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Fourier representation of the diffusion MRI signal
using layer potentials

1. Introduction. Diffusion magnetic resonance imaging (diffusion MRI) is a
promising non-invasive imaging modality that can probe the tissue microstructure by
encoding the motion of water molecules with magnetic gradient pulses [32, 13]. The
goal of various imaging protocols is often the recovery of some biological parameters
of interest, such as axon diameter and density [38, 30], dendrite structure [11, 29],
effective diffusion coefficient [3]. However, in the past, researchers sometimes could
not fully validate some of these proposed protocols due to the lack of ground truth.
Therefore, recent works have started to include numerical simulations as a part of the
validation process [28, 34].

Concerning the current numerical simulation methods for diffusion MRI applica-
tions, two popular groups of approaches are Monte-Carlo methods and Bloch-Torrey
PDE-based methods. Monte-Carlo methods use random walkers to mimic the diffu-
sion process in a geometrical configuration. The Bloch Torrey PDE-based methods
solve the Bloch-Torrey partial differential equation, which describes the evolution of
the complex transverse water proton magnetization under the influence of diffusion-
encoding magnetic field gradient pulses. The predominant numerical methods to
solve this PDE include the finite difference method [14], the finite element method
[17, 21, 2], and the Matrix Formalism method [6, 7, 18]. In addition to numerical
efficiency, some Bloch-Torrey PDE-based methods allow for a better understanding
of the diffusion mechanism. Our previous works in Bloch-Torrey PDE-based neuron
simulations demonstrate that diffusion MRI signals reflect the cellular organization
of cortical gray matter, and these signals are sensitive to cell size and the presence of
large neurons such as the spindle (von Economo) neurons [33, 36, 19, 5].

The Matrix Formalism method [6, 7], which decomposes the solution of the Bloch-
Torrey PDE onto a Laplacian eigenbasis, provides another interesting perspective to
the diffusion MRI signal. One can address many fundamental theoretical questions
about the diffusion MRI signal thanks to the eigendecomposition. In some ways, the
Matrix Formalism method inspired us to decompose the diffusion MRI signal into a
Fourier type basis. Contrary to the Laplacian eigenbasis, the Fourier basis functions
themselves do not depend on the geometrical confinement. This independence should
allow for the comparison between various geometries and provides a new spectral
perspective.

Based on potential theory from classical mathematics, we propose a new method
that provides a Fourier type representation of the diffusion MRI signal. The main
challenge to overcome involves the fundamental solution of the diffusion equation, also
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known as the heat kernel, which has a singularity in time. In theory, infinite Fourier
modes are required to represent the heat kernel due to the singularity, while only finite
Fourier modes are accessible for practical computation. This practical limitation may
lead to the Gibbs phenomenon that could degrade the approximation accuracy [35].
In order to overcome this challenge, we follow the path of several previous works
[8, 15, 16, 9] focusing on the evaluation of heat potentials. In particular, in [8], the
authors proposed several fundamental ideas, such as 1) splitting the heat potential
into a local in time part and a history part in order to overcome the singularity of
the heat kernel; 2) approximating the local in time part by asymptotics; 3) leveraging
the exponential decay of the history part to represent it using a few Fourier modes.
These ideas are crucial to the Fourier type representation of the diffusion MRI signal
that we derive in this paper.

Despite the intrinsic similarity between thermal conduction and diffusion process,
in the literature, there have not been previous works about the representation of the
diffusion MRI signal via potential theory, and certainly not by using a Fourier basis
for layer potentials. As a first step in addressing this subject, we restrict ourselves to
the 2D diffusion MRI setting with impermeable interfaces. We also restrict ourselves
to simplified conditions on the diffusion-encoding gradient, specifically, we derive our
method under the narrow pulse assumption, where the diffusion-encoding pulse dura-
tion is very short compared to the delay between the pulses. These two assumptions
allow us to apply the theory developed for the diffusion kernel to the diffusion MRI
application.

The main steps of our method are 1) transforming the Bloch-Torrey PDE to
the diffusion equation using the narrow pulse assumption on the diffusion-encoding
sequence; 2) formulating the solution of the diffusion equation using the single layer
potential; 3) approximating the singular part of the single layer potential using an
asymptotic expansion and solving the integral equation; 4) storing the non-singular
part of the single layer potential using the Fourier coefficients, leveraging the fast decay
in the spectrum; 5) computing the diffusion MRI signal using the above representation.
We call our method the Fourier Potential Method (FPM).

