithm does terminate
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in a time which is bounded by the product of the numbers of policies of both players. This yields an
exponential bound on the execution time, as the number of policies of one player can be exponential
in the number of states. However, this general exponential bound does not capture the experimental
efficiency of the algorithm on most applications.

Some recent results shed light on the behavior of policy iteration as a function of some particular
parameters, such as the discount factor. Friedmann constructed in [5] an infinite family of 2-player
discounted deterministic games with a discount factor tending to 1, showing that the number of policy
iterations can indeed be exponential. Fearnley [3] and Andersson [2] extended his result to 1-player
stochastic games. However, Ye showed in [10] that policy iteration solves 1-player discounted games with
a fixed discount factor λ < 1 in strongly polynomial time (λ is not part of the input). Then, Hansen,
Miltersen and Zwick extended this result in [6] to zero-sum 2-player discounted games with perfect
information, and improved Ye’s bound. They showed that the number of external iterations of the policy
iteration algorithm for 2-player games with a fixed discount factor λ < 1 is bounded by:

(m+ 1)(1 +
log(n2/(1− λ))

− log(λ)
) = O(

m

1− λ
log

n

1− λ
), (1)

where n is the number of states, and m is the total number of actions of both players, that is the number
of triples (i, a, b) where i is a state, a is an action of first player, and b is an action of second player.
Moreover, Feinberg and Huang [4] showed that the bound of Ye holds for a one-player game with mean-
payoff and a distinguished state to which the probability to go in one step is lower bounded by 1 − γ.
Finally, Scherrer [9] considered one-player games such that the set of transient states is independent of
the policy, and in that case he found a bound independent of the discount factor, but depending on
some constants that may be seen (and are equal when the discount factor tends to 1) as bounds on
the expected first return time to recurrent states and on the expected exit time from transient states.
This result was inspired by the stongly polynomial bound obtained by Post and Ye [8] for the simplex
algorithm for deterministic 1-player games, and by the extension to stochastic one-player games that
Scherrer gave also in [9].

2 Main results

We show that policy iteration still has a strongly polynomial behavior for a class of mean payoff games,
as well as for a more general class of discounted games.

Let us consider a dynamic programming or Shapley operator associated to a perfect information zero-sum
game with a finite state space and finite action spaces, that is a self-map f of Rn given by:

[f(v)]i := min
a∈Ai

max
b∈Bi

∑
j∈[n]

Mab
ij vj + rabi

 , ∀i ∈ [n], v ∈ Rn, (2)

with Mab
ij nonnegative scalars, and Ai and Bi finite sets. Then, the sets of feedback policies AM := {σ :

[n]→ A | σ(i) ∈ Ai ∀i ∈ [n]} and BM := {δ : [n]× A→ B | δ(i, a) ∈ Bi ∀i ∈ [n], a ∈ Ai} are finite, and
the map f can be written in the following form:

f(v) = min
σ∈AM

f (σ)(v) , (3)

with

f (σ)(v) = max
b∈Bi

∑
j∈[n]

Mσi,b
ij vj + rσi,b

i

 , ∀i ∈ [n], v ∈ Rn,

and where in the above expression, the minimum is with respect to the partial order of Rn. Moreover,
the maps f and f (σ) are order preserving for this partial order.
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If the game is with infinite horizon, the value of the game is a fixed point v of f . Moreover, the policy
iteration algorithm for 2-player games consists in iterating the following steps: (i) given the policy σs,
compute the fixed point vs of f (σ

s); (ii) then improve the policy by choosing an optimal policy for vs,

that is σs+1 ∈ AM such that f(vs) = f (σ
s+1)(vs), with σs+1 = σs as soon as this is possible. Moreover,

step (i) is solved by the same algorithm for f (σ
s) instead of f .

The following bound improves the bound (1), in the original situation considered in [6]. It is obtained
by adapting the technique of Ye and Hansen, Miltersen and Zwick to nonlinear maps which allows us in
particular to replace m by m1. Note that the bound (4) is linear in the size of the input, for a fixed λ.

Theorem 1 Assume that the maps f (σ) are contracting in the sup-norm with the same contraction
factor λ. Then, the policy iteration algorithm stops after at most smax iterations, where

smax := (m1 − n)(1 + b log(1− λ)

log(λ)
c) = O(

m1 − n
1− λ

log
1

1− λ
), (4)

and m1 is the cardinality of SA := {(i, a) | i ∈ [n], a ∈ Ai}.

Then, we consider games with state dependent discount factors, possibly greater than 1 locally.

Theorem 2 Assume that the spectral radii of all the matrices

M (σδ) := (Mσiδi
ij )ij=1,...,n,

with σ ∈ AM, δ ∈ BM, are strictly less than 1, so that ω̄ := maxσ∈AM,δ∈BM r(M
(σδ)) < 1. Then the

conclusion of Theorem 1 holds with λ = ω̄.

For the proof, we introduce a natural scaling transformation, which has the property of leaving invariant
the combinatorial trace of the policy iteration algorithm. This scaling is obtained using techniques of
non-linear Perron-Frobenius theory [7,1]. An advantage of the present bound is that it is invariant by
scaling. For instance, with a state dependent discount factor < 1, it leads to a tighter bound than the
one which may be derived from (1) or (4).

Finally, we derive a strongly polynomial bound for the subclass of mean payoff games such that there is
a distinguished state to which the mean return time is bounded by a constant K = 1/(1− λ), for every
choice of policies. This condition implies that each transition matrix associated to a pair of policies of
both players has a unique recurrence class, and that there is a state which is common to each of these
classes.
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A linear time natural gradient algorithm for black-box optimization in high
dimension

Youhei Akimoto · Anne Auger · Nikolaus Hansen

Abstract The covariance matrix adaptation evolution strategy (CMA-ES) [1–3] is the state-of-the-art
comparison-based randomized search algorithm for black-box continuous optimization. It samples can-
didate solutions from a multivariate normal distribution, evaluates the candidate solutions and updates
the parameters of the distribution, the mean vector and the covariance matrix. Empirically, we observe
that the mean vector converges towards the optimum of the objective and the covariance matrix adapts
the inverse of the Hessian of the objective.

The CMA-ES is comparison-based. That is, it is invariant to any strictly increasing transformation of
the objective function, which is essential for black-box optimization since we can assume no problem
property such as convexity and continuity. Moreover, it is invariant to any linear transformation of the
search space. However in consequence, its internal time and space complexity per function evaluation
is quadratic. When optimizing a function in high dimension, quadratic scaling of the internal time and
space complexity is often too time consuming and linear scaling is desired.

In this work, we propose a novel comparison-based randomized search algorithm with linear time and
space complexity, named VD-CMA. It maintains a multivariate normal distribution with restricted
covariance matrix with twice the dimension as the degree of freedom, representing an arbitrarily oriented
long axis and additional axis-parallel scaling. We derive the components of the algorithm from the same
design principle as the CMA-ES—so called natural gradient and cumulation—and show the internal
time and space complexity per function evaluation is linear. We empirically show that the algorithm
adapts the long axis and the axis-parallel scaling of the inverse Hessian of the objective. Compared
with existing linear time comparison-based algorithms [4, 5], VD-CMA efficiently solves wider class of
functions including non-separable functions. Moreover on functions covered by the internal model of
VD-CMA and on the Rosenbrock functions, we find that VD-CMA outperforms CMA-ES not only in
computational time but also in the number of function calls as the dimension increases.
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The Tropical Shadow-Vertex Algorithm Solves Mean Payoff Games in
Polynomial Time On Average?

Xavier Allamigeon · Pascal Benchimol · Stéphane
Gaubert

Abstract We introduce an algorithm which solves mean payoff games in polynomial time on average,
assuming the distribution of the games satisfies a flip invariance property on the set of actions associated
with every state. The algorithm is a tropical analogue of the shadow-vertex simplex algorithm, which
solves mean payoff games via linear feasibility problems over the tropical semiring (R∪ {−∞},max,+).
The key ingredient in our approach is that the shadow-vertex pivoting rule can be transferred to tropical
polyhedra, and that its computation reduces to optimal assignment problems through Plücker relations.

Keywords Simplex algorithm · Shadow-vertex pivoting rule · Mean payoff games · Tropical polyhedra

Mathematics Subject Classification (2010) 14T05 · 90C49 · 91A46

1 Context of this work

A mean payoff game involves two opponents, “Max” and ”Min”, who alternatively move a pawn over the
nodes of a weighted bipartite digraph. The latter consists of two classes of nodes, represented by squares
and circles, and respectively indexed by i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}. The weight of the arc (i, j)
(resp. (j, i)) is a real number denoted by Aij (resp. Bij). We set Aij := −∞ (resp. Bij := −∞) when
there is no such arc. An example of game is given in Figure 1. When the pawn is placed over a square
node i, Player Max selects an outgoing arc (i, j), and then moves the pawn to circle node j and receives
the payment Aij from Player Min. Conversely, when the pawn is located on a circle node j, Player Min
chooses an arc (j, i′), moves the pawn to square node i′, and Player Max pays her the amount Bi′j . The
game starts from a circle node j0 = j, and then the two players make infinitely many moves, visiting a
sequence j0, i1, j1, i2, . . . of nodes. The objective of Player Max is to maximize his mean payoff, defined
as the liminf of the following ratio when p→ +∞:

(−Bi1j0 +Ai1j1 −Bi2j1 +Ai2j2 + · · · −Bipjp−1
+Aipjp)/p . (1)

Symmetrically, Player Min aims at minimizing her mean loss, defined as the limsup of (1) when p→ +∞.

Mean payoff games were first studied by Ehrenfeucht and Mycielski in [7], where they proved that these
games have a value and positional optimal strategies. In more detail, for every initial state j ∈ [n], there
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Fig. 1 An example of mean payoff game. Circle node 1 is a winning initial state for Player Max, while circle node 2 is
losing.

exists a real χj and positional strategies σ and τ , such that: (i) Player Max is certain to win a mean
payoff greater than or equal to χj with the strategy σ, (ii) Player Min is sure that her mean loss is
less than or equal to χj with the strategy τ . The decision problem associated with mean payoff games
consists in determining whether the initial state j is winning for Player Max, i.e. χj ≥ 0. The question of
the existence of a polynomial time algorithm solving this problem was first raised by Gurvich, Karzanov
and Khachiyan in [10]. This problem was shown to be in NP ∩ co-NP by Zwick and Paterson in [14].
While mean payoff games received an important attention over the past years [10,14,11,9,13,5,12,8,6],
all the algorithms developed so far are superpolynomial, and the question raised by Gurvich et al. is still
open.

The present work exploits the equivalence between mean payoff games and linear feasibility problems
in tropical algebra. Indeed, it was shown in [2] that the initial state n is winning for Player Max in the
game with payments matrices A,B if, and only if, there exists a solution x ∈ (R ∪ {−∞})n−1 to the
following system of inequalities:

∀i = 1, . . . ,m, max(Ai1 + x1, . . . , Ai(n−1) + xn−1, Ain) ≥ max(Bi1 + x1, . . . , Bi(n−1) + xn−1, Bin) .
(2)

The constraints of the form (2) correspond to affine inequalities over the tropical (max-plus) semiring
T := R ∪ {−∞} endowed with the operations x ⊕ y := max(x, y) as addition, and x � y := x + y as
multiplication. The conjunction of finitely many such inequalities defines a tropical polyhedron. Solving a
mean payoff game consequently amounts to determine whether a tropical polyhedron is empty, which can
be thought of as the tropical analogue of the feasibility problem in linear programming. This is among
the motivations leading to the development of a tropical simplex method in [3]. One of the properties
of the tropical simplex method is that it traces the path followed by the classical simplex method. In
particular, basic points and edges are in one-to-one correspondence between the classical and the tropical
worlds. Then, complexity results known for the classical simplex algorithm can be potentially transferred
to the tropical setting. However, the main obstacle is to “tropicalize” the pivoting rule involved, i.e. to
define a tropical pivoting rule which is both compatible with the classical one, and computable, if
possible, in a reasonable time complexity. So far [4], the only pivoting rules which have been tropicalized
are combinatorial, i.e. they are defined in terms of the neighborhood of the current basic point in the
vertex/edge graph of the polyhedron.

2 Contributions

The shadow-vertex simplex algorithm refers to the simplex algorithm equipped with the so-called shadow-
vertex pivoting rule. Given two objective vectors u,v, it aims at solving the following parametric family
of linear programs for increasing values of λ ≥ 0:

minimize (uᵀ + λvᵀ)x
subject to x ≥ 0, Ax+ b ≥ 0

(3)

When λ is continuously increased from 0, the basic points of P minimizing the function x 7→ (uᵀ+λvᵀ)x
form a sequence x̄0, . . . , x̄p. The shadow-vertex pivoting rule amounts to iterate over this sequence.

We prove that the shadow-vertex simplex algorithm can be tropicalized. The key difficulty in our ap-
proach is to show that the computation of the tropical shadow-vertex pivoting rule can be done in
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Fig. 2 A distribution of game satisfying the flip invariance property (with m = 1 and n = 2), together with the payment
matrices. The four configurations are supposed to be equiprobable. The nodes on which the flip operations have been
performed are depicted in bold.

polynomial time. To this end, we exploit the fact that the shadow-vertex rule is semi-algebraic, i.e. it
is defined in terms of the signs of finitely many polynomials. Under some genericity conditions, we de-
duce that the tropical rule reduces to classical linear programs over some Newton polytopes, which are
actually (Minkowski sums of) bipartite perfect matching polytopes:

Theorem 1 On instances satisfying genericity conditions, the tropical shadow-vertex rule is compatible
with the classical shadow-vertex rule, and the leaving variables returned by the former can be computed
in time O(n4).

Following the average-case analysis of the shadow-vertex algorithm due to Adler, Karp and Shamir [1],
we establish a polynomial bound on the average-case complexity of mean payoff games. As far as we
know, this is the first result of this nature on this class of games. Our bound holds when the distribution
of games satisfies a flip invariance property, which requires that the distribution is left invariant by every
transformation consisting, for an arbitrary node of the game, in flipping the orientation of all the arcs
incident to this node. Equivalently, the probability distribution on the set of payment matrices A,B is
invariant by every transformation consisting in swapping the ith row of A with the ith row of B, or the
jth column of A with the jth column of B. Figure 2 provides the illustration of a discrete distribution
of games satisfying the property. Our main result is given in the following theorem:

Theorem 2 Assuming that the distribution of the games satisfies a flip invariance property, the tropical
shadow-vertex algorithm solves mean payoff games in time O(mn(m+ n2) min(m2, n2)) on average.

Acknowledgements X. Allamigeon and S. Gaubert are partially supported by the PGMO program of EDF and Fondation
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11. M. Jurdziński. Deciding the winner in parity games is in UP∩ co-UP. Information Processing Letters, 68(3):119–124,
1998.
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Long and Winding Central Paths
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Abstract We disprove a continuous analog of the Hirsch conjecture proposed by Deza, Terlaky and
Zinchenko, by constructing a family of linear programs with 3r+4 inequalities in dimension 2r+2 where
the central path has a total curvature in Ω(2r/r). Our method is to tropicalize the central path in linear
programming. The tropical central path is the piecewise-linear limit of the central paths of parameterized
families of classical linear programs viewed through logarithmic glasses. We show in particular that the
tropical analogue of the analytic center is nothing but the tropical barycenter, i.e., the maximum of a
tropical polyhedron. It follows that unlike in the classical case, the tropical central path may lie on the
boundary of the tropicalization of the feasible set, and may even coincide with a path of the tropical
simplex method. Finally, our counter-example is obtained as a deformation of a family of tropical linear
programs introduced by Bezem, Nieuwenhuis and Rodŕıguez-Carbonell.

Keywords Interior point methods · Tropical geometry
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1 Contributions

Since Karmarkar’s seminal work [14], interior-point methods have become indispensable in mathemat-
ical optimization. They provide algorithms with a polynomial complexity in the bit model for linear
programming. Moreover, interior points method are also useful for more general convex optimization
problems such as semi-definite programming. Path-following interior point methods are driven to an
optimal solution along a trajectory called the central path. Consider a linear program of the form:

minimize c>x

subject to Ax ≤ b, x ≥ 0, x ∈ Rn ,
LP(A, b, c)
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where A ∈ Rm×n, b ∈ Rm, and c ∈ Rn. Under natural assumptions, the following barrier problem:

minimize
c>x

µ
−

n∑
j=1

log(xj)−
m∑
i=1

log(wi)

subject to Ax+ w = b, x > 0, w > 0 x ∈ Rn, w ∈ Rm .

admits a unique solution (xµ, wµ) for any positive real number µ. The central path is the curve C :
µ 7→ (xµ, wµ). As µ > 0 tends to 0, the central path tends to an optimal solution of the linear program
LP(A, b, c). Path-following interior points methods approximately follow the central path so as to reach
this optimal solution. Thus the performance of an interior point method is tightly linked to the shape of
its central path. The purpose of this paper is to apply tools from tropical geometry to study the central
path.

Tropical geometry can be seen as the (algebraic) geometry on the semiring (T;⊕,�) where the set
T = R∪{−∞} is endowed with the operations a⊕b = max(a, b) and a�b = a+b. A tropical variety can
be obtained as the limit at infinity of a sequence of classical algebraic varieties depending on one real
parameter t and drawn on logarithmic paper, with t as the logarithmic base. This process is known as
Maslov’s dequantization [15], or Viro’s method [16]. It can be traced back to the work of Bergman [5]. In
a way, dequantization yields a piece-wise linear shadow of classical algebraic geometry. Tropical geometry
has a strong combinatorial flavor, and yet it retains a lot of information about the classical objects [13].

The tropical semiring can also be thought of as the image of a non-archimedean field under its val-
uation map. We adopt the approach of Alessandrini [1] who suggested to study tropicalizations of
real semi-algebraic sets via a Hardy field, K, of germs of real-valued functions. The functions f ∈ K
are definable in some o-minimal structure, which ensures a tame topology. In particular, the limit
limt→∞ log(f(t))/ log(t) always exists, and this defines a valuation map val : K → R ∪ {−∞}. Fur-
thermore, Alessandrini’s framework is flexible enough to include all power functions into K; this makes
the valuation map surjective onto R ∪ {−∞}.

As K is an ordered field, the basic results of linear programming (Farkas’ lemma, strong duality, etc)
still hold true on K. We consider linear programs on the Hardy field K defined by:

minimize c>x

subject to Ax ≤ b, x ≥ 0, x ∈ Kn .
LP(A, b, c)

for some A ∈ Km×n and b ∈ Km. The elements of K are real-valued functions. As a result, a linear
program over K encodes the family of linear programs LP(A(t), b(t), c(t)) over R, for t ∈ R large enough.
Also, since K is real closed, the central path of LP(A, b, c) is well-defined, and it describes the central
paths of the family of real linear programs (LP(A(t), b(t), c(t)))t. The tropical central path is then
defined as the image under the valuation map. Thus, the tropical central path is a logarithmic limit of
a family of classical central paths. We establish that this convergence is uniform on closed intervals.

The tropical central path has a purely geometric characterization. Applying the valuation map to the
feasible region yields a tropical polyhedron. We show that the tropical analytic center is the greatest
element of this tropical polyhedron, the tropical equivalent of a barycenter. Thus, the tropical analytic
center does not depend on the external representation of the feasible set. Similarly, any point on the
tropical central path is the tropical barycenter of the tropical polyhedron obtained by intersecting the
values of the feasible region with a tropical sublevel set induced by the objective function. More precisely,
we prove the following theorem.

Theorem 1 Let (xµ,wµ) be the point on the central path of the Hardy linear program LP(A, b, c) at
µ ∈ K with µ > 0, and let ν be that LP’s optimal value. Then val(xµ,wµ) is the tropical barycenter of
val(Pµ) where

Pµ := {(x,w) ∈ Kn+m | Ax+w = b, cx ≤ ν + (n+m)µ, x ≥ 0, w ≥ 0} .
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This is in stark contrast with the classical case, where the central path depends on the halfspace de-
scription of the feasible set. In this way, Deza, Nematollahi, Peyghami and Terlaky [10] bent the central
path of the Klee-Minty cube by adding superfluous halfspaces in its representation, so that it visits a
neighborhood of every vertex of the cube.

A maybe surprising feature is that the tropical central path can degenerate to a path taken by the
tropical simplex method introduced in [3,2]. We can even provide a quite general sufficient condition
under which the tropical central path coincides with the image of a path of the classical simplex method
under the valuation map. Consequently, the tropical central path may have the same worst-case behavior
as the simplex method.

A main contribution of this work comes from studying the total curvature of the real central paths arising
from lifting tropical linear programs to the Hardy field K. The curvature measures how far a path differs
from a straight line. Intuitively, a central path with high curvature should be harder to approximate with
line segments, and thus this suggests more iterations of the interior point methods. The total curvature
has been studied by Dedieu, Malajovich and Shub [9] via the multihomogeneous Bézout Theorem and by
De Loera, Sturmfels and Vinzant [8] using matroid theory. These two papers provide an upper bound of
O(n) on the total curvature averaged over all regions of an arrangement of hyperplanes in dimension n.
The redundant Klee-Minty cube of [12] and the “snake” in [11] are instances which show that that the
total curvature can be in Ω(m) for a polytope described by m inequalities. By analogy with the classical
Hirsch conjecture, Deza, Terlaky and Zichencko [11] conjectured that O(m) is also an upper bound for
the total curvature. We disprove their conjecture by constructing a family of linear programs with 3r+4
inequalities in dimension 2r + 2 where the central path has a total curvature in Ω(2r/r). This family
arises by lifting tropical linear programs introduced by Bezem, Nieuwenhuis and Rodŕıguez-Carbonell [6]
to show that an algorithm of Butkovič and Zimmermann [7] has exponential running time. The tropical
central path shows a fractal-like pattern, which looks like a staircase shape with Ω(2r) steps.

More details on the present work can be found in [4].
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Recent Advances in Continuous Randomized Black-Box Optimization: an
Overview

Anne Auger

Abstract Numerical optimization problems are often naturally framed as black-box problems, where
the objective function is seen as a black-box that returns f -values only (but no gradient). To tackle
difficult black-box numerical problems, stochastic or randomized algorithms are generally the methods
of choice, in particular when difficulties arise from non-convexity, multi-modality, noise, etc. In addition,
state-of-the-art stochastic algorithms are comparison-based, that is updates are based on f -comparison
of solutions and not on the intrinsic f values.

Since the first comparison-based stochastic algorithms, the pure random search, introduced more than
fifty years ago, much progress has been done. The objective of this presentation introducing the invited
session on Recent Advances on Continuous Randomized black-box optimization is to give an introduction
and overview of the field of continuous comparison-based randomized algorithms. Important features of
the methods like step-size adaptation and covariance matrix adaptation are reviewed. The link between
step-size adaptation and linear convergence is explained. Comparisons with classical derivative-free-
algorithms are given. In addition, a recent connexion between comparison-based stochastic adaptive
algorithms and optimization by means of gradients on statistical manifolds is outlined.

Keywords Numerical optimization · continuous black-box optimization · comparison-based algorithms

1 Comparison-based stochastic black-box optimization

We consider continuous or numerical optimization where the aim is to minimize f : Ω ⊂ Rn 7→ R with
Ω being the search domain. For many numerical optimization problems, the function is available to the
algorithm only as a black-box, that is the algorithm can query some f -values at different search points
x but no other information about the problem is available. A typical example is a problem where the
objective function is accessible only via an executable code that can only return function values of a
queried points. In this case, the optimizer will not have access to the source code. In other settings,
the optimizer has access to the source code or to an analytical expression of the function, but it is not
helpful to extract meaningful informations to be used within the algorithm.

In such contexts, continuous black-box optimization algorithms come into play. We focus in this invited
session on stochastic or randomized continuous black-box algorithms where the update of the state vari-
ables includes random components. Stochastic algorithms are generally more robust when dealing with

Anne Auger
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difficulties like noise on the objective function (i.e. two independent calls of the black-box from the same
point x give two different outcomes) or multi-modality (the function can have several local optima).

An additional component of the algorithms of interest here is that while the black-box provides them
f -values, they use only the outcome of comparisons of candidate solutions for the updates of their
state variables. The methods are hence comparison-based or function-value-free. This comparison-based
property provides on the one hand robustness as errors on f -values (due to noise for instance) have
an impact only if it changes the f -ranking of candidate solutions, and very large or a very small f -
values have only a limited impact and on the other hand generalization as optimizing any g ◦ f where
g : R→ R is strictly increasing is the same in terms of sequence of search points followed by the algorithm
as optimizing f .

2 Comparison-based stochastic optimizers

Stochastic continuous algorithms can be seen as algorithms where a probability distribution—the one
used to sample candidate solutions—is iteratively updated. Often this probability distribution is Gaus-
sian, parametrized by a mean vector m and covariance matrix. This latter being often parametrized as
a scaling parameter σ2 and a matrix C such that the resulting covariance matrix equals σ2C and σ
is called the step-size. Given a family of probability distributions pθ parametrized by θ (in the case of
Gaussian distribution, the parameters θ equal (m, σ,C)), a general template for describing stochastic
continuous algorithms is the following:
While unhappy, loop over the following steps:

1. Sample λ ∈ N candidate solutions according to pθ: x1, . . . ,xλ
2. Evaluate on the black-box f the candidate solutions, i.e. compute f(xi)1≤i≤λ.
3. Update pθ by updating the parameter θ: θ ← F (θ,x1, . . . ,xλ, f(x1), . . . , f(xλ))

The update function F is algorithm dependent. For comparison-based algorithms, the update only
depends on the ranking of candidate solutions, more precisely the following template will hold:
While unhappy, loop over the following steps:

1. Sample λ ∈ N candidate solutions according to pθ: x1, . . . ,xλ
2. Evaluate on the black-box f the candidate solutions, i.e. compute f(xi)1≤i≤λ. Rank solutions

according to f , this defines a permutation S such that f(xS(1)) ≤ . . . ≤ f(xS(λ))
3. Update pθ by updating the parameter θ: θ ← Fcb(θ,x1, . . . ,xλ,S)

State-of-the-art comparison-based randomized algorithms use Gaussian distributions and update the
mean vector m, the step-size σ and the covariance matrix C using different mechanisms. Nowadays, the
covariance-matrix-adaptation evolution strategy (CMA-ES) [6] is recognized as the leading algorithms
and various variants are among the top algorithms on benchmarking challenges (see BBOB workshops
coco.gforge.inria.fr/ and CEC challenges on Real-Parameter Single Objective Optimization http:

//www.ntu.edu.sg/home/EPNSugan/index_files/CEC2013/CEC2013.htm).

The mean vector represents the favorite solutions or best estimate at a given iteration of the optimum.
The step-size scales the sampling distribution, its adaptation is connected to linear convergence (see
below). The covariance matrix determines the geometrical shape of the distribution (as for a Gaussian
vectors with covariance matrix A and mean vector m, lines of equal densities are given by {x ∈ Rn|(x−
m)TA−1(x−m) = constant}) and should learn second order information (see below).

2.1 Step-size adaptation and linear convergence

The step-size by scaling the overall sampling distribution controls the speed of convergence. Ideally linear
convergence should be achieved. It is observed on a relatively wide class of functions and proven for some

coco.gforge.inria.fr/
http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2013/CEC2013.htm
http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2013/CEC2013.htm
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step-size adaptive comparison-based stochastic algorithms on certain convex-quadratic functions [7] and
more recently on composite of positively homogeneous functions by strictly increasing functions, that
include all x 7→ g(‖x‖) where ‖ ‖ is an arbitrary norm and g : R 7→ R is strictly increasing [2]. More
generally linear convergence of step-size adaptive algorithms can be proven by studying the stability of
Markov chains underlying the algorithms [4].

2.2 Covariance matrix adaptation and learning second order information

The covariance matrix adaptation determines the shape of the sampling distribution or defines a metric
in the search space. It is the key mechanism to solve ill-conditioned, non-separable problems. For a
convex-quadratic functions, the covariance matrix should become proportional to the inverse Hessian
of the problem, i.e. second order information should be learned. This is what is in effect observed for
CMA-ES or xNES [5]. Interestingly the performance of second order comparison-based algorithms on
convex-quadratic functions is close from the performance of derivative-free-optimization algorithms using
convex-quadratic models, i.e. BFGS or NEWUOA [9] as shown in [3].

2.3 Information Geometric Optimization [8]

Recently, a nice connection between certain stochastic comparison-based algorithms and optimization on
manifolds was achieved. Considering a family of probability distributions defining a statistical manifold,
the original problem of optimizing f can be associated to a joint optimization problem defined on the
statistical manifold. For instance, consider J(θ) =

∫
Rn f(x)pθ(x)dx, then J is minimal if θ corresponds

to a distribution concentrated on the global minimum of f . A natural algorithm to minimize J consists
in a gradient descent algorithm on the statistical manifold. The right metric to be considered for that
being the Fisher information metric. The gradient of J is however expressed as an integral, so to obtain
a tractable algorithm, its Monte-Carlo approximation is considered. While the so-obtained algorithms
would not be comparison-based, an alternative joint optimization problem (instead of J) can be defined
to enforce the comparison-based property. For different instances of family of probability distribution,
the resulting Information Geometric Optimization algorithms recover well-known algorithms and in
particular the CMA-ES with rank-µ update [8,1].