2. Post-doc project. Here we present FPM simulation results on two realistic
axons. The microscopy image (Figure 1) and the axon sections are obtained using the
AxonDeepSeg segmentation framework [37]. With these irregular shapes, analytical
solutions are not accessible, so we computed the reference signals by finite element
simulations using the SpinDoctor toolbox [17]. We show, in Figure 2, the dMRI
signals in 40 directions as well as the relative errors. Our method agrees with the
finite element reference signals. For the middle b-value (4ms/um?), the relative error
is less than 5%. One should note that the magnetization of the two adjacent axons is
computed simultaneously by sharing the same Fourier basis. This feature is different
from the Matrix Formalism method, which requires geometry-dependent bases.

One of the main features of our method is the availability of the spectrum of the
smooth part of the magnetization field. The projection to the Fourier basis functions
provides a unified spectrum space for different geometries. Since our method provides
a Fourier like representation of the diffusion MRI signal, this can potentially facilitate
new physical and biological signal interpretation in the future.

The goal of the post-doc project is to study the Fourier representation of 2D
geometrical objects coming from the brain white matter. We are interested in relating
the properties of the Fourier coefficients to geometrical parameters such as the size
and shape of axons.



F1G. 1. The microscopy image of axons from AzonDeepSeg. Two adjacent axons are selected.

(a) normalized signals (b) relative error € (%)
90° 90°

135° 45°

0° 18

—— FPM: b =4 ms/pum?
—— FPM: b =10 ms/pum?
—— FEM: b =4 ms/um? §

—— FEM: b =10 ms/um? L f— b =10 ms/um?

225°

—— b=4ms/um?

270°

Fic. 2. Comparison of FPM with FEM. (a) the normalized signals simulated by FPM and
FEM. The gray areas illustrate the shapes of the two adjacent axons. The physical parameters are:
Do = 2 x 107 3um?2/us, § = 2ms, A = 100ms. The discretization parameters of the FPM are:
n = 50us, Vmax = 2pm~ L, Av = 0.05um~', Az = 0.0lum, and At = 50us. The signals are
stmulated in 40 directions evenly distributed on a unit circle. (b) the relative errors in percent.



Mathematical background

3. Mathematical frame of diffusion MRI. Suppose one would like to simu-
late the diffusion MRI signal due to spins inside a biological cell and assume that the
spin exchange across the cell membrane is negligible under the simulation conditions.
Let © be the domain that describes the geometry of the biological cell and let I' = 9
be the cell membrane.

3.1. Bloch-Torrey PDE. In diffusion MRI, a time-varying magnetic field gra-
dient is applied to the tissue to encode water diffusion. Denoting the effective time
profile of the diffusion-encoding magnetic field gradient by f(t), and let the vector g
contain the amplitude and direction information of the magnetic field gradient, the
complex transverse water proton magnetization in the rotating frame satisfies the
Bloch-Torrey PDE:

O M@t = —pyf(Dg - Mla.1) + V- (DVM(x, 1), =€,
where v = 267.513rad us~'T~! is the gyromagnetic ratio of the water proton, j is
the imaginary unit, Dy is the intrinsic diffusion coefficient in the neuron compartment
Q). The magnetization is a function of position x and time ¢, and depends on the
diffusion gradient vector g and the time profile f(t).

A commonly used time profile (diffusion-encoding sequence) is the pulsed-gradient
spin echo (PGSE) [32] sequence, with two rectangular pulses of duration §, separated
by a time interval A — ¢, for which the profile f(t) is

(3.1)

1, 0<t<é,
(3.2) fOy=4¢-1, A<t<A+6,
0, otherwise.

In the case that the rectangular pulses are narrow, i.e., § < A, this allows the Bloch-
Torrey PDE to be transformed to the diffusion equation. This assumption is called
the narrow pulse approximation [32] and it is taken up in subsection 3.2.