References

1. Y. Akimoto, Y. Nagata, I. Ono, and S. Kobayashi. Bidirectional relation between CMA evolution strategies and natural
evolution strategies. volume 6238 of Lecture Notes in Computer Science, pages 154–163. Springer Verlag, 2010.

2. A. Auger and N. Hansen. Linear convergence on positively homogeneous functions of a comparison based step-size
adaptive randomized search: the (1+1) ES with generalized one-fifth success rule, 2013. ArXiv eprint.

3. A. Auger, N. Hansen, J. M. Perez Zerpa, R. Ros, and M. Schoenauer. Empirical comparisons of several derivative free
optimization algorithms. In Acte du 9ime colloque national en calcul des structures, volume 1, pages 481–486, 2009.

4. Anne Auger and Nikolaus Hansen. On Proving Linear Convergence of Comparison-based Step-size Adaptive Randomized
Search on Scaling-Invariant Functions via Stability of Markov Chains, 2013. ArXiv eprint.

5. T. Glasmachers, T. Schaul, Y. Sun, D. Wierstra, and J. Schmidhuber. Exponential natural evolution strategies. In
Genetic and Evolutionary Computation Conference (GECCO 2010), pages 393–400. ACM Press, 2010.

6. N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolution strategies. Evolutionary Compu-
tation, 9(2):159–195, 2001.
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A multi-leaders-one-follower game formulation has been used by many authors in recent litterature to
model deregulated electricity markets.

Our aim in this talk is twofold. First we focus on models in which transmission losses and production
bounds are considered, a situation for which we bring to the fore that models have to be defined with
caution. Then we provide, and justify, an MPCC reformulation of the proposed model for which, thanks
to coderivative calculus, we discuss necessary conditions and associated qualification conditions to solve
the MPCC problem.

In a second part of the talk, we investigate the properties of a time-dependent model for an electricity
market. In this case, strategies of the players/producers are element of L2([0, T ]) expressing thus that
each producer propose a bid curve not only for a fixed spot time but for a period of time. A variational
reformulation of this model is proposed and existence of a Generalized Nash equilibrum is proved as-
suming that the profit functions of each agent are possibly non differentiable. Additionally the classical
hypothesis of concavity of those profit functions, which is very often not satisfied in nonlinear electricity
market model, is weakened to semistrict quasiconcavity.
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Toward an Efficient Exploration of Fitness Landscapes

Matthieu Basseur · Adrien Goëffon

Abstract Within local search algorithms, descent methods are rarely studied experimentally. However,
these search techniques are the basis of many modern metaheuristics and have an influence on the
ability of an algorithm to achieve good solutions of a fitness landscape. Through a large empirical study
of classic runs, we show that certain ideas about descents methods are false. These results indicate
that it is possible to make a descent ’intelligent’ and lead to better solutions, regardless of the problem
addressed.

Keywords fitness landscape · local search
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1 Introduction

Solving combinatorial optimization problems using local search techniques consists in transforming an
initial configuration by application of local moves chosen from a neighborhood structure. During the
last decades, a large panel of neighborhood searches have been designed, like hill-climbing, tabu search,
simulated annealing or iterated local search. These metaheuristics mainly differ in the move selection
heuristic employed. Hill-climbings are simple local search techniques and are widely used as basic elements
of more sophisticated metaheuristics.

While most studies in the metaheuristics field focus on proposing advanced diversification techniques,
we choose to investigate the determinant factors allowing to guide the search directly towards highest
local optima. In preliminary works [1], we compared the ability of classical hill-climbing techniques to
avoid low local optima. Obtained results lead us to believe that designing alternative selection mecanisms
could allow to improve signicantly the search efficiencies. This is the main purpose of the PGMO project
entitled ”Towards design of efficient local searches based on fitness landscape analysis”. We choose to
focus here on a particular investigation about this project, whose positive results reinforce the interest
of such a project.
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2 Worst Improvement based Hill-Climbings

Two commonly-used climbing move strategies, first and best improvement, constitute the widely used
pivoting rules. These rules define how to select a better neighbor from a not locally optimal configuration
[4,2]. More precisely, the best improvement strategy consists in selecting, at each iteration, a neighbor
which achieves the best fitness. This implies to generate and evaluate the whole neighborhood at each
step of the search. The first improvement strategy accepts the first evaluated neighbor which satisfies the
moving condition and avoids the systematic generation of the entire neighborhood. The worst improve-
ment strategy, can easily be considered but is never envisaged for the design of local search algorithms.
We focus here on determining the actual efficiency of this underestimated move strategy.

In [1], we showed that first improvement tends to outperform best improvement on many landscapes
derived from several combinatorial problems. An analysis of landscapes was also provided, indicating that
first improvement is mostly efficient to explore most landscapes, exepting smooth ones. Intuitively, since
best improvement systematically choose the highest neighbor, it should conduce the search towards the
nearest peak (local optima) of the landscape. On the contrary, first improvement often performs reduced
improvements, which tends to drive progressively the search toward higher areas, where the potential
local optima are also higher. Then, it seems interesting to determine if choosing the worst improving
neighbor at each step of the search increases the possibility to reach higher areas of landscapes by
avoiding the climbing of small steepest peaks.

3 Experiments on NK landscapes

The NK family of landscapes has been proposed in [3] in order to generate artificial combinatorial
landscapes with tunable shape properties: size and ruggedness. NK landscapes use a basic search space,
with binary strings as configurations and bit-flip as neighborhood. Characteristics of an NK landscape
are determined by two parameters N and K. N refers to the length of binary string configurations.
K ∈ {0, . . . , N −1} specifies the level of variables interdependency, which directly affects the ruggedness
of the landscape. By increasing the value of K from 0 to N−1, NK landscapes can be tuned from smooth
to rugged.

Experimental process aim at comparing 3 hill-climbing versions (best, first and worst improvement),
as well as several approximated worst improvements, which consist in selecting the worst neighbor
among the k first improving ones. These 7 climber variants will be respectively denoted as B, F , W ,
Wk (k ∈ {2, 4, 8, 16}). In our experiments, we have considered many NK landscapes parameterizations.
Results for N = 1024 and K ∈ {4, 6, 8, 10, 12}are given in table 1 (in a previous study, we reported that
first improvement performs better than best improvement on rugged NK landscape instances, where
K > 4).

100 random configurations were generated for each NK landscape, which will be used as starting points
for hill-climbings. For each NK landscape, 100 executions of the 7 hill-climbing versions were performed.
Searches are stopped when a local optimum is reached. Since we focus on the quality of the local optima
reached by hill-climbings variants, we report the average fitness of the 1,000 local optima resulting from
the corresponding searches. Comparison between best, first and worst improvement show that worst
improvement is clearly more efficient that first improvement each time first improvement outperforms
best improvement.

However, the worst improvement strategy is time-consuming for two reasons: the number of steps needed
to reach a local optimum is increase, and the whole neighborhood has to be generated for ensuring
the selection of the worst neighbor. This leads us to consider alterative hill-climbing variants which
approximate worst improvement. Comparative results of the 7 hill-climbings shows that the quality of
the local optima obtained is negatively correlated with the average quality of the selected improving
solutions. Globally, W � W16 � W8 � W4 � W2 � F � B. Worst improvement approximation



3

N K B F W2 W4 W8 W16 W

1024 4
.7232 .7238 .7253 .7270 .7286 .7291 .7298
302k 12k 25k 54k 112k 223k 2336k

1024 6
.7223 .7250 .7280 .7310 .7330 .7343 .7353
251k 13k 29k 65k 145k 311k 4151k

1024 8
.7176 .7215 .7251 .7285 .7306 .7316 .7330
214k 13k 31k 74k 172k 382k 5837k

1024 10
.7121 .7165 .7204 .7235 .7255 .7265 .7270
187k 14k 33k 80k 189k 439k 7325k

1024 12
.7064 .7107 .7150 .7178 .7197 .7206 .7210
166k 14k 34k 84k 206k 487k 8544k

Table 1 Comparison of best, first, worst based pivoting rules (average fitness of local optima reached from 1,000 hill-
climbings distributed on 10 random instances).

(Wk) is particularly interesting since it clearly requires less solution evaluations than complete worst
improvement. Setting k consists in determining the best compromise between hill-climbing efficiency
and computational costs. This is emphasized in figure 1, which report the average fitness evolution w.r.t.
the number of solutions evaluated on a 1024 6 instance, focusing on the first 400000 evaluations, which is
enough to terminate all local searches, expect the (complete) worst improvement strategy. To summarize
this work, experiment showed that choosing the worst improving neighbor often leads to attain better
local optima. Morevoer by slightly modifying the worst improvement strategy, one can design efficient
hill-climbings which outperform first and best improvement in terms of tradeoff between quality and
computational effort.

0.5

0.6

0.7

0 100k 200k 300k 400k

B
F

W2
W4
W8
W16
W

Fig. 1 Average fitness evolution on a 1024 6 NK instance, w.r.t. the number of evaluations (focus on the first 400,000
evaluations).
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Optimization of strain selection in a chemostat with n species

Térence Bayen · Francis Mairet · Pierre Martinon

Abstract In this work, we study a minimal time control problem governed by a chemostat model with
n species (n ≥ 2) and one limiting substrate. We consider a target where the concentration of the species
of interest is significantly larger than the other ones. We show that for any value of n ≥ 2, the substrate
concentration s is constant along any singular arc and depends on the initial condition when n > 2. The
characterization of optimal controls is refined by numerical simulations via a direct method. This allows
to obtain an optimal control as a concatenation of a bang arc and a singular arc.

Keywords Optimization · Bioprocesses · Minimal time · Pontryagin Maximum Principle
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1 Introduction

In this work, we study an extension of [3] to the case where n species are considered in the reactor. The
main objective is to optimize the selection of a species of interest for bioprocess applications (see e.g.
[6]). We consider a chemostat model with one limited resource and n species (with adimensioned yield
coefficients) in the attractive invariant manifold (see e.g. [8]):

ẋi = [µi(s)− u]xi, 1 ≤ i ≤ n, (1)

with s := sin −
∑

1≤j≤n xj . Here, xi, i = 1, . . . , n is the concentration of the species i in the reactor,
s is the concentration of substrate, sin is the input substrate concentration, and u is the dilution rate.
The specific growth rates of the species µi, i = 1, . . . , n are nonnegative C1 increasing functions with
µi(0) = 0 (typically of Monod type [8]). When the dilution rate u is kept constant, the dynamical system
(1) satisfies the competitive exclusion principle [8]: generically, only one species i ∈ {1, . . . , n} survives
(depending on the choice of u), and the concentrations of the other ones go asymptotically to zero. As
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a consequence, this principle provides a way to select one species of interest by choosing an adequate
value of u and waiting for the asymptotic convergence of the state.

In this work, we consider an alternative way to this principle (in the same spirit as in [2]) by optimizing
the selection of the species using the dilution rate u which can be taken as a control variable within the
set U := {u : [0,+∞] → [0, umax] ; u meas.}. Here umax denotes the maximum dilution rate (that can
be normalized by 1 in the following). Hence, we consider a target T defined by:

T :=
{

(x1, . . . , xn) ∈ R∗+ × . . .× R∗+ ; x1 ≥ (1− ε)
∑

1≤j≤n

xj

}
, (2)

considering the selection of the first species. Here ε � 1 is a small parameter. The optimal control
problem (OCP) can be formulated as follows:

v(x0) := min
u∈U

t(u) s.t. x(t(u), x0) ∈ T , (OCP)

where x(·, x0) is the unique solution of (1) starting at x0 ∈ R∗+× . . .×R∗+, t(u) is the time to steer (1) to
the target T and v is the value function of the problem. Notice that the reachability of the target T is a
consequence of the competitive exclusion principle. By standard arguments, we deduce the existence of
an optimal control of (OCP). Our objective is to find an optimal feedback control of the problem using
the Pontryagin Maximum Principle (PMP) [5] and numerical simulations. When n = 2 (see [3]), the
problem can be studied using standard arguments of planar affine systems with one input [5]. Finding
an optimal synthesis in the more general case n ≥ 3 is often intricate in view of the non-linearity of the
system.

2 Characterization of the singular arcs

In this part, we give our main result on the characterization of the singular arcs of the problem.

Theorem 1 Let n ≥ 2 be given and γ a singular extremal trajectory on a time interval [t1, t2]. Then,
there exists s∗ ∈ (0, sin) such that for all t ∈ [t1, t2], we have s(t) = s∗.

Proof We only give an overview of the proof without going into details. From the PMP, the trajec-
tory γ is such that φ(t) = 0 for any t ∈ [t1, t2] where φ := −

∑
1≤j≤n λjxj is the switching func-

tion and λ(·) denotes the adjoint state. Hence, for t ∈ [t1, t2], the vector λ(t) must be orthogonal
to the vector u0(t) := (x1(t), ..., xn(t)). Suppose now that s is non-constant over [t1, t2]. By differ-
entiating φ k-times (1 ≤ k ≤ n − 1) w.r.t. to t, we find that λ(t) must be orthogonal to the vec-

tors uk(t) := (x1(t)µ
(k)
1 (t), ..., xn(t)µ(k)(t)), 1 ≤ k ≤ n − 1 for any t ∈ [t1, t2]. We can show that

span(u0(t), ..., un−1(t)) = Rn for a.e. t ∈ [t1, t2], which implies that λ = 0 and gives a contradiction.
Hence, s must be constant on [t1, t2].

Remark 1 The transversality condition on the adjoint state λ(t(u)) ∈ NT (x(t(u))) implies that φ is
vanishing at the terminal time t(u) (here NT (z) denotes the normal cone to T at point z, see [9]).
Hence, either the trajectory has a switching point at the terminal time, or it contains a singular arc
s(t) = s∗ in a neighborhood of t(u). In the latter, we can show that the following condition should be
fulfilled : ∑

1≤j≤n

xj(t(u))(µ′j(s
∗)− µ′1(s∗)) = 0. (3)

The previous equality is useful in order to determine the value of s∗ along a singular arc.
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3 Numerical simulations for n = 3

Numerical simulations have been performed using the software bocop [4]. The direct method uses a time
discretization to transform the infinite-dimensional optimal control problem into a nonlinear optimization
problem, solved here by interior point techniques. Software bocop typically uses a discretization by a
Lobatto IIIC formula (6th order) with 100 time steps per day, a constant initialization, and a tolerance
for NLP solver set at 10−10. Numerical simulations indicate that optimal trajectories are of the form
B+ − S or B− − S where B− (resp. B+) denotes a bang arc with u = 0 (resp. u = 1), and S a singular
arc (eventually reduced to zero). Fig. 1 depicts several optimal trajectories computed for different initial
points xθ and shows that the value of s∗ depends on xθ. From (3), the value of s∗ must be such that
s∗ ∈ (1; 2.02), which is verified numerically.
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Fig. 1 First and second picture: control u and a zoom of u. Next pictures: plot of the concentrations x1, x2, and x3. The
different colors correspond to different initial conditions xθ = (4.5, 10θ, 10(1 − θ)), θ = 0.1, 0.5, 0.9.

4 Conclusions

Numerical simulations together with a characterization of singular arcs seem to indicate that optimal
trajectories are of the form B±−S (that is a most rapid approach toward a singular arc in the same spirit
of [1]). Such a feedback control furnishes to the practitioner an adequate operating mode for selecting
a species of interest. The question of the optimality of this feedback law and the determination of the
substrate concentration (as a function of the initial condition) along the singular arc remains difficult and
will deserve further studies. In particular, we intend to exploit the cooperative property of the adjoint
system. Developing bocop in order to automate the optimization w.r.t. the initial condition will be also
considered. We also intend to combine the direct approach method with a relaxation method of the
problem based on semi-definite programming [7]. This approach would allow to obtain a certificate of
validity of the feedback control.
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Accumulators?
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Abstract Keywords Learning models on a sequence · Automaton · Necessary condition

1 Introduction

In the context of learning models from production data [2] we get a conjunction of constraints that has
the following special structure: each constraint restricts a specific characteristic of a same sequence that
remains unchanged when the sequence is reversed. Since these characteristics do not vary independently,
it is crucial to come up in a systematic way with strong necessary conditions. Taking advantage of the
fact that our constraints can be encoded via an automaton augmented with accumulators [3] we come
up with a necessary condition linking the result on the full sequence with the results on any partition of
the sequence. This necessary condition can be summarized by a so called glue matrix, a matrix indexed
by the states of the automaton providing formula for each pair of states. We show how to use this glue
matrix, both in the context of constraint propagation, and in the context of local search.
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research. The last three authors are supported by grants 2011-6133 and 2012-4908 of the Swedish Research Council
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A mean Field Game approach to technological transition

Imen Ben Tahar · René Aı̈d

Abstract We develop a model to assess the diffusion of a new-technology among a population of poten-
tial adopters. Our main objective is to analyze the effect of the strategic interaction of the firms which
supply this new technology in a context where production costs decline with cumulated production
(learning by doing effect), and where a firm’s learning or experience benefits its rivals (learning spillover
effect). To produce a tractable model in a dynamic setting, we adopt a mean-field-game approach.

Keywords diffusion of a new technology · spill over effect · strategic interaction · mean field game
approach

Mathematics Subject Classification (2000) MSC 49M37 · MSC 65K05 · MSC 90C15

1 Introduction

In response to critical environmental challenges, it is widely admitted that a deep and large-scale trans-
formation of current technological systems is necessary. Complex issues are entangled in the transition
from a reference technology to more environmentally safe yet no-mature one. Such a transition usually
calls for important public policies involvement, for instance via subsidies or tax-measures, to encourage
the demand for the new technology and bring it to some critical level insuring a sufficient moment for
its development and diffusion. In order to design an efficient policy it is important to understand, not
only the demand side, but also the supply side dynamics.

In this paper we develop a quantitative model for the diffusion of a new technology with the objective to
asses the effect of the strategic interaction of its supplying firms. Our model is in lines with the model
of Stoneman and Ireland [2]:

– We consider a Davies [1] probit type model for the demand side: a potential user actually adopts the
new technology if his willingness to pay, w, exceeds the current price pt. The criterion w is assumed
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to be distributed according to a cumulative distribution function F (·), which allows to to deduce the
inverse demand function

pt = G

(
1

n
dt

)
where G : x 7→ F−1(1− x) .

Here n represents the size of the potential adopters.
– We assume that N firms produce this new technology. We denote by xit the cumulative production

volume of firm i up to time t and xj 6=i
t := (x1t , · · · , xi−1t , xi+1

t , · · · , xNt ). Each firm i maximizes its
inter temporal profit

max
xi

∫ T

0

e−rt
(
ptẋ

i
t − Ci(t, ẋit, x

i
t, x

j 6=i
t )

)
dt (1)

Here Ci(t, ẋit, x
i
t, x

j 6=i
t ) represents the cost of producing at time t the volume qit = ẋit, given the

cumulative production level xit and xj 6=i.

As in [?], we consider that production costs decline with cumulated production, this is the learning by
doing effect. Our main contribution is that we explicitly take into account the learning spillover effect,
that is the fact that a firm’s learning or experience benefits its rivals. To produce a tractable model, we
consider a cost function of the form:

Ci(t, q, xi, xj 6=i) = Ψ1(xit, x̄t)q + Ψ2(xit, x̄t)q
2 where x̄t =

1

N

∑
j

xjt (2)

and adopt a mean-field game approach to analyze the strategic interaction of the firms.
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Intra-Day Problem and Group Sparsity

Agnes Bialecki, Laurent El Ghaoui, Riadh Zorgati

Abstract In energy management, the so-called “Intra-Day Problem” (IDP) is the hourly adjustment
process of the initial daily planning of production given the uncertainties which affect the demand and
the offer. It can be defined as a very large, stochastic optimization problem, where the current solution
needs to be quickly updated when some parameters change, under complex constraints and challenging
computing time limits. This paper deals with a group sparsity approach for solving this problem.

Keywords Sparse optimization · Energy management

1 Problem setting and existing solutions

EDF, the main French Electricity board, daily plans its production for the next day by solving the Unit-
Commitment Problem (UCP) and must submit the obtained generation schedule to the grid operator.
The UCP consists of defining the minimal-cost power generation schedule for a given set of power plants
satisfying at each time step a supply-demand balance and physical constraints. This short-term problem,
solved in a deterministic setting, is a large-scale, non-convex, non-linear optimization problem, due to
many thermal and hydro power-plants constraints, which lead to discontinuous operation domains and
non-convex dynamic constraints.

Many uncertainties could affect the demand and the production so that the initial program becomes
nonoptimal or nonfeasible. In France, the load curve and the hydraulic inflows are very climate sensi-
tive. The availability of power plants is subject to random failure. Wind generation, electricity and gas
market prices are also subject to strong uncertainties. In order to guarantee network security and adapt
the planning to uncertainties, adjustments of the initial production schedule are needed. The network
manager allows one adjustment of the initial program every hour during the day, provided that these
modifications apply to a given limited number of power plants. The computation of these hourly ad-
justments is the so-called intra-day planning problem. At the present time, this problem is solved by
human experts. The process is not optimal but, currently, given the size of the French network, solving
this intra-day planning problem with an optimization approach, based on Boolean formulation of the
intra-day constraint, requires one to several hours of CPU time.

Two approaches have been considered to propose a resolution technique that would solve this problem
with CPU time compatible with the online operations and with little loss in optimality. The first one
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is based on a learning approach. Machine learning techniques have been used to learn the behavior of
solutions for the large-scale, mixed combinatorial UCP problem, based on observations of input-output
pairs for a set of problem instances [1]. The second approach is a two stage formulation of an extended
unit-commitment problem, which includes the intra-day problem. This approach is based on primal-dual
decomposition [2].

2 Proposed approach and first results

In our work, we investigate an alternate approach inspired by El Ghaoui, based on a group sparsity
technique [3]. Group sparsity refers to requirements on the decision variable of an optimization problem,
which enforces some groups of variables to be zero. When the decision variable is a matrix, a group
sparsity requirement consists in finding a matrix with a given number of columns of the matrix to be
zero. In this context, the Intra-Day constraint, which consists in modifying only a limited number of
individual unit schedules, can be expressed as a group sparsity requirement. Indeed, observing that a
generation schedule could be represented as a matrix where each column is the production planning
of a given unit, the hourly adjustment process of the initial day planning of production regarding the
uncertainties can be translated as a requirement on the matrix of the difference between the adjusted
planning and the previous planning to be “column-sparse”: most columns of the adjusted planning should
remain the same as the corresponding one in the previous planning.

We apply this approach to a toy Intra-Day Problem. Our goal is to evaluate the suitability of the
technique for the real intra-day problem. Given the very early results obtained on a toy problem, the
group sparsity approach appears to be a very promising alternative to classical Boolean models of Intra-
day problem. Our preliminary studies indicate that it can deliver similar results in a significant reduction
of computing time.
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Narrowing the difficulty gap for the Celis-Dennis-Tapia problem

Immanuel M. Bomze · Michael L. Overton

Abstract We study the Celis-Dennis-Tapia (CDT) problem: minimize a non-convex quadratic function
over the intersection of two ellipsoids. In contrast to the well-studied trust region problem where the
feasible set is just one ellipsoid, the CDT problem is not yet fully understood. Our main objective here is
to narrow the difficulty gap that occurs when the Hessian of the Lagrangian is not positive-semidefinite
at all Karush-Kuhn-Tucker points. We prove new sufficient and necessary conditions both for local and
global optimality, based on copositivity, giving a complete characterization in the degenerate case.

Keywords copositive matrices · global optimality conditions · non-convex optimization · polynomial
optimization · trust region problem

1 Introduction

We study the Celis-Dennis-Tapia (CDT) problem [2]: minimize a non-convex quadratic function over the
intersection of two ellipsoids. This problem is a natural extension of the well-studied trust region problem
[3] in which there is just one ellipsoidal constraint. Such problems arise quite naturally in iterative
non-linear optimization procedures where in one iteration step, the objective and the constraints are
approximated by quadratic models. However, while any trust region problem can be solved both in
theory and in practice quite efficiently, the additional constraint makes the CDT problem substantially
more challenging. Many articles have treated the analysis of this and related problems, for references
see [1].

After scaling the constraints and an affine transformation, we can reduce any CDT problem to the
following form:

z∗ := min {f(x) : r(x) ≤ 0 and s(x) ≤ 0} , with

f(x) := 1
2 x>Qx + q>x

r(x) := 1
2 (x>x− 1) ≤ 0 and

s(x) := 1
2 (x>AA>x− 2a>A>x + ‖a‖2 − 1) ≤ 0 .

 (1)
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where Q is a real symmetric n×n matrix which is not positive-semidefinite (psd), A is an n×m matrix
with full row rank n while q ∈ Rn and a ∈ Rm.

The gradients at a point x̄ feasible to the CDT-problem (1) read

ḡ := ∇f(x̄) = Qx̄ + q , x̄ = ∇r(x̄) , and ȳ := ∇s(x̄) = AA>x̄− Aa .

To avoid cases where the feasible set is empty or consists only of a single point, we assume Slater’s
condition: there exists x̂ ∈ Rn such that max

{
‖x̂‖, ‖A>x̂− a‖

}
< 1. This can be checked by solving a

convex trust region problem.

Consider the following two trust region problems:

min {f(x) : ‖x‖ ≤ 1} and min
{
f(x) : ‖A>x− a‖ ≤ 1

}
. (2)

Any global solution to either of the trust region problems (2) that is also feasible for the other one
constitutes a global solution to the CDT problem (1). Moreover, any local solution x̄ to (1) where at
most one of the constraints is binding, i.e. which satisfies min

{
‖x̄‖, ‖A>x̄− a‖

}
< 1, is necessarily a

local solution to one of the trust region problems (2), and we know that there can be at most one local,
non-global solution to a trust region problem [4].

This leaves us with only one problematic region of the feasible set, namely

B :=
{
x ∈ Rn : ‖x‖ = 1 and ‖A>x− a‖ = 1

}
= {x ∈ Rn : r(x) = s(x) = 0}

where both constraints are binding. We focus on this case in what follows.

Our main objective in this study is to narrow the so-called difficulty gap. As long as the Hessian H(ū, v̄) :=
Q+ ū In + v̄ AA> of the Lagrangian is psd at some Karush-Kuhn-Tucker (KKT) point x̄ with multipliers
(ū, v̄), trust region problem methods can be employed, so these cases are considered easy. However, it
may happen that the Hessian of the Lagrangian is not psd at all KKT points [5], and this phenomenon
is usually called “difficulty gap”.

2 Optimality conditions and copositivity

To discuss local and global optimality conditions, we first need the linearized tangent cone at a (1)-feasible
x̄, i.e.

Γ (x̄) :=


{
d ∈ Rn : x̄>d ≤ 0 and ȳ>d ≤ 0

}
if x̄ ∈ B{

d ∈ Rn : x̄>d ≤ 0
}

if s(x̄) < r(x̄) = 0{
d ∈ Rn : ȳ>d ≤ 0

}
if r(x̄) < s(x̄) = 0

Rn if max {r(x), s(x̄)} < 0

 .

If x̄ is locally optimal for the CDT problem (1), Slater’s condition implies the local first-order condition

ḡ>d ≥ 0 for all d ∈ Γ (x̄)

which is equivalent to x̄ being a KKT point, i.e., a feasible point satisfying the KKT conditions

ḡ + ūx̄ + v̄ȳ = o and ūr(x̄) = v̄s(x̄) = 0 (3)

for some (not necessarily unique) multiplier pair (ū, v̄) ∈ R2
+. We refer to (x̄; ū, v̄) as a KKT triple.

Clearly, the second condition in (3) holds automatically when x̄ ∈ B.

A KKT point x̄ ∈ B is nondegenerate if the constraint gradients are linearly independent and therefore
the multiplier pair is unique. In the degenerate case where ȳ = αx̄ for some α > 0, we have ḡ = −(ū+αv̄)x̄.
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Then (ũ, 0) := (‖ḡ‖, 0) and (0, ṽ) := (0, ‖ḡ‖α ) are both KKT multiplier pairs for x̄, as are all pairs in their
convex hull, which is a line segment in R2

+ of the form

(ū(t), v̄(t)) := (tũ, (1− t)ṽ) : t ∈ [0, 1]. (4)

Because of the nonnegativity condition, no other multiplier pairs for x̄ exist. Interestingly enough, the
degenerate case allows for no difficulty gap, at least for some t ∈ [0, 1]; see below.

Next, we need to introduce the reduced polyhedral tangent cone comprising all feasible directions along
which no first-order change in the objective is possible:

Γred(x̄) :=
{
d ∈ Γ (x̄) : ḡ>d = 0

}
.

An important property of symmetric matrices is that of copositivity. For a given cone Γ ⊂ Rn, recall
that a symmetric n× n matrix S is said to be Γ–copositive if and only if

d>Sd ≥ 0 for all d ∈ Γ ,

i.e., if S generates a quadratic form taking no negative values over the cone Γ . Therefore, any psd matrix
S is Γ -copositive, regardless of Γ , but not conversely. A matrix S is said to be strictly Γ–copositive if
and only if

d>Sd > 0 for all d ∈ Γ \ {o} .