The PDE in (3.1) needs boundary conditions. We assume negligible membrane
permeability, meaning the zero Neumann boundary condition:

DoVM(x,t)-n=0, xe€dQ,

where n is the unit outward pointing normal vector at . In addition, the PDE has
the constant initial condition:

M(z,0) =p, xe,

where p is the initial spin density.
The diffusion MRI signal is measured at echo time ¢t = Ty > A + § for PGSE.
This signal is the integral of M (x,Tg):

s = / M(x,Tg) dz,
zeU{Q}

where (J{€2} represents a set of biological compartments with impermeable mem-
branes.



The signal s is usually plotted against a quantity called the b-value [32, 27]. The
b-value depends on g and f(t) and is defined as

g =1all [ ([ f(s)ds>2 |

For PGSE, the b-value is [32]:
(3-3) b(g,0,A) = ~*|lg]*6* (A - 5/3).

The reason for these definitions is that in a homogeneous medium, the signal attenu-
ation is e~ Pob where Dy is the intrinsic diffusion coefficient.

3.2. Narrow pulse approximation. In this paper, we restrict ourselves to
simplified conditions on the diffusion-encoding gradient, specifically, we derive our
method under the narrow pulse assumption, where the pulse duration is very short
compared to the delay between the pulses [32], i.e., d < A. This will lead to the
solution of a diffusion equation instead of the more complicated Bloch-Torrey PDE,
as explained below.

Let us consider spins initially located at @. After the first pulse, the complex
phase of these spins is e=7979'®_ This means the complex magnetization at t = § due
to a uniform distribution of initial spins with density p can be written as:

M(z,8) ~ pe 279 2 cQ.

Because the gradient magnetic field is turned off after the first pulse, the spins
move but the phase of the spins does not change. Therefore, the magnetization
between pulses satisfies the diffusion equation:

(3.4) %M(m,t) =V (DoVM(x,t)), =€ te[sA]

subject to the zero Neumann boundary condition:
(35) DoVM(CEo, t) n=0, m €INte [5, AL

where n is the unit outward pointing normal vector at xy, and initial condition at
t=9is:

(3.6) M(z,0) = pe 279 g cqQ.

During the second pulse, at the point @, the additional accumulated complex
phase is €°79°% 50 the magnetization at the position @ and time TF is:

3.7 M(x,TE) ~ M(xz, A9z c Q.
(3.7) (x,TE) (, ,

We emphasize again that we used the assumption § < A. The echo-time TFE is
usually some time after the end of the second pulse (i.e. TE > A 4+ §).
The diffusion MRI signal s is the total magnetization measured at the echo time:

(3.8) s= / M (x, A)e?®79® dg.
xel

4. Methodology. We derive our new method below.
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4.1. Solution of the diffusion equation and the diffusion MRI signal.
Before we solve the diffusion equation using potential theory, we transform the initial
and boundary conditions. We transform the diffusion equation in (3.4)—(3.6) such
that it is subject to zero initial conditions and complex-valued non-zero Neumann
boundary conditions. Define

(4.1) w(@,t) = Mz, t+06) — peim Dollal’tg=2maz 2t c0,A— 4],

where g = dvg/2m. We will work on the quantity w(a,t) in (4.1), which satisfies the
diffusion equation:

(4.2) %w(az,t) =V (DyVw(z,t)), xetel0,A—d|,

subject to non-homogeneous Neumann boundary conditions:

(4.3) DoVw(xo,t) - n=DoN(xg,t,q) o€ IN,te[0,A -4,
and zero initial conditions:

(4.4) w(xz,0) =0, xec.

The Neumann forcing term is complex-valued, periodic in space in the direction g,
and decays exponentially in time:

(4.5) N(z,t,q) =27pq-n (36_2”3‘1':’3) e~ 47 Dolla|*t

The diffusion MRI signal s can be reformulated in terms of w:

(4.6) s = Q] pe= 7 Dollall* (A=) +/ (i, A — §)eFmTT g,
xzeN

In the above, the first term is explicit, the second term needs to be computed. We
define a time dependent integral whose value at t = A — § gives second term:

(4.7) w(g,t) = / w(z, 1)e*™ % dz, t € [0, A — J].
xze)
The function @ can be expanded by the Green’s second identity:

1
( V - (DoVw(z,t))e*™I®da + B) ,

S S
2.5 = Tmp e Uy

B = / 21jDoq - nw(x, t)e* ™I ds, — DoVuw(x,t) - ne*™ 1% (s,
o9 o0

Using the diffusion equation and the nonhomogeneous Neumann boundary conditions,
we get an ordinary differential equation for w:

d
(4.8) aw(q,t) = 471Dy ||q||*w@(q, t) — 277]1)0/ q-nw(x,t)e™I% s,
a0

which has an analytical solution:

t
w(g,t) = —Do/ / 2m)q - ne_47r2D°”qH2(t_T)w(as,T)@Qﬁjq'mdrdsw,
(49) o0 Jo

t
= Dop* / / N*(z,t — 7, q)w(x, 7)dTds,.
00 Jo
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The asterisk symbol * denotes the complex conjugation. It can be proved that (4.9)
satisfies a recursive relationship in time:

(4.10)

w(g,t) = e~ 4™ Pollal"Aig(g ,t*At)wLDoP*l/ N (@, t = 7, q)uw(z, 7)dTds.
o0 Jt—At

Equation (4.7) and (4.9) are mathematically equivalent for evaluating the diffusion
MRI signal (at ¢ = A — d). It can be seen that, while (4.7) requires the value of w
on the entire domain Q, (4.9) only needs the value of w on the boundary, which is
more computationally efficient. The recursion in time above also increases the com-
putational efficiency. We will use the method of layer potentials to get the boundary
values in the next section.

4.2. The single layer potential representation. The PDE in (4.2)—(4.4) has
Neumann boundary conditions, zero initial conditions and zero forcing term, allowing
us to represent the solution w(x,t) as a single layer potential, with a density function
w defined on 99 [9]. In other words, w(x,t) = S[u](x,t). The definition for the single
layer potential is

(4.11) w(zx, t) = S[p)(x,t) = /0 /{)Q DoG(x —y,t — T7)u(y, 7)dsydr,

where G(x,t) is the fundamental solution of the 2D diffusion equation in a box
[—L1/2,L1/2] x [—La/2, Lo /2], with periodic boundary conditions. The fundamental
solution G(x,t) has two equivalent representations [8]:

llx—zoL|?
(4.12) Gaauss(X,t) = (4xDot) ™" > e 00t
z€Z2
1 2 2
4.13 G Fourier 1) = —4m*Dy||v||*t 27yv-x

z€7?

where ® and © are hadamard product and hadamard division, respectively, and L =
[Ly, LQ}T. For the convenience of notation, in the following, we set L1 = Lo = L and
note by Av = % In this way, we rewrite (4.13) as

(4.14) G Fourier(X, 1) Z e AT Dol |t 2mwx A 1,2

v=zQL
zeZ2

in order to recall its relationship with the Fourier transform. The imposition of
periodic boundary conditions on the faces of the box allows us to use the discrete
Fourier series.

The density function p is chosen to be a causal function and is determined by
imposing the Neumann boundary conditions on the geometry boundary 9 [16]:

lim  VS[u|(x,t) - n=N(xo,t,q), xo € Itel0,A—7]

x—xo €N
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Using the jump property of the trace of the double layer potential, the integral equa-
tion to be solved for p is then the following:

1
(4.15) é,u(wo,t) + Ku)(xo,t) = N(xo,t,q), xo € INte[0,A—7],
with
[t oG
(4.16) K[p)(xo,t) = Do— (o —y,t — 7)p(y, 7)dsydr
o Jao  Om,

being the principal value integral on the boundary. Solving the integral equation
(4.15) for p plays the pivotal role in our method. We present the detailed steps in the
next sections.

4.3. Splitting the single layer potential into local and history parts.
The single layer potential S[y] is split into a history part, Sjong[p], and a local in time
part, Sshort[p]. Since the local in time part Sgpor[pt] contains the singularity of the
fundamental solution G, we approximate it by asymptotic formulas. The asymptotic
trace formulas are only accurate in an interval near the singularity, so we limit their
use to the interval [t — ), t], with 7 being a small quantity to be determined later. In
other words,

(417) S[p“} (Xa t) = Sshort [,u] (xv t) + Slong [.u] (X, t),
with
t
Sshort [M] (X7 t) = / DOGGauss (X - y7t - T)M(y7 T)dsydT7
(4.18) i SO0

t—n
Siongpl(x,1) 1= /0 /an DoG Fourier (X — y,t — T)u(y, T)dsydr.