Any positive-definite matrix is strictly Γ -copositive, but again, not conversely.

To formulate a hierarchy of global and local optimality conditions, it is convenient to denote by ψ(M)
the number of negative eigenvalues of a symmetric matrix M, counting their multiplicities. Let (x̄; ū, v̄)
be a nondegenerate KKT triple for (1). Then the following implications hold (all proofs can be found
in [1, Section 2]):

H(ū, v̄) is positive-semidefinite

⇒ H(ū, v̄) is Γ (x̄)-copositive

⇒ x̄ solves CDT globally and ψ(H(ū, v̄)) ≤ 1 ;

H(ū, v̄) is strictly Γred(x̄)-copositive

⇒ x̄ solves CDT locally

⇒ H(ū, v̄) is Γred(x̄)-copositive

⇒ ψ(H(ū, v̄)) ≤ 2 .

In general, checking Γ -copositivity of a matrix H is NP-hard. However, for Γ = Γ (x̄) here, this question
can be solved in polynomial time even if H(ū, v̄) fails to be psd [1, Section 3]. Therefore the difficulty
gap is narrowed.

Still stronger results hold in the degenerate case. Let x̄ be a degenerate KKT point for (1), with the
line segment of multiplier pairs in R2

+ given in (4). Then the following equivalence and implications hold
(again, all proofs are in [1, Section 2]):

H(ū(t), v̄(t)) is positive-semidefinite for some t ∈ [0, 1]

⇔ x̄ solves CDT globally;

H(ū(t), v̄(t)) is strictly Γred(x̄)-copositive for some t ∈ [0, 1]

⇒ x̄ solves CDT locally

⇒ H(ū(t), v̄(t)) is Γred(x̄)-copositive for some t ∈ [0, 1]

⇒ ψ(H(ū(t), v̄(t))) ≤ 1 for some t ∈ [0, 1] .
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# binding 2 2 2 1 1 0
condition psd Γ -copos Γred-copos psd Γred-copos psd
n = 2 2591 56 215 6455 488 194
n = 3 3618 50 448 5572 296 16
n = 4 4214 39 418 5151 178 0
n = 5 4396 40 409 5043 112 0
n = 6 4582 26 361 4954 77 0
n = 7 4646 18 291 4985 60 0
n = 8 4688 14 244 5007 47 0

Table 1 Number of times the psd and copositivity conditions on H(ū, v̄) occur at computed minimizers x̄ of 10,000
randomly generated instances of feasible CDT problems for each n from 2 to 8, categorized by the number of binding
constraints at x̄. By randomness, no degeneracy occurred.

3 Experiments

We conducted some numerical experiments to observe how often the various cases occurred on randomly
generated CDT problems. The entries of Q, A, q and a were independently generated from the normal
distribution, and Q was replaced by its real symmetric part; then a vector x̃ was generated in the same
way, normalized to have length one, and then A and a were scaled by 1/‖A>x̃ − a‖, guaranteeing the
existence of at least one feasible point and therefore, generically, that the Slater condition holds. The
vector x̃ was then discarded and a candidate x̄ for the global solution of each problem obtained by using
BFGS to minimize the exact penalty function p(x) = f(x) + ρmax(r(x), 0) + ρmax(s(x), 0), for some
ρ > 0 that was increased as needed to ensure feasibility, in a (tenfold) multistart fashion. In by far the
majority of cases, global optimality was confirmed, and in all except one of 70,000 tests at least local
optimality was confirmed. Details are given in Table 1.

4 Conclusion

We provide new copositivity-based optimality conditions for the CDT-problem, thereby reducing the
difficulty gap. Table 1 shows that by far the most common scenario is that H(ū, v̄) is psd, but with
positive probability it is Γ (x̄)-copositive but not psd. The second most likely scenario with two binding
constraints is that neither condition holds, indicating that there is still scope for further work to close
the difficulty gap in characterizing global optimality.
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Second order necesssary optimality conditions in Pontryagin form for
stochastic optimal control problems
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Abstract We discuss stochastic optimal control problems whose volatility does not depend on the
control, and which have finitely many equality and inequality constraints on the expected value of
function of the final state, as well as control constraints. The main result is a proof of necessity of some
second order optimality conditions involving Pontryagin multipliers.
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1 Introduction

In this paper we consider stochastic optimal control problems whose volatility does not depend on the
control, and having two types of constraints: (i) bound constraints on the control, and (ii) finitely many
equality and inequality constraints on the expected value of function of the final state, and control on the
final state. Such problems can be studied by the Hamilton-Jacobi-Bellman (or dynamic programming)
approach, using the notion of viscosity solution, see [10,15,18]. This approach has the advantage to give
characterizations of global optimality in some cases. However, it is not easy to apply in the presence of
final state constraints. In this paper we will rely on the variational approach, which consists in obtaining
necessary or sufficient optimality conditions by analyzing small perturbations of an optimal trajectory.

For deterministic control problems, a major result along this approach is Pontryagin maximum principle,
or PMP, which essentially says that with the solution of a deterministic optimal control problem, are
associated some multipliers such that the optimal control minimizes the Hamiltonian of the problem.
This has been extended to stochastic control problems, first by Kushner [14,13], Bensoussan [2] Bismut
[3,4], and Haussmann [11,12]. A major advance, due to Peng [17], was the extension of such results to
the case when the volatility depends of the control. See also Cadenillas and Karatzas [8] and Yong and
Zhou [18].

On the other hand, it is classical for deterministic optimal control problems to derive second order
necessary conditions. These conditions typically say that the curvature of the Lagrangian of the problem
is nonnegative over a set of critical directions (for some multiplier that may depend on the direction).
The only extension we know of such results for stochastic control problems is Bonnans and Silva [7].
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Finally, in some deterministic optimal control problems it is possible to obtain second order necessary
conditions in Pontryagin form, i.e., where the involved multipliers satisfy the PMP, see [16]. A result
of this form, for problems with state constraints and mixed state and control constraints, was recently
obtained in BDP1 [6]. Corresponding sufficient conditions were obtained in BDP2 [5]. The aim of this
paper is to obtain second order necessary conditions in Pontryagin form for stochastic control problems.
We have to make the important restrictive hypothesis that the volatility does not depend on the control.
Note, however, that in the second order optimality conditions obtained in [7], there were already imprtant
restrictions on the dependence of the volatility w.r.t. the control.

As in [6] the analysis will be based on an auxiliary problem called “finite relaxation”, that makes use of
the notion of relaxed control. There is an important literature concerning the extension of this notions
to the stochastic case, see the early reference Becker and Mandrekar [1], and El Karoui, Nguyen and
Jeanblanc-Picqué [9].

The analysis is simplified here for two reasons: (i) we use only finite relaxations, which can be viewed as
classical controls for the auxiliary problem, and (ii) the volatility does not depend on the control. This
simplifies, in particular, the construction of classical controls approximating relaxed ones.

Acknowledgements The support of the PGMO program is gratefully acknowledged.
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Covariance Matrix Adaptation in Multiobjective Optimization

Dimo Brockhoff

Abstract Multiobjective optimization problems occur frequently in practice. One successful multiob-
jective optimization algorithm for the case of continuous variables is the so called MO-CMA-ES, a
multiobjective version of the state-of-the-art single-objective optimizer Covariance-Matrix-Adaptation
Evolution-Strategy (CMA-ES). Since the proposal of the original MO-CMA-ES by Igel, Hansen, and
Roth in 2005–07, several improved variants have been introduced by various authors. In this talk of the
invited session “Recent Advances on Continuous Randomized Black-box Optimization”, I will introduce
the basic concepts of multiobjective optimization as well as the concepts underlying the original MO-
CMA-ES, give an overview of the main MO-CMA-ES variants, and briefly discuss their performance
differences. The main purpose of this talk is to make the algorithm and its variants known to the wider
public and in particular to practitioners from industry.

Keywords Multiobjective Optimization · Vector Optimization · Covariance Matrix Adaptation

1 Multiobjective Optimization

Optimization problems in which two or more objective functions need to be optimized simultaneously
appear frequently in practical applications, e.g. when a new technical device or machine has to be
designed and both the performance and the cost of it are taken into account. In such a multiobjective or
vector optimization problem, no single optimal solution does exist anymore if the objective functions are
conflicting; instead, it is typically worth to know a set of good solutions showing the trade-offs among
the different criteria—even if later on in the decision process, only a single solution is to be implemented.
This fact of finding a set of solutions is related to the concept of Pareto optimality or Pareto efficiency:
we say that a solution x is (Pareto-)dominated by another solution y if for no objective function, y is
better than x and if for at least one objective function, x is strictly better than y. The set of solutions,
not dominated by any other feasible solution is then called the Pareto set or the efficient set and in
practice, a good approximation of this set is sought.

The quality of a given solution set is thereby typically measured with respect to a quality indicator.
Two popular indicators are the hypervolume and the ε-indicator as they do not contradict the above
introduced Pareto-dominance relation when generalized to solution sets. The hypervolume of a solution
set A, given a reference point, is the Lebesgue measure of the space that is dominated by solutions in A

Dimo Brockhoff
INRIA Lille - Nord Europe
DOLPHIN research team
E-mail: dimo.brockhoff@inria.fr



2

Fig. 1 Illustration of the hypervolume (left) and ε-indicator (right). The current set of four solution is depicted by circles,
the reference point/set by crosses. Both objective functions are to be minimized.

and at the same time not dominated by the reference point. The ε-indicator of a set A, given a reference
set R, measures how much the objective values of the solutions in A have to be translated in order to
dominate all solutions in the reference set R. Figure 1 gives an illustration of the two indicators.

While typical classical algorithms for multiobjective optimization solve a multiobjective optimization
problem by means of several independent scalarized versions of the original problem [9], evolutionary
multiobjective optimization algorithms aim at finding good solution sets in one algorithm run [1]. Prob-
ably the most popular evolutionary multiobjective optimization algorithm is the second version of the
Nondominated Sorting Genetic Algorithm, NSGA-II for short [2]—most likely because of its simplic-
ity to be implemented and its good performance for problems with two and three objective functions.
However, this algorithm was proposed more than a decade ago and further improvements in the field
of evolutionary (multiobjective) optimization resulted in new algorithm concepts that outperform the
classical NSGA-II algorithm—both on standard benchmark functions and on real-world optimization.
Some of them possess additional invariances with respect to certain problem transformations (trans-
lation, rotation, etc.) such that their performances on a given function generalize to a whole class of
problems (the class induced by the transformation). One example of a “modern” evolutionary multiob-
jective optimization algorithm tailored towards problems with continuous variables and the additional
invariance against rotations of the search space is the so-called multiobjective version of the Covariance
Matrix Adaptation Evolution Strategy (MO-CMA-ES) and the main topic of this talk.

2 The Original MO-CMA-ES

Building on the success of the state-of-the-art single-objective optimizer Covariance Matrix Adaptation
Evolution Strategy (CMA-ES, [4,3]), Igel, Hansen, and Roth developed the multiobjective version in the
mid-2000s [5,6], abbreviated as MO-CMA-ES, and showed that it outperforms NSGA-II on various test
problems with respect to both the hypervolume and the ε-indicator.

The basic building block of the MO-CMA-ES is a single-objective (1+1)-CMA-ES, that keeps a single
solution in its memory, together with parameters of a multivariate Gaussian distribution that are used
to sample a new solution per iteration and that are updated according to the success of the new sample.
In the single-objective case, a success is given if the new sample has a better function value than the old
one and in the multiobjective case, the definition of success gives rise to multiple versions of the original
MO-CMA-ES that are briefly discussed in the next section.

The MO-CMA-ES employs μ instances of a (1+1)-CMA-ES simultaneously, which means that in each
iteration, μ new solutions are sampled. Under the assumption that one wants to keep the number of
solutions fixed (at μ), the algorithm has to decide which μ solutions among the μ new and the μ old
solutions to keep (and in addition, which of the sampling distribution’s parameters). All current MO-
CMA-ES variants use a combination of non-dominated sorting and the hypervolume contribution of
a point to make these decisions. In a first step, the current points are sorted according to their non-
dominance level: all solutions that are not dominated by any other are ranked first. Those solutions are
removed from the consideration and the next set of non-dominated solutions (among the remaining) get
ranked second and so forth. The solutions are then deleted based on their ranks—starting from the worst
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rank and as long as all equally ranked solutions do not decrease the overall number of remaining points
below μ. If in the end only a subset among equally ranked solutions have to be deleted to arrive at a
set of size μ, the difference between the overall hypervolume (with all current solutions of equal rank)
and the set of all equally ranked solutions except solution a is used to assign a quality to every solution
a. Until the number of current solutions reaches again μ, the solution with the smallest hypervolume
contribution is deleted iteratively from the ones of equal rank and all hypervolume contributions are
recalculated each time. For more details about the algorithm, including the update of the sampling
distribution’s parameters, see [6].

3 Variants of the MO-CMA-ES

The success for the update of the sampling distributions’ parameters within the single-objective (1+1)-
CMA-ESs of MO-CMA-ES is defined in various ways. In the original algorithm, a success happens if
the newly sampled solution dominates the old one [6]. In a later publication [11], an improved success
definition is introduced where a success appears if the newly sampled solution “survives” the iterative
selection step, based on the hypervolume contributions as described above. Further variants of MO-
CMA-ES, improving the algorithm’s applicability in practice, exist and I will detail them during this
talk. Examples are fast approximations of the hypervolume contributions [10] or the use of surrogates
when the objective functions are expensive [8,7].

4 Conclusions

The MO-CMA-ES is one of the state-of-the-art multiobjective optimization algorithms which got recent
attention in the research community while in practice, often older and less powerful techniques such as
NSGA-II and SPEA2 are still employed. It is the main purpose of this talk to make the MO-CMA-ES and
its many variants more known to the wider public with the hope that it will be adopted by practitioners
when the variables are continuous and the number of objective functions reasonable.
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Water storage optimisation 
  
 
Marc Brunet, Nadia Oudjane 
 
 
 
 
 
 
 
 
 
Abstract : Optimizing water storage represents an important issue for EDF. Mathematically, this problem can be 
stated as a stochastic optimization model and is known to induce substantial numerical difficulties.  
In recent years, many advanced approaches have been proposed in that domain and water storage optimization 
could, in principle, take benefit of these developments. However, in the first part of the talk, we emphasize the 
reasons why in practice those refined algorithms are not always able to improve the real operational process.  
In the second part of the presentation, we focus on a specific heuristic developed by practitioners to take into 
account some risk constraints while optimizing the dam. We question the theoretical foundations of this 
approach.  
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Dealing with complex errors in daily used optimization models for large size industrial problems 
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Abstract Whatever 
  
Unit-commitment,   hydro-plants scheduling,  data management 
 
 
Abstract 
The object of this presentation is to focus on data difficulties in daily used optimization problems.  In industrial   
IT  systems, optimization model inputs are refreshed all day long with thousands of data, from diverse origins : 
exchanges with other information systems, manually or automatically modified values. Furthermore, in case of 
optimization software,   some of the most complex rules on data expected by models to run can be difficult to 
anticipate by simple rules verification. 
 
Complementary approaches are developed by industries to tackle these thorny issues: 

- Cautious process about data validation: cross-validation, automatic and human  data checking. 
- Adaptation of the optimization models to be robust to some of data requirement violations. For 

example, by developing optimization model use-case dedicated to check some of the data requirements. 
 
Unit commitment at EDF, and especially hydro valleys optimization, is a good example of these difficulties and 
will illustrate the problem during the presentation. 
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Using Topology for Nuclear Fuel Reloading Pattern Optimization

Roman Čada

Abstract We deal with optimization of reloading patterns for nuclear reactors. We present a method
based on a combination of different approaches used in mathematical optimization. The particular com-
bination of all these methods is guided by a topological structure of the solution space. We will present
real-life examples of use of this method for VVER type reactors. The method is implemented in a
software package Enyo.

Keywords nucler reactor · nucler fuel · reloading pattern optimization

Mathematics Subject Classification (2000) MSC 05C90 · MSC 49M37 · MSC 90C90

1 Introduction

A nuclear reactor operates in cycles. During a reactor (mainly scheduled) outage the most burned-up
fuel is replaced by fresh one and this set of fuel assemblies is placed newly in the reactor. This way we
obtain a reload pattern. However not every pattern (or loading) is suitable for operating the reactor as
it has to meet many criteria, especially those related to safety. Next view on a design of such patterns is
economical. The aim is to operate the reactor in an economical way, to increase production of energy by
a minimal cost of fresh fuel. Because the design of fuel assemblies is fixed and one can ask just for several
types of fuel assemblies offered by a producer, the next aim is to design operating cycles so that one can
operate the reactor for many consecutive cycles. So it is necessary to perform so called feasibility studies
that under a given scenario of outages one can design many (e.g. ten or twenty) consecutive cycles with
the fuel assemblies types available.

In this extended abstract only one-cycle optimization is mentioned. The setting is the following. We
are given a set of fuel assemblies from the previous cycle. We need to design a loading satisfying the
given interval for cycle length (it corresponds to the number of days the loading is able to produce
energy). It is necessary to meet safety criteria, the most important are power peaking factor and burnup
of fuel assemblies (or more precisely of fuel rods, the fuel assembly is composed from). Typically the
corresponding values must be under a given (strict) limit. It is necessary to optimize the number of
replaced fuel assemblies (i.e. the number of fresh fuel assemblies for the cycle under design) and types of
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these fresh assemblies (they differ by enrichment with uranium) and for that number to maximize the
cycle length within the given interval.

In general several criteria (limits) are to be met and several parameters should be optimized (maximized
ro minimized). Both criteria and parameters are by nature sometimes discrete (number of fresh fuel
assemblies) or continuous (cycle length).

The problem is that to obtain correct values of parameters one must solve a huge number of differential
equations which are highly nonlinear. Typically a calculation of one loading takes several seconds to tens
of minutes depending of accuracy of calculations.

So from mathematical point of view we have a mixed multicriteria nonlinear optimization problem.

Several methods for nuclear fuel loading optimization were proposed in the literature. Among those most
important approaches we mention linear programming [1], heuristics methods (simulated annealing [2],
tabu search [3], neural networks and genetic algorithms [4]), nonlinear optimization [5] and cellular
automata [6].

On principle we can solve the problem by considering a suitable approximation model of the neutron
behaviour in the core which is then simple enough that one can apply directly methods from mathematical
optimization. The main disadvantage of this approach is that due to high nonlinearity of the problem
the model might be still nonlinear as well. But even then the approximate values obtained may differ
from correct ones by tens of percent which is unfeasible as it usually leads to an improper loading. These
models are solved by gradient-like methods.

The other possibility is to calculate the values correctly (for a given precision) and use a black-box opti-
mization methods. Possibly use it together with an approximation model as a guide for these methods.
The macrocode for solving neutronic calculations is based on a solution of the following equation for
neutron flux

−div (D(x)∇u(x)) +Σ(x)u(x) = λσ(x)u(x) x ∈ Ω, (1)

u(x) = 0 x ∈ ∂Ω (2)

Ω corresponds to a reactor core area, u neutron flux, λ eigenvalue, D diffusion coefficient, Σ absorption
cross section and σ fission cross section. Note that operator ”div” means the standard divergence in
vector analysis.

We use an iterative method which can be described in several steps.

– Define a system of neighborhoods (call it first topology) in the solution space.
– Identify basins of attraction in the solution space with respect to a particular topology
– Identify neighborhood structure (call it second topology) of basins obtained in the previous step
– In a particular basin find good parameters of an approximation model of (1)
– Solve approximation model to find estimates of most important parameters
– If the estimates seem to be good, solve the problem using black box optimization with exact values

(during that we increase accuracy and also possibly change the model of the reactor core from 2D to
3D). Otherwise move to next basin guided by second topology

– Repeat moves using second topology untill a solution is found. Otherwise there is no solution with
very high probability.

Note that it is a kind of hierarchical approach to the problem. The avantage is that many aspects
are related to the geometrical structure of the reactor core and as such they can be precalculated and
then used in every optimization process without recalculation. Also the probability of an error that the
software finds no solution satisfying all criterions provided there is one seems to be rather small (according
to some very exhaustive long time searches less than units of percents). Results of calculations are usually
depicted as in Figure 1.
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Fig. 1 An example of a power distribution in a reactor core during optimization

2 Conclusions

We described basics of a method for optimizing reload patterns for nuclear reactors. We have so far
succesfully tested the proposed method for VVER type reactors but we believe that it is applicable also
to other types of reactors as well. It is also possible to consider multi-cycle optimization, which has been
already thoroughly tested, however some refinements are still under considerations.

Acknowledgements The work was supported by the TAČR (Technology Agency of the Czech Republic), grant No.
TA01020352.
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Solving inverse thermal problems with optimisation algorithms

R. Camy · D. Xu · J.P. Argaud

Abstract The validation of conjugate heat transfer predicted by the coupling of a Computational Fluid
Dynamics (CFD) code and a thermal conduction code requires the exploitation of measurement data.
Most of the time, these measurements are done by means of thermocouple sensors which provide data
only for very local positions in the fluid and the solid. Here, optimisation algorithms proved to be able
to find back the heat fluxes at the walls which cause the obtained measures. In this paper, a specific
strategy based on common optimisation algorithms is presented.

Keywords Inverse problems · Heat transfer

Mathematics Subject Classification (2000) MSC 49M37 · MSC 65K05 · MSC 90C15

1 Introduction

As an industrial electricity provider, EDF operates many production processes based on various energy
sources. In most of them, heat transfers (whether intended or not) impact the performances of the
considered systems.

In this framework, EDF R&D develops numerical tools notably to:

– predict temperature evolutions in solids, SYRTHES (open source,
http://researchers.edf.com/software/syrthes.html);

– predict flow fields in fluid domains, Code Saturne (open source, http://code-saturne.org);
– perform optimisation studies, ADAO via SALOME (open source, http://www.salome-platform.org).

This paper focuses on the development of a strategy and its associated computer tools to estimate the
heat flux at the walls of a solid, given measures at specific locations in the solid. The final goal is to
contribute to the validation of predicted convective heat transfer in complex flow configurations.
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2 Description of an optimisation strategy

Finding heat fluxes at the walls of a solid with temperature records at a limited number of positions is
essentially an ill-posed problem. It conceptually corresponds to an estimate of an infinite size vector of
unknowns X (fluxes) using a finite size vector of data Y (measured temperatures). Hence, the need for
methods or hypothesis to regularise the problem.

In the present strategy this regularisation comes from an interpolation in the physical space (x, y, z, t).
In practice, the heat flux applied to the surfaces of the considered solid is taken piecewise (quadri-) linear
to reduce size of the vector X to a finite value n. If n is “small enough” and with “relevant and detailed
enough” measurements Y m, the inverse problem can be solved.

Mathematically, it corresponds to the search of the minimum of a cost function J which can classically
be defined as:

J(X) = (Y m −H(X))TR−1(Y m −H(X)),

where H is the operator linking X to Y (here, this operator include the thermal code SYRTHES) and
R is the measurement error covariances matrix.

Intuitively, the finer the discretisation (i.e. the bigger is n), the “better” the estimate of real field of fluxes.
Yet, in 4 dimensions (space and time), the size of X can easily take large numbers which makes the
solving difficult. To mitigate this phenomenon, the present strategy starts with solving a low dimension
inverse problem (n0 small) and then loops over ever higher dimension inverse problems (ni+1 > ni) using
each time the X∗i of the former solving as an initial point for the research of X∗i+1.

3 Results on a toy case

Results were obtained with the platform “SALOME” and its optimisation module “ADAO” which uses
an algorithm “3D-VAR”. The discretisation in physical space adresses the problem. The incremental
increase of the unknowns vector’s size improves results over a direct search in an high dimension space.
It shows the need for a correct initial research point of the minimum.

(a) Direct search in high dimension (b) Incremental size increase

4 Conclusions

The strategy has proved to be valid and it is expected to give objective and transferable results. A
computer tool based on the SALOME platform has been developed and will be applied to validation of
conjugate heat tranfer simulations.

Acknowledgements This work was supported by EDF R&D.
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Frequency Constrained Unit Commitment

C. Cardozo · L. Capely · P. Dessante

Abstract The Unit Commitment (UC) problem deals with the short-term schedule of the electrical
generation to meet the power demand. The main objective is to minimize production cost, while res-
pecting technical and security constraints. In addition to the system load, a specific amount of spare
capacity is committed to cope with uncertainties, such as forecasting errors and unit outages; this is
called reserve and it has been traditionally specified following a static reliability criterion. In a system
with a conventional generation mix, this security constraint allow achieving UC solutions that naturally
provide an acceptable transient response. However, the increasing penetration of Variable Generation
(VG) sources, such as wind and solar, can lead to UC solutions that no longer ensure system security.
Thus, new UC models have been proposed to consider the power system dynamics when optimizing the
day-ahead generation schedule. Some published works are focused on the formulation of these constraints
in a Mixed-Integer Linear Programming (MILP) structure to apply classic optimization techniques. Nev-
ertheless, power system dynamics is a non-linear problem, and, to the author’s knowledge, the limits
of these linear approximations have not been discussed in literature. This work examines the ability of
different UC models to produce secure schedules when facing unit outages, through the implementation
of a set of primary reserve & energy co-optimization models. These models are built based on linear
approximations of dynamic constraints that are available in recent literature. Then, dynamic simula-
tions are performed for every conceivable outage to observe the transient response of the system and to
quantify the risk of Under Frequency Load Curtailment (UFLC). Depending on the energy mix and the
dynamic parameters of the available production park, the system dynamic response can be improved at
reasonable cost through slight changes in schedule and dispatch using adapted UC models. Further work
will include net demand forecasting errors to determine the expected activation of UFLC.

Keywords Unit Commitment · Primary Reserve Optimization · Under Frequency Load Curtailment ·
Mixed-Integer Linear Programming · Variable Generation
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SUPELEC Département Énergie, 3 rue Joliot Curie, 91192 Gif-sur-Yvette Cedex, France
E-mail: philippe.dessante@supelec.fr



2

1 Introduction

The operational environment of power systems has not ceased to evolve in the last decades. On the one
hand, even though the responsibility of power system security is held by system operators, following the
deregulation of the energy industry, they no longer own the resources needed to ensure it. These resources
are called ancillary services and include among others frequency control. In a competitive energy market,
these services are becoming a product that needs to be also optimized. On the other hand, following
environmental policies, Variable Generation (VG) sources, such as wind and solar, are prioritized in
dispatch, even though in many cases they do not participate in the provision of ancillary services.
Moreover, they do not naturally contribute to the system inertia and they produce a variable power
output that has low controllability. Even more, these sources are only partially predictable, increasing
the level of uncertainty in power system operation. Therefore, classic optimization models that are used
to establish production portfolios, from planning to real-time operation, are being reviewed to conciliate
economics with security in power supply. This work is focused on the co-optimization of primary reserve
and energy to ensure power system security in spite of the increasing share of VG.

Security will be understood here as the ability of the power system to maintain power balance avoiding
load shedding. Traditionally, this has been achieved by the specification of a certain amount of reserve.
Spinning Reserve (SR) is the difference between the power ratings of all the operating units and the actual
load. It will ensure power balance following VG and load forecasting error, and unit failures. Depending
on response time and its main function, SR can be classified into primary, secondary and tertiary reserve.
In general, Primary Reserve (PR) is meant to avoid load shedding after sudden disturbances and stabilize
power system frequency in seconds (approx. 30 s) [5]. It is also called frequency containment reserve by
the ENTSO-E [4]. Then, lower reserves are used to bring the frequency back to its nominal value in
some minutes and to compensate for very short term demand variability. Regarding the system inertia,
it will determine the gradient of frequency following power unbalances.

If primary reserve fails to stabilize the system frequency following a large disturbance, Under Frequency
Load Curtailment (UFLC) might be automatically activated in some seconds to prevent system collapse.
On the other hand, slow frequency instability processes triggered by unexpected net demand ramp for
example, can be handled in some minutes by non-spinning reserves or even selective curtailment of
responsive demand, with a more controlled impact [3]. Therefore, to ensure power system security,
first enough primary reserve must be committed, and its allocation should be optimized respecting an
expected performance of system dynamics. This work compares different UC models to include these
considerations in order to examine the cost and the risk that each one entails for a specific system.

PR has been dimensioned in a deterministic way, to cover for a reference incident. In large-scale power
systems, enough kinetic energy is stored in synchronous machines to prevent UFLC if a sufficient volume
of PR has been specified to establish power balance in the post-contingency steady-state condition.
However, in small power systems with an important share of VG connected through power electronics,
this criterion may be insufficient since UFLC might occur in the frequency transient. Thus, additional
constraints must be considered in optimization models to guarantee an economical and secure schedule.