Similarly, we decompose K[u] into 2 parts:

(419) K[ILL](.’I}(), t) = Kshort M(mov t) + Klong [,LL](ZCO, t),
with
! oG auss
Kspore [ (o, t) := / Dogi(wo —y,t — 1)y, T)dsydr,

t—n JOQ 6”9:0

(4.20) . o0

Kimolil@o.t)i= [ [ DPEFEE gyt 1)y sy

0 le) Nz,

Next, we compute or approximate the above history and local parts.

4.3.1. Asymptotic trace formulas for the local part. Based on the expres-
sions derived in [8], the asymptotic trace formulas in two dimensions for the local
parts, when t > 1, are:

D
(4.21) Senortll(@o,t) = \/ = ul@o,t) + O0*/?)t >
and

vDon
2ym

(4.22) Ksnort 1] (2o, 1) = — r(@o)p(@o,t) + O(n*/?),t > 1,
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where k(xg) is the curvature at the point xo € 9§2. The boundary 052, which models
the cell membrane, is a closed 2D plane curve. We assume it is twice differentiable.
Let ¢(a) = (z(a),y(a)) be a parametric representation of 9§). We choose a general
parameter « such that ¢ («) is oriented counterclockwise. The curvature at the point
xo = P(p) is defined as

m/y// _ y/x//

(4.23) k(x0) = 1y

)

a=og

where primes refer to derivatives with respect to a.
We also need to initialize values for ¢ < 5. It has been derived in [9] that the
expressions are:

| Dot )
(424) SShOTt[M](wOat) = 70#(:1:03@ + O(td/z)vt < ;s
and

VDot
2/
4.3.2. Fourier representation of history part. For the smooth part of the

single layer potential, a Fourier representation for the Dirichlet trace is proposed in
[3]:

(4.25) K ahort 1] (@0, t) = Rlo)(@o, t) + O(E/2),t < 1.

(4.26) Stonglil(@o,t) =Dy > f(w, )™ ®0 A2,
v=zQL
z€Z?

and the Neumann trace is

(4.27) Kiongl1t] (o, t) = Dy E o - nf (v, t)e?™ V0 AL?,
v=zQL
z2€7?

where the Fourier coeflicients are

X t—n
(4.28) f(l/,t):/ / 674”2D°|‘”|‘2(t77)p(y,T)eiQW”'ydsydT.
0 [219)

To avoid history dependent time integration, we use the following recurrence
formula for the Fourier coefficients

(4.29)  fv,t) = e 4™ DolVIPAL fyy 4 At)4

tin 2 2
/ / AT DI =) |y Y2
t—n—At JoQ

so only local-in-time integrals are needed at each time step.
The above formulas hold when ¢ > 7. For ¢ < 5, we initialize Sjong[tt], Kiong[]s
and f to be 0.



4.4. Computation of the single layer density. Based on the decomposition
of the single layer potential and the approximation of the history and the local parts
detailed previously, we can compute the density function u.

For t < n, substituting (4.25) into (4.15) and solving the integral equation, we
can get the approximation to the density

2./\/(51307 ta q)

1 /Bl

For t € (n, A — 4], the integral equation (4.15) can be rewritten as

(4.30) (o, t) = +0(t%?), xoed, t<n.

L (@0, 1) + Kanort ) (o, £) = B0, 1),

2
where the right hand side is
(431) ﬂ(wﬂa t) = 7Klong [M}(mo, t) + N(mOa t7 q)

We write the solution of the above integral equation as
(4.32) w(@o,t) =2 (1 + 2K short) " [8] (@0, 1), @0 € Ot € (9, A — 0],

and expand the operator (I + QKShOTt)_l (corresponding to Kgport being a contrac-
tion) as

(433) ,LL(IEO, t) =2 (I = 2Kshort + 4K§ho7‘t +oe Tt (_2)11 ;Ihort +.. ) [/8] (:I;O’ t)

We approximate K7, .[5] using (4.22) and we get

1 D n/2
430 Kol 0 = g (22) (a0l + 00,
Then, we keep all terms of the operator expansion to obtain

(o, t) =2 (B(xo,t) — 2Kshort[B] (o, t) + 4K 20 [B] (20, t) + ...