2 Consideration of primary frequency regulation in Unit Commitment (UC)

PR consideration was first proposed in literature for the Economic Dispatch problem (ED). The ED
is defined here as the solution of the single-period optimization, where the active power levels of on-
line units are allocated to supply the load respecting generation limits and satisfying certain security
criterion at minimal cost [6] [7] [1]. Afterwards, it was proposed in [8] the inclusion of a set of additional
constraints in the UC MILP model to account for primary frequency regulation as an explicit function
of steady-state frequency deviation. More recent work includes linear representation of several dynamic
aspects in a market design for the primary frequency response ancillary service [2]. Main modelling
details of published constraints accounting for frequency regulation will be included in the full paper.
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3 The proposed approach - A theoretical 10 unit test system

For illustrative purposes, lets’ consider a theoretical 10 unit test system. Figure 1 and 2 present the
schedules according to two different UC models. In Figure 1 the total amount of primary reserve is
defined by fixed requirement. In Figure 2, the primary reserve is co-optimized with the energy dispatch
and an inertia constraint has been included as a function of the maximal rate of change of frequency [1].

Figure 3 shows the histograms of minimal frequency values over all simulated scenarios to characterize the
dynamic performance of each proposed schedule. For the test system, both UC schedules have equivalent
production costs, but UC model 2 ensures that no UFLC will occur (fmin >49 Hz for all scenarios).

4 Conclusions

In this work, different security criteria to allocate primary reserve in UC models have been compared.
The security criteria are defined by adding a specific set of constraints in a classic UC model. Then,
dynamic simulations allow to evaluate the response of the system after unit outages, considering different
schedules for the same forecasted load. Finally, the overcost incurred to improve dynamic security and
the risk level associated for each optimization model have been quantified for a theoretical power system.
The preliminary results presented are strongly dependent on the size and energy mix of the proposed
test system. The full paper will focus on the advantages and limitations of linear constraints to tackle
the deterioration of the power system dynamic response due to VG integration.

Acknowledgements This work is supported by the French National Research Agency (ANR) within the framework of
the APOTEOSE project, PROGELEC 2012 grant program, contract ref. ANR-12-PRGE-0012-01. The first author would
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Chance-constrained optimal management of a hydropower dam

P. Carpentier · M. De Lara

Abstract We consider the management of an hydroelectric dam subject to uncertain inflows and elec-
tricity prices and to a so-called “tourism constraint”: the water storage level must be high enough during
the tourist season with high enough probability. We formulate a chance-constrained stochastic optimal
control problem, that is, we maximize the expected gain while guaranteeing a minimum storage level
with a minimal prescribed probability level. Dualizing the chance constraint by a multiplier, we propose
an iterative algorithm “à la Uzawa”, alternating dynamic programming resolutions and updates of the
multiplier value. Our numerical results reveal that the random gain is very dispersed around its expected
value: in particular, low gain values have a relatively high probability to materialize. To conclude, we
discuss the extension of the proposed methods to multiple probability constraints, and the so-called
stochastic viability approach that jointly ensures a minimum gain and a minimum storage level during
the tourist season.

Keywords Chance Constraint · Dynamic Programming · Dam Management
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1 Introduction

Hydroelectricity is the main renewable energy in many countries. It emits no greenhouse gases and
provides fast-usable energy, cheap and substitutable for the thermal one. On the other hand, dam man-
agement has to deal with uncertain water inflows and uncertain electricity prices, and multiple uses
(agriculture, tourism, flood prevention). We consider the situation where the following tourist chance
constraint is prescribed by the local authorities: a given reference water storage level must be guaran-
teed during the tourist season with a minimum probability level. Modeling the problem using chance-
constrained programming is a way to mix the economic objective (maximizing a gain) and the tourist
objective (ensuring the tourist satisfaction) under uncertainty.

In §2, we present the dam hydroelectric dynamics and the economic objective. We aim to maximize the
expectation of the economic gain while satisfying the tourist constraint, and we model the problem as a so-
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called chance-constrained stochastic optimal control one (references for chance-constrained programming
are [Prékopa(1995)], [Prékopa(2003)] and [Dentcheva(2009)]). In §3, we reformulate the problem by
adding a binary random variable to the storage level of the dam to form an extended dynamic state.
In this new formulation, the probability constraint becomes a constraint in expectation. After dualizing
this expectation constraint, we can apply dynamic programming for every fixed value of the multiplier,
and the multiplier is iteratively updated until convergence. We provide real case based numerical results,
and observe that the random gain is noticeably dispersed around its expected value; in particular, low
gain values have a relatively high probability to materialize.

2 Dam Modeling and Problem Formulation

Let time t be an integer in {0, . . . , T} and let (Ω, F , P) be a probability space. We consider the following
real valued random variables:

– Xt, the water storage level in the dam reservoir at the beginning of period [t, t+ 1[,
– Ut, the dam turbined outflow during [t, t+ 1[,
– At and Ct, the dam inflow and the electricity price during [t, t+ 1[, and Wt = (At, Ct).

The dynamics of the state process (Xt)t∈{0, ..., T} reads

Xt+1 = fXt (Xt, Ut, Wt) . (1)

The control process (Ut)t∈{0, ..., T−1} is required to be non-anticipative:

Ut is measurable w.r.t. (W0, . . . , Wt) . (2a)

Moreover, each control Ut is subject to bound constraints:

0 ≤ Ut ≤ min{Xt + At , u} . (2b)

Let the subset T ⊂ {1, . . . , T − 1} denote the tourist season period. The tourist chance constraint
consists in ensuring a minimal reference storage level xref during the tourist season T at a probability
level pref:

P (Xτ ≥ xref ∀τ ∈ T ) ≥ pref . (3)

Denoting by Lt(Xt,Ut,Wt) the hydroelectric production gain at time t and vf (XT ) the valorization of
the stock at the final timeT , the production management problem is:

max
X,U

E

(
T−1∑
t=0

Lt(Xt,Ut,Wt) + vf (XT )

)
subject to (1) – (2) – (3) . (4)

Problem (4) is a so-called chance constrained stochastic optimal control problem. Such problems raise
theoretical and numerical difficulties: indeed, it is mathematically difficult to guarantee the closedness
and the convexity of the set induced by the chance constraint (3). Thus, besides being of a practical
interest, the resolution of the optimization problem (4) also represents a theoretical challenge.
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3 Reformulation and Resolution

We introduce a new binary valued random process (πt)t∈{0, ..., T} driven by the dynamics:

πt+1 = fπt (Xt, πt, Ut, Wt) =

{
πt.1{Xt+1≥xref} if t ∈ T ,

πt otherwise .
(5)

Using this binary process, the chance constraint (3) can be written as an expectation constraint:

E (πT ) ≥ pref . (6)

The initial optimization problem (4) is thus reformulated as:

max
X,π ,U

E

(
T−1∑
t=0

Lt(Xt,Ut,Wt) + vf (XT )

)
subject to (1) – (5) – (2) – (6) . (7)

Dualizing the (real-valued) expectation constraint by a multiplier λ, we are able to apply an algorithm
“à la Uzawa” to obtain a solution of the problem. At an iteration of the algorithm,

– the primal maximisation is solved by Dynamic Programming with the “extended” state (Xt,πt),
– the multiplier update is done by computing the expected value E (πT ).

Numerical experiments are conducted on a realistic dam model. Results show that the method converges
toward a solution which satisfies the probability constraint (Figure 1, left). The theoretical justification
of the experimentally observed convergence is difficult to obtain because the usual convexity assump-
tions are not fulfilled, and because the system encompasses a discrete dynamical process. However, the
Everett’s theorem [Everett(1963)] guarantees that the strategy obtained at convergence is a solution to
the initial optimization problem.

Fig. 1 Realizations of the storage level process X] (left) and empirical probability distribution of the gain (right)

A noticeable feature of the method is that the deviations of the realizations of the gain from its expected
value are substantial (Figure 1, right). This might disappoint a dam manager who would expect a gain
of the magnitude of its mean.

Acknowledgements This work has been realized by Jean-Christophe Alais during its PhD thesis [Alais (2013)]. The
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A Modified Sample Approximation Method for Chance Constrained
Problems

Jianqiang Cheng · Abdel Lisser · Céline Gicquel

Abstract In this talk, we present a new scheme of a sampling method to solve chance constrained
programs. First of all, a modified sample average approximation is presented. With the modified sample
method, despite that some other chance constraints arise, the corresponding problem has no binary
variable whereas there are binary variables based on the traditional sample average approximation (SAA).
Second, we show that, for the new chance constraints, it is easy to handle these chance constraints in
some cases. Finally, numerical experiments are conducted to compare the proposed approximation to
SAA in order to show the strength of the new sample method.

Keywords Stochastic programming · Chance constraints · Sampling approximation
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1 Introductions

In this paper, we focus on the following chance constrained problems:

min f(x) (1a)

(CCP ) s.t. P{G(x, ξ) ≥ 0} ≥ 1− α (1b)

x ∈ X, (1c)

where f : Rn → R is the objective function, X ⊂ Rn represents a set of additional deterministic
constraints, ξ ∈ Rd is random vector with a distribution F , G : Rn × Rd → Rm are given constraint
mapping, and α ∈ (0, 1] is a confidence parameter. Constraint (1b) is called chance (or probabilistic)
constraint. Furthermore, in (1b), we only use a single probability constraint on all the rows in the
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E-mail: lisser@lri.fr
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constraints G(x, ξ) ≥ 0 rather than requiring each row to be satisfied with high probability individually.
Such a constraint is known as a joint chance constraint.

Since chance constrained programming was firstly introduced by Charnes, Cooper and Symonds in [1],
it has attracted significant attention of many researchers and practitioners as it plays an important role
in engineering, telecommunication, finance, etc. However, little progress was made until recently because
of two reasons. One main reason is that the feasible set of CPP is generally nonconvex even if the set X
is convex and the function G(x, ξ) is concave in x. The other reason is that P{G(x, ξ) ≥ 0} with a fixed
x ∈ X is generally hard to compute, as it requires multi-dimensional integrations. For a comprehensive
overview on theory and applications of chance constrained problems, we refer the reader to the books of
Prékopa [4]and Shapiro et al. [5].

As chance constrained problems are generally intractable, it leads to the development of solving methods
in two directions. One is to apply convex (or tractable) approximations (see, e.g., Nemirovski and Shapiro
[3]). The other approach is to use sampling methods to approximate original problems (see, e.g., sample
average approximation (SAA) of Luedtke and Ahmed [2]).

In this paper, we put forward a modified sample average approximation to solve the chance constrained
problems. With the modified sample method, the corresponding problem has no binary variable whereas
there are binary variables based on the SAA of Luedtke and Ahmed [2]. Despite that some other chance
constraints arise, we will show that it is easy to handle these chance constraints in many cases in
the full paper. Meanwhile, the numerical tests to compare the proposed approximation to SAA are in
preparation.

2 Partial SAA

Before we give the scheme of our approach, the key assumption on the modified sample method is
presented firstly.

Assumption 1 We assume that ξ = (ξ1, ξ2), further ξ1 and ξ2 are independently distributed.

We let ξ11 , ..., ξ
N
1 be an independent Monte Carlo sample of the random variable ξ1. Then we have the

SAA of CPP as follows:

min f(x) (2a)

s.t.

∑N
t=1 P{G(x, ξt1, ξ2) ≥ 0}

N
≥ 1− η (2b)

x ∈ X, (2c)

which is equivalent to

min f(x) (3a)

s.t. P{G(x, ξt1, ξ2) ≥ 0} ≥ yt, t = 1, ..., N (3b)∑N
t=1 yt
N

≥ 1− η (3c)

yt ≥ 0; t = 1, ..., N, x ∈ X, (3d)

The sampling method is called ”Partial SAA” (PSAA). Compared to the SAA of Luedtke and Ahmed
[2], there is no binary variable in Problem (3) despite that there still exists joint chance constraints.
However, we will show that the new chance constraints can be well approximated in some cases through
numerical experiments. Further, the numerical results will be presented in the talk to show the strength
of the proposed method.

Acknowledgements This research benefited from the support of the FMJH Program Gaspard Monge in optimization
and operation research, and from the support to this program from EDF.
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Scheduling independent parallel machines with convex programming

Stéphane Chrétien · Nathalie Herr · Jean-Marc
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Abstract In the �eld of production scheduling, this paper adresses the problem of maximizing the
production horizon of a set of independant parallel machines. Convex optimization is used to de�ne the
contribution of each machine to a global needed throughput. A coupled Alternative Direction Method
of Multipliers and Bregman-Proximal scheme is proposed to cope with the assignment problem.

Keywords Convex optimization · l1 trend �ltering · Production scheduling · Parallel machines
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1 Introduction

The problem tackled here concerns the scheduling ofm heterogeneous parallel machinesMj (1 ≤ j ≤ m),
performing independent and identical tasks. All the machines are supposed to be of similar type and
independent. A subset of machines has to be used in parallel to reach a target throughput σ(t). The
total provided throughput corresponds to the sum of the contributions of machines that are currently
running. All the machines are not supposed to be in use at any time because the target throughput can
be reached by using only a subset of the machines within the platform or because some machines are not
available. Machines are indeed assumed to su�er from wear and tear. Their lifetime is then limited and
maintenance is required. Many reasons justify to postpone maintenance operations as late as possible
and to maintain all the machines at the same time. Maintenance can for instance be challenging and
costly [3]. Isolated or embedded equipment can also require to wait for the end of a global task before
performing maintenance [1], for example in the aerospace, the railway or the automobile domain. One
challenging objective is then to maximize the production horizon of the set of machines between two
maintenance periods. This production horizon corresponds to the lifetime of the whole set of machines.
This global lifetime depends on each machine lifetime, but also on the schedule of the machines. A
machine lifetime is indeed assumed to be variable and dependent on its use. For each machine Mj , the
provided throughput ρj can vary continuously and take any value between a minimal and a maximal
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one (ρmin,j ≤ ρj ≤ ρmax,j). The maximal throughput is more e�cient in terms of output, but is
associated to a minimal lifetime. A lower throughput is less e�cient, but allows to reach a longer
operational time. Considering discretized time, the problem consists then in selecting, for each period
of time t, a subset of machines to be used and an associated throughput ρj for each of them, with the
maximization of the production horizon as objective.

2 Model

For each machine Mj (1 ≤ j ≤ m), we de�ne a function fj(t), j = 1, . . . ,m, which is the throughput
that the jth machine contributes. Our main constraint is that∑m

j=1
fj(t) ≥ σ(t) for all t over the time span {0, . . . , T} (1)

Let us assume that each fj(t), j = 1, . . . ,m, can be decomposed as

fj(t) = f1,j(t) + f2,j(t) (2)

where f1,j(t) is piecewise constant and f2,j(t) is piecewise linear Each time where f2,j(t) changes its
slope will be called a breackpoint. Each function fc,j satis�es

fc,j(t) ≥ 0 for c ∈ {1, 2} and for all t ∈ {0, . . . , T} (3)

We will also impose the upper bound

fj(t) ≤ fmax,j(t) for all j = 1, . . . ,m and for all t = 0, . . . , T . (4)

This upper bound corresponds to a maximal throughput, which typically declines gradually during the
use of a machine Mj .