= 2B(x0, 1) <1 + (D;”)%ﬁ(mo) + @ﬁ(wo) T ) +O(%/?)

= 28(xo, 1)/ <1 - “Dﬁ(ﬂ?ﬁ(wo)) +0(n*'?).

4.5. Computation of the single layer potential. Once the density u is ob-
tained, we compute the single layer potential S[u] in the following way.
When ¢ < 7, the expression for the single layer potential is

S[ﬂ} (-’1307 t) = Sshort [ﬂ} (.’1}07 t)

Dot 4 - ne— 47 Dolla|*t ,—2msq-z0 )
SR Bt ket M < +OW?), @ e ot e 0,1
™

1— @n(mo)

For t € (n, A — 4], the single layer potential has both a local part and a history
part. The local part is

(4.35)

D
Sshort[:u](wovt) = Ton#(wl)at) + 0(773/2)7 To € ant € (777 A — 5}
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As for the history part Siong[n], it can be approximated by the truncated Fourier
series:

(4.36)
Stomglil(@ost) = Do Y. @, e WAV 4 E(na), o € 00t € (5, A—0].

In the above, we denote the error term due to truncating the infinite Fourier series
up t0 Vmas by E(Vmaz). We do not have an analytical expression for E(vpqz), but
we will show later in the numerical results that it decays exponentially in v,,4z-

The addition of Ssport[pt] and Siong[] gives the single layer potential S[u| which
is the solution of (4.2) on the boundary:

S[u)(xo,t) = Sshort[1] (0, 1) + Siong 1) (xo,t), x0 € OUL [0, A—14].

At the current iteration step, the Fourier coefficients f that are still unknown, will be
computed using the density function p from the previous iterations, as explained in
the following.

4.5.1. Computation of the Fourier coefficients of the history part. For
t <, f is set to zero, as well as Kjong[p]. For t € (1, 2n], f are computed using the
density p from the previous iterations:

(4.37)

Flwt) =e = DoV IPAL f (1) 4 — At)+

t—m
—47%D, 2(t—7) ,—2mv- 2
/ / ¢4 Dollw|*(t—7) ¢ Y (Y, T)dTdSy, V€ [~Vmag, Vmaz)" s
00 Ji—n—nt

ftempl (Vvt)
with

t—n 6*47r290[I\V|\2(t*‘f)+||QH2T]

ftempl(uat> == / dr dSy.

47)q - me~2m(atv)y /
oN t

TneAr 1= J BT g(y)

p

We apply the trapezoidal rule to the time integration p to obtain

re—472Dollall?t
- W‘[mw\/? (Vi—7— V-7 - &f) +

o [ OV )= )
1-r(y)y/ 28 (t—n—At)

2 2 2
¢4 Dolllall® (t=n)+[v||*n] | Let™ PoUSITZIMIDA (4r Do (|qll?—|lv|P)At=1) |
At(am2o(llal~ )2 (1-n(w)y/ 2 =n-20))

4x2Dy(lall?= v IH)At _y 2p 2 | l12)At—1
e = PollalP DA |y £ g
At(am2 Dol v]2))2 (1-r(w) 2 =)

Once we compute the time integration p, the integration over the boundary 02
can be approximated by uniform discretization in arc length.
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Remaining on ¢t € (1, 27|, next we compute the long time part Kjng[p] via the
Fourier series

Kiongl)(o, t) =Dy Y 2w - nf(v,1)e*™ ® Av® + E(Vmax)-

V=—"Vmax

With a slight abuse of notation, we use the same notation E(Vpmqs) as in (4.36) for
the error due to truncating the Fourier series at vi,qz-
Finally, the density function u for (the current time) ¢ € (1, 27| is computed as:

M(woﬂf) _ 2 [N(il?o,t) — Klong[ﬂ’](w()?t)] + 0(773/2).

1- \/@/ﬁ(wo)

On the rest of the time interval, ¢t € (2, A — 4], f still uses the density p from
previous iterations, but the formulas are different:

(4.38)

Ffw,t) = e 4™ PolvIPAL {4 Af)+

t—mn
—4n3Dy||v |2 (t—7) ,—2m v 2
/ / e ollwlI”(t=7) g=2m Yu(y,7)drdsy, V€ [~Vmaz,Vmaz)”-
o Jt—n—At

fremp2(@,t)

In the above, the Fourier coefficients f (v,t— At) at the previous time step are known,
and the expression of u(xg,7) for 7 € (n,A —§ —nl is

w(xo, 7) =2 (1 — D;Tmn(:co)> N(xo,7) — Kiongpt](xo,7)], @ € 0.

The integration on the right hand side of (4.38) is noted as ftempg (v,t) in which we
substitute the expression of ;1 above. We split fiemp2 into two parts and gather the
terms that are independent of time

—1
¢ D,
fteme(V,t) :/ 2 (1 — M/Q(y)) e_QWJV'yX
Q

] m

t—n .
(2m5q - ne 2 / =47 Do(lallP vl (=) g _

t—n—At
h1
o 472D 2t
/ Klong[:u](yaT)e_ ™ DollI*( _T)dT)dSy'
t—n—At
ha

The time integration h; in the first part has an analytical expression

At - =4 Dol lall = v
am* Do(llall?=llv[®)at _ £ bl

q 1 %4
4m*Do([lal* — (lv[?)
12
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The time integration hs in the second part has to be calculated numerically. We
apply the trapezoidal rule to Kjong[p](y, 7) and we get

(4.40)
S [Kiong 1l (y, t — 1) + Kionglul(y, t —n — At)] v =0
hoy = e 42 DoV 2 At (42D IWI2A
i : <4W2DOH(v|\2>2Z‘l A K gng [ (y, t — 1 — At) +

—4n2Dg v At 2 2
A K [y, £ — )] e 4P )] £ 0

The values of Kjong[p] at time ¢t —n— At and ¢ —n have been computed in previous
steps, thus the expressions for h; and hy can be computed in the current time step.
Then we discretize uniformly in the arc length over the boundary to obtain ftempg as
well as f .

Staying on t € (2n, A — 4], it is straightforward to recover the long time part
Kiong|p] at time t by applying the inverse discrete Fourier transform

Kionglt)(zo, t) =Dy Y 2w - nf(v,)e*™ ® Av® + E(Vmax)-

V=—Vmazx

Again, with a slight abuse of notation, we use the same notation F(vy,,) as in (4.36)
for the error due to truncating the Fourier series at v,,4,. Finally, the density function
1 at the current time t is

,U,(:Boﬂf) _ 2 [J\/(wo,t) — Kl(mg[ﬂ](“’o?t)] + 0(773/2)7

1 /2o (ao)

which will be used for future iterations.

4.6. Computation of the diffusion MRI signal. After obtaining the single
layer potential, the following procedure produces the diffusion MRI signal.
The diffusion MRI signal s has the representation

s = |Q|pe*4w2Dolqu2(Af5) +@(g, A - 6).

The quantity @ will be computed using the recursive relationship below (rewritten
from (4.10)):

w(q,t) = 6_4”2D°”q”2mw(q, t — At)

u

t
— Do/ 2miq - nez’”q'y/ 6*4W2Do\lq|\2(t77)w(y’T)dT dsy.
0Q t—At

By applying the trapezoidal rule to the time integration w, we then get the ex-
pression

At lw(y,t — At) + w(y, )] lall =0

(441) u = 176_4"2D0qul2At(47r2DgHquAtJrl)
(4m2Do|al[?)? At
—4ax?Dg|qll?At 2 2
e +47°Dollql|*At—1
+ Gr"Do[[al?)2 At w(y,1) lall # 0

13

w(y,t — At)




The variable w is the single layer potential S[u]

w(®o,t) = S[ul(xo,t) = Ssnort [ (@0, t) + Siong[u](z0,1).

The short time part has an asymptotic expression

with

and

Sshort[/i](woat) _ %N(wovt) - Klong[/l}(w()vt) + 0(773/2)

T 1— w/ym(mo)

N(«’Em t) — 27'(qu . n6747T2D0HQ||2t6727TJQ'm0’

Vmax

Kiongp](x0,t) = Do Z 2mgv - f (1, 4)e*™ P AV? + E(Vpmaz)-

V=—"Vmax

The long time part is approximated by a Fourier series

VUmax

Stong[pt](x0,t) = Do Z Fw, )e?™ @ Av? + E(vmaz)-

V=—Vmax

Finally, a uniform arc length discretization of the boundary allows the numerical
computation of @.
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