A certain consumption rate constraint is set for each machine j = 1, . . . ,m and may be written as∑T

t=0
Φ(fj(t)) ≤ 1 (5)

with Φ a given convex function. Theses consumption constraints express the limited lifetime of each
machine.

3 Finding well-structured solutions via convex optimization

3.1 Main idea

Our goal is to �nd the functions fc,j , c = 1, 2 and j = 1, . . . ,m using convex optimization, so that the
solution can be found in polynomial time. The main idea is to use an approach which was recently
promoted in signal processing and computational statistics. In [2], Kim, Koh, Boyd, and Gorinevsky
showed the practical interest of minimizing the `1-norm for obtaining sparsity in the context of function
modelling over time. More precisely, they showed through multiple experiments that minimizing the `1-
norm of the �nite di�erences of a vector leads, under very mild conditions, to a vector which is piecewise
constant. The same idea can be used to obtain polynomially shaped (of any order) vectors which can
be interpreted as the discretized version of a polynomial function of time.

The main ingredient in our proposal is to model the functions fj by a sum f1,j + f2,j of a piecewise
constant function and a function which has uniformly controlled slopes. Using the `1 penalization
approach, one obtains that our problem can be addressed via optimizing the composite function

φ(f) =
∑m

j=1
λ1,j‖∆f1,j‖1 + λ2,j‖∆f2,j‖∞ + λ2′,j‖∆2f2,j‖1, (6)
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subject to the constraints (1), (2), (3), (4) and (5). Each term in this objective function is a penalty for
imposing a certain sparsity on ∆fc,j or ∆

2fc,j , c ∈ {1, 2}, j = 1, . . . ,m. ‖∆f1,j‖1 is used to minimize
the discontinuity of the �nal solution, ‖∆f2,j‖∞ minimizes the slopes of the linear parts of fj and
‖∆2f2,j‖1 minimizes the number of slope changes. The use of `1-type penalties as surrogates for non-
convex penalties like the `0-"norm", i.e. the number nonzero components, has been much investigated
in the recent years due to the success of such approaches for Compressed Sensing and related �elds in
Inverse Problems Theory and Signal Processing. The main interest in using such penalties is that they
are convex and are thus amenable to e�cient methods of convex optimization.

In order to enforce that the fc,j equal zero more often than would lead the previous objective, one can
propose the following objective function

F(F ) = ‖F‖1 +
∑m

j=1
λ1,j‖∆f1,j‖1 + λ2,j‖∆f2,j‖∞ + λ2′,j‖∆2f2,j‖1 + λ Dψ

h (F
(l), F ) (7)

3.2 Algorithm

A Bregman-Proximal method is used to minimize φ de�ned in Equation (6). Let us now introduce the
following functions which adequately describe our constraints:

ψ0 : R2m(T+1) 7→ RT+1 as ψ0(F ) =
∑m

j=1
fj − σ (8)

ψc,j : R2m(T+1) 7→ RT+1 as ψc,j(F ) = fc,j , c ∈ {1, 2}, j = 1, . . . ,m (9)

ψ3,j : R2m(T+1) 7→ RT+1 as ψ3,j(F ) = fmax,j − fj (10)

ψ4,j : R2m(T+1) 7→ Rm as ψ4,j(F ) = 1−
∑T

t=0
Φ(fj(t)) j = 1, . . . ,m (11)

Then, a simple Bregman-Proximal scheme would consider iterations of the form

F (l+1) = argminF∈R2×m×(T+1) and ψ4(F )≥0 F(F ) + λ
(
Dh(ψ0(F

(l)), ψ0(F ))

+Dh(ψ1(F
(l)), ψ1(F )) +Dh(ψ2(F

(l)), ψ2(F )) +Dh(ψ3(F
(l)), ψ3(F ))

)
.

In order to take the constraint ψ4(F ) ≥ 0 into account, we introduce a Lagrange function

L(F,U) = F(F ) + 〈U,ψ4(F )〉. (12)

One can then perform a primal-dual scheme based on Uzawa's iterations:

F (l+1) = argminF∈R2×m×(T+1) ∇L(F,U) + λ
(
Dh(ψ0(F

(l)), ψ0(F ))

+Dh(ψ1(F
(l)), ψ1(F )) +Dh(ψ2(F

(l)), ψ2(F )) +Dh(ψ3(F
(l)), ψ3(F ))

)
U (l+1) = max{0, U (l) + ψ4(F

(l+1))}.

The proposed algorithm allows to search for a solution F for a �xed horizon. Since the main objective
is to maximize the production horizon, a dichotomic search approach is used to determine the maximal
horizon for which a solution exists. Convergence results of the method and extensive computational
experiments will be provided.
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Cabling optimization of a windfarm and capacitated K-Steiner tree
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Abstract The original goal is to optimize the cabling of a wind energy farm. We show the relation-
ship between this network design problem and the capacitated K-Steiner tree problem in graphs.
We give some complexity results and we propose an approach based on integer linear programming
to solve the problem.
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1 Introduction

A wind farm is composed of wind turbines producing energy and cables used to collect this energy
and send it to a specific sub-station which then distributes power to customers. The cables laid
between given connecting nodes. Engineering constraints impose that the energy flowing through
a cable is unsplittable, i.e. the energy routed from turbines to a connecting node through different
cables is then routed through a unique cable path from this node to the root. Knowing the location
and production of turbines and the location, capacity and cost of all possible cables with their
connecting nodes, the wind farm network design problem is to optimize the total length of required
cables to install. A version of the problem including the possibility of parallel cables between
connecting nodes and other constraints is studied in [4] where an approach based on integer linear
programming is proposed to solve real-world instances.

The problem is in closed relation with the well-know Steiner tree problem: given a weighted graph
G, the K-Steiner tree problem is to find in G a minimum length tree S spanning a specified set
T of K vertices called terminals. More precisely, the basic wind-farm network design problem
corresponds to the capacitated rooted K-Steiner tree problem described in the next section. In our
problem, the sub-station is the root of the graph and the wind turbines are the terminals. The
possible cables are the edges of the graph and the connecting nodes are the Steiner nodes. Any
solution of the network design problem corresponds to an anti-rooted Steiner tree.

Cédric Bentz
CNAM, CEDRIC, 292 rue Saint-Martin, 75003 Paris, France
E-mail: cedric.bentz@cnam.fr

Marie-Christine Costa
ENSTA-ParisTech, CEDRIC, 828 Bd des Maréchaux, 91120 Palaiseau, France
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2 The capacitated K-Steiner tree problem

We are given a graph G = (V,E), directed or undirected, with a set V of n vertices, a set T ⊆ V of
K ≤ n terminals, a set E of m edges and a length (or cost) function l : E → R+. Let r ∈ V −T be
a special vertex considered as a root and let c : E → N∗ be a capacity function such that for each
e ∈ E, c(e) denotes the maximum number of terminals in the subtree disconnected from r when
removing e from S, or equivalently the maximal number of paths from r to a terminal through e.
We study the following problem :

Capacitated K-Steiner Tree Problem CKSTP

Given a graph G = (V,E), an integer K < n, a set T ⊂ V of K terminals, a root r ∈ V −T , a non-
negative length function l and a positive capacity function c on its edges, determine, if it exists, a
minimum length rooted tree S∗ spanning all the vertices of T and respecting the capacity constraints.

In any solution S there is an implicit orientation of the edges along the path from r to the termi-
nals. In the following we call arcs the edges of S according to this orientation: let e = [i, j] ∈ S,
then (i, j) ∈ S if i belongs to the path from r to j, otherwise (j, i) ∈ S. We also consider the
associated decision problem CKSTD, i.e. CKSTP with l(e) = 0 for all e ∈ E: is there a tree S rooted
at r such that for each arc e = (i, j) ∈ S, the number of terminals in the subtree rooted at j is not
greater than c(e) ?

CKSTP is a restricted version of the capacitated Steiner tree problem where each terminal has a
positive integer requirement and the capacity of an edge is the maximal total requirement which
can be served from r through e. This in turn is a generalization of the capacitated spanning tree
problem where K = n − 1. Both these last problems are known to be NP -hard and have been
extensively studied [1,2,3,5].

3 Results

We first give some complexity results or polynomial time algorithms for the decision problem CKSTD

in different classes of graphs. We prove that, for G undirected, directed or even directed without
circuit, CKSTD is NP-Complete, even if the capacity function is such that c(e) = 1 or 2 ∀e ∈ E. Then
we show how solving CKSTD in polynomial time when the capacity function is such that c(e) = 1
∀e ∈ E. We also prove that when G is a directed graph, CKSTD is NP -complete if K is a fixed
parameter (K ≥ 3).

Then we study the problem for any length function. We show that CKSTP is NP-Complete even if
l(e) = 1 ∀e ∈ E but is solvable in polynomial time if K = 2.

Finally, we propose an integer linear programming approach to solve the general problem in an
undirected graph G. For any [i, j] ∈ E, yij is a 0-1 variable such that yij = 1 if and only if the
arc (i, j) belongs to S, and if yij = 1 then xij denotes the number of terminals in the subtree of
S rooted at j, otherwise xij = 0; in other words, xij is the number of paths from r to a terminal
through (i, j) in S. Let lij and cij denote respectively the length and capacity of [i, j] and Γ (i) be
the set of neighbors of i. The problem can be formulated as the following integer linear program :
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(CKSP )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
∑

[i,j]∈E

lij (yij + yji)

∑
j∈Γ (r)

xrj = K (1)

∑
j∈Γ (t)

xjt = 1, ∀t ∈ T (2)

∑
i∈Γ (j)

xij =
∑

k∈Γ (j)

xjk, ∀j /∈ T ∪ {r} (3)

∑
j∈Γ (i)

yji ≤ 1, ∀i 6= r (4)

xij ≤ cij yij , ∀[i, j] ∈ E (5)

xij ∈ N, yij ∈ {0, 1}, ∀(i, j) ∈ E (6).

We solve the problem by adding some valid inequalities and using CPLEX. We present the results
for tested instances which have been either randomly generated or obtained from real-world net-
work wind-farm data.

Acknowledgements This work was done with the support of Gaspard Monge Program for Optimization and
operations research (PGMO).
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The Role of Hydrologic Information in Stochastic Dynamic Programming applied to 
hydropower reservoir management 
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Abstract  
 
This paper presents a study describing the effect of various hydrological variables in stochastic dynamic 
programming (SDP) for solving the optimization problem of managing a hydropower system. We will show that 
the choice of hydrological variables can strongly affect management policies. This is especially true for the 
system studied here, namely the Kemano hydroelectric system located in British Columbia, Canada, which is 
subject to large streamflow volumes due to significant snow cover during winter.  Several hydrological variables 
were tested to calibrate the model on this system including auto-regressive variables on past inflows, real-time 
snow water equivalent (SWE) and forecasted runoff volume from Ensemble of Streamflow Prediction (ESP). 
Results indicate that for the system in this study, using ESP scenarios to estimate the runoff volume is the best 
among the methods investigated for effective, safe management, compared to other hydrological variables. 
 
Keywords: Stochastic Dynamic Programming, Hydrological Information, Hydropower Reservoir, Stochastic 
Optimization. 
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When a hydropower system is only made up of one or two reservoirs, the stochastic dynamic programming 
(SDP) algorithm can be used to calculate an operating policy [1]. In this context, the success of SDP essentially 
relies on the ability to properly model the uncertainty associated with inflows. In some cases, the system receives 
large amounts of floodwaters or is subjected to prolonged droughts, making it crucial to properly model this 
uncertainty for the effective and safe management of the hydroelectric system. The Kemano hydroelectric 
system, managed by Rio Tinto Alcan (RTA), a multinational aluminium producer, is subject to a very particular 
hydrological regime. It is located in a mountainous region of northern British Columbia (BC), Western Canada, 
where deep snowpacks can occur. The Kemano powerhouse, located south of Kitimat in the North Coast of BC,  
has an installed capacity of 1000 MW and is fed by the Nechako reservoir via a 16 km tunnel. The watershed 
where the reservoir is located covers 14,000 km2 and its hydrological regime is mainly driven by snow melt, 
which implies a fairly high degree of interseasonal variability with maximum inflows during the snow-melting 
period, i.e., summer (May-July). The precipitation gradient between the eastern and western parts of the 
watershed is also significant, with an average yearly precipitation of 2,000 mm/year on the west side and of400 
mm/year on the east side. The town of Vanderhoof, located west and downstream from the reservoir, is subject 
to a significant risk of flood partly due to the uncontrolled flow of the Nautley River, which crosses the Nechako 
River downstream from the spillway.  Managing the hydroelectric system is therefore a very delicate operation 
given the various environmental constraints on the system and the substantial spring runoff volume as compared 
to the actual size and storage capacity of the Nechako reservoir. 
 
In SDP, the hydrological state variables must be carefully chosen to produce an optimal operating policy [2]. In 
many studies, the stochastic process of natural inflows to reservoirs is represented by a Markov model with a 
hydrological variable derived from inflow measurements or reconstructions made during the preceding period. 
However, in some cases, this approach does not yield consistent results and choosing other hydrological 
variables is essential for successfully using SDP [3-5]. Even if the role of hydrological variables in stochastic 
optimization is important, the optimal choice of these variables remains problem dependent and relies on the 
hydrology of the system. For the Kemano system, inflow volumes between April and August comprise about 
67% of annual streamflow. This is due to large snow accumulations in the Coast Mountains in the west end of 
the watershed. Monitoring the snow cover is therefore of primary importance to system management.  



Numerical simulation results will be presented that demonstrate choosing the right hydrological variable is 
fundamental to a successful application of the method. Four hydrological variables were tested: an auto-
regressive model of order 1 AR(1), an auto-regressive model of order 5 AR(5), Snow Water Equivalent (SWE) 
and a forecasted volume using ESP. In the case of the Kemano system, using the ESP to forecast runoff volume 
has proven to be, to date, the best choice for its management policy. With this hydrological variable, it was 
possible to provide the remaining runoff during the freshet. It established a minimum level in the Kemano 
reservoir prior to the freshet, leading to a policy that offered a good compromise between the efficiency of the 
powerhouse, supplying the minimum power generation for the aluminium smelter and flood control. Moreover, 
AR(p) variables did not include enough information for safe management, i.e. avoiding flooding at Vanderhoof 
while limiting the probability of power generation shortage. An operating policy derived from AR(p) variables 
generated significant losses of water through the spillway, which reduced the long-term hydroelectric production 
as compared with using the other hydrological variables.  
